1 | /* An expandable hash tables datatype.
|
---|
2 | Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
|
---|
3 | Contributed by Vladimir Makarov (vmakarov@cygnus.com).
|
---|
4 |
|
---|
5 | This file is part of the libiberty library.
|
---|
6 | Libiberty is free software; you can redistribute it and/or
|
---|
7 | modify it under the terms of the GNU Library General Public
|
---|
8 | License as published by the Free Software Foundation; either
|
---|
9 | version 2 of the License, or (at your option) any later version.
|
---|
10 |
|
---|
11 | Libiberty is distributed in the hope that it will be useful,
|
---|
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
14 | Library General Public License for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU Library General Public
|
---|
17 | License along with libiberty; see the file COPYING.LIB. If
|
---|
18 | not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
---|
19 | Boston, MA 02111-1307, USA. */
|
---|
20 |
|
---|
21 | /* This package implements basic hash table functionality. It is possible
|
---|
22 | to search for an entry, create an entry and destroy an entry.
|
---|
23 |
|
---|
24 | Elements in the table are generic pointers.
|
---|
25 |
|
---|
26 | The size of the table is not fixed; if the occupancy of the table
|
---|
27 | grows too high the hash table will be expanded.
|
---|
28 |
|
---|
29 | The abstract data implementation is based on generalized Algorithm D
|
---|
30 | from Knuth's book "The art of computer programming". Hash table is
|
---|
31 | expanded by creation of new hash table and transferring elements from
|
---|
32 | the old table to the new table. */
|
---|
33 |
|
---|
34 | #ifdef HAVE_CONFIG_H
|
---|
35 | #include "config.h"
|
---|
36 | #endif
|
---|
37 |
|
---|
38 | #include <sys/types.h>
|
---|
39 |
|
---|
40 | #ifdef HAVE_STDLIB_H
|
---|
41 | #include <stdlib.h>
|
---|
42 | #endif
|
---|
43 |
|
---|
44 | #ifdef HAVE_STRING_H
|
---|
45 | #include <string.h>
|
---|
46 | #endif
|
---|
47 |
|
---|
48 | #include <stdio.h>
|
---|
49 |
|
---|
50 | #include "libiberty.h"
|
---|
51 | #include "hashtab.h"
|
---|
52 |
|
---|
53 | /* This macro defines reserved value for empty table entry. */
|
---|
54 |
|
---|
55 | #define EMPTY_ENTRY ((PTR) 0)
|
---|
56 |
|
---|
57 | /* This macro defines reserved value for table entry which contained
|
---|
58 | a deleted element. */
|
---|
59 |
|
---|
60 | #define DELETED_ENTRY ((PTR) 1)
|
---|
61 |
|
---|
62 | static unsigned long higher_prime_number PARAMS ((unsigned long));
|
---|
63 | static hashval_t hash_pointer PARAMS ((const void *));
|
---|
64 | static int eq_pointer PARAMS ((const void *, const void *));
|
---|
65 | static int htab_expand PARAMS ((htab_t));
|
---|
66 | static PTR *find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
|
---|
67 |
|
---|
68 | /* At some point, we could make these be NULL, and modify the
|
---|
69 | hash-table routines to handle NULL specially; that would avoid
|
---|
70 | function-call overhead for the common case of hashing pointers. */
|
---|
71 | htab_hash htab_hash_pointer = hash_pointer;
|
---|
72 | htab_eq htab_eq_pointer = eq_pointer;
|
---|
73 |
|
---|
74 | /* The following function returns a nearest prime number which is
|
---|
75 | greater than N, and near a power of two. */
|
---|
76 |
|
---|
77 | static unsigned long
|
---|
78 | higher_prime_number (n)
|
---|
79 | unsigned long n;
|
---|
80 | {
|
---|
81 | /* These are primes that are near, but slightly smaller than, a
|
---|
82 | power of two. */
|
---|
83 | static const unsigned long primes[] = {
|
---|
84 | (unsigned long) 7,
|
---|
85 | (unsigned long) 13,
|
---|
86 | (unsigned long) 31,
|
---|
87 | (unsigned long) 61,
|
---|
88 | (unsigned long) 127,
|
---|
89 | (unsigned long) 251,
|
---|
90 | (unsigned long) 509,
|
---|
91 | (unsigned long) 1021,
|
---|
92 | (unsigned long) 2039,
|
---|
93 | (unsigned long) 4093,
|
---|
94 | (unsigned long) 8191,
|
---|
95 | (unsigned long) 16381,
|
---|
96 | (unsigned long) 32749,
|
---|
97 | (unsigned long) 65521,
|
---|
98 | (unsigned long) 131071,
|
---|
99 | (unsigned long) 262139,
|
---|
100 | (unsigned long) 524287,
|
---|
101 | (unsigned long) 1048573,
|
---|
102 | (unsigned long) 2097143,
|
---|
103 | (unsigned long) 4194301,
|
---|
104 | (unsigned long) 8388593,
|
---|
105 | (unsigned long) 16777213,
|
---|
106 | (unsigned long) 33554393,
|
---|
107 | (unsigned long) 67108859,
|
---|
108 | (unsigned long) 134217689,
|
---|
109 | (unsigned long) 268435399,
|
---|
110 | (unsigned long) 536870909,
|
---|
111 | (unsigned long) 1073741789,
|
---|
112 | (unsigned long) 2147483647,
|
---|
113 | /* 4294967291L */
|
---|
114 | ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
|
---|
115 | };
|
---|
116 |
|
---|
117 | const unsigned long *low = &primes[0];
|
---|
118 | const unsigned long *high = &primes[sizeof(primes) / sizeof(primes[0])];
|
---|
119 |
|
---|
120 | while (low != high)
|
---|
121 | {
|
---|
122 | const unsigned long *mid = low + (high - low) / 2;
|
---|
123 | if (n > *mid)
|
---|
124 | low = mid + 1;
|
---|
125 | else
|
---|
126 | high = mid;
|
---|
127 | }
|
---|
128 |
|
---|
129 | /* If we've run out of primes, abort. */
|
---|
130 | if (n > *low)
|
---|
131 | {
|
---|
132 | fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
|
---|
133 | abort ();
|
---|
134 | }
|
---|
135 |
|
---|
136 | return *low;
|
---|
137 | }
|
---|
138 |
|
---|
139 | /* Returns a hash code for P. */
|
---|
140 |
|
---|
141 | static hashval_t
|
---|
142 | hash_pointer (p)
|
---|
143 | const PTR p;
|
---|
144 | {
|
---|
145 | return (hashval_t) ((long)p >> 3);
|
---|
146 | }
|
---|
147 |
|
---|
148 | /* Returns non-zero if P1 and P2 are equal. */
|
---|
149 |
|
---|
150 | static int
|
---|
151 | eq_pointer (p1, p2)
|
---|
152 | const PTR p1;
|
---|
153 | const PTR p2;
|
---|
154 | {
|
---|
155 | return p1 == p2;
|
---|
156 | }
|
---|
157 |
|
---|
158 | /* This function creates table with length slightly longer than given
|
---|
159 | source length. Created hash table is initiated as empty (all the
|
---|
160 | hash table entries are EMPTY_ENTRY). The function returns the
|
---|
161 | created hash table. Memory allocation must not fail. */
|
---|
162 |
|
---|
163 | htab_t
|
---|
164 | htab_create (size, hash_f, eq_f, del_f)
|
---|
165 | size_t size;
|
---|
166 | htab_hash hash_f;
|
---|
167 | htab_eq eq_f;
|
---|
168 | htab_del del_f;
|
---|
169 | {
|
---|
170 | htab_t result;
|
---|
171 |
|
---|
172 | size = higher_prime_number (size);
|
---|
173 | result = (htab_t) xcalloc (1, sizeof (struct htab));
|
---|
174 | result->entries = (PTR *) xcalloc (size, sizeof (PTR));
|
---|
175 | result->size = size;
|
---|
176 | result->hash_f = hash_f;
|
---|
177 | result->eq_f = eq_f;
|
---|
178 | result->del_f = del_f;
|
---|
179 | result->return_allocation_failure = 0;
|
---|
180 | return result;
|
---|
181 | }
|
---|
182 |
|
---|
183 | /* This function creates table with length slightly longer than given
|
---|
184 | source length. The created hash table is initiated as empty (all the
|
---|
185 | hash table entries are EMPTY_ENTRY). The function returns the created
|
---|
186 | hash table. Memory allocation may fail; it may return NULL. */
|
---|
187 |
|
---|
188 | htab_t
|
---|
189 | htab_try_create (size, hash_f, eq_f, del_f)
|
---|
190 | size_t size;
|
---|
191 | htab_hash hash_f;
|
---|
192 | htab_eq eq_f;
|
---|
193 | htab_del del_f;
|
---|
194 | {
|
---|
195 | htab_t result;
|
---|
196 |
|
---|
197 | size = higher_prime_number (size);
|
---|
198 | result = (htab_t) calloc (1, sizeof (struct htab));
|
---|
199 | if (result == NULL)
|
---|
200 | return NULL;
|
---|
201 |
|
---|
202 | result->entries = (PTR *) calloc (size, sizeof (PTR));
|
---|
203 | if (result->entries == NULL)
|
---|
204 | {
|
---|
205 | free (result);
|
---|
206 | return NULL;
|
---|
207 | }
|
---|
208 |
|
---|
209 | result->size = size;
|
---|
210 | result->hash_f = hash_f;
|
---|
211 | result->eq_f = eq_f;
|
---|
212 | result->del_f = del_f;
|
---|
213 | result->return_allocation_failure = 1;
|
---|
214 | return result;
|
---|
215 | }
|
---|
216 |
|
---|
217 | /* This function frees all memory allocated for given hash table.
|
---|
218 | Naturally the hash table must already exist. */
|
---|
219 |
|
---|
220 | void
|
---|
221 | htab_delete (htab)
|
---|
222 | htab_t htab;
|
---|
223 | {
|
---|
224 | int i;
|
---|
225 |
|
---|
226 | if (htab->del_f)
|
---|
227 | for (i = htab->size - 1; i >= 0; i--)
|
---|
228 | if (htab->entries[i] != EMPTY_ENTRY
|
---|
229 | && htab->entries[i] != DELETED_ENTRY)
|
---|
230 | (*htab->del_f) (htab->entries[i]);
|
---|
231 |
|
---|
232 | free (htab->entries);
|
---|
233 | free (htab);
|
---|
234 | }
|
---|
235 |
|
---|
236 | /* This function clears all entries in the given hash table. */
|
---|
237 |
|
---|
238 | void
|
---|
239 | htab_empty (htab)
|
---|
240 | htab_t htab;
|
---|
241 | {
|
---|
242 | int i;
|
---|
243 |
|
---|
244 | if (htab->del_f)
|
---|
245 | for (i = htab->size - 1; i >= 0; i--)
|
---|
246 | if (htab->entries[i] != EMPTY_ENTRY
|
---|
247 | && htab->entries[i] != DELETED_ENTRY)
|
---|
248 | (*htab->del_f) (htab->entries[i]);
|
---|
249 |
|
---|
250 | memset (htab->entries, 0, htab->size * sizeof (PTR));
|
---|
251 | }
|
---|
252 |
|
---|
253 | /* Similar to htab_find_slot, but without several unwanted side effects:
|
---|
254 | - Does not call htab->eq_f when it finds an existing entry.
|
---|
255 | - Does not change the count of elements/searches/collisions in the
|
---|
256 | hash table.
|
---|
257 | This function also assumes there are no deleted entries in the table.
|
---|
258 | HASH is the hash value for the element to be inserted. */
|
---|
259 |
|
---|
260 | static PTR *
|
---|
261 | find_empty_slot_for_expand (htab, hash)
|
---|
262 | htab_t htab;
|
---|
263 | hashval_t hash;
|
---|
264 | {
|
---|
265 | size_t size = htab->size;
|
---|
266 | unsigned int index = hash % size;
|
---|
267 | PTR *slot = htab->entries + index;
|
---|
268 | hashval_t hash2;
|
---|
269 |
|
---|
270 | if (*slot == EMPTY_ENTRY)
|
---|
271 | return slot;
|
---|
272 | else if (*slot == DELETED_ENTRY)
|
---|
273 | abort ();
|
---|
274 |
|
---|
275 | hash2 = 1 + hash % (size - 2);
|
---|
276 | for (;;)
|
---|
277 | {
|
---|
278 | index += hash2;
|
---|
279 | if (index >= size)
|
---|
280 | index -= size;
|
---|
281 |
|
---|
282 | slot = htab->entries + index;
|
---|
283 | if (*slot == EMPTY_ENTRY)
|
---|
284 | return slot;
|
---|
285 | else if (*slot == DELETED_ENTRY)
|
---|
286 | abort ();
|
---|
287 | }
|
---|
288 | }
|
---|
289 |
|
---|
290 | /* The following function changes size of memory allocated for the
|
---|
291 | entries and repeatedly inserts the table elements. The occupancy
|
---|
292 | of the table after the call will be about 50%. Naturally the hash
|
---|
293 | table must already exist. Remember also that the place of the
|
---|
294 | table entries is changed. If memory allocation failures are allowed,
|
---|
295 | this function will return zero, indicating that the table could not be
|
---|
296 | expanded. If all goes well, it will return a non-zero value. */
|
---|
297 |
|
---|
298 | static int
|
---|
299 | htab_expand (htab)
|
---|
300 | htab_t htab;
|
---|
301 | {
|
---|
302 | PTR *oentries;
|
---|
303 | PTR *olimit;
|
---|
304 | PTR *p;
|
---|
305 | size_t nsize;
|
---|
306 |
|
---|
307 | oentries = htab->entries;
|
---|
308 | olimit = oentries + htab->size;
|
---|
309 |
|
---|
310 | nsize = higher_prime_number (htab->size * 2);
|
---|
311 |
|
---|
312 | if (htab->return_allocation_failure)
|
---|
313 | {
|
---|
314 | PTR *nentries = (PTR *) calloc (nsize, sizeof (PTR));
|
---|
315 | if (nentries == NULL)
|
---|
316 | return 0;
|
---|
317 | htab->entries = nentries;
|
---|
318 | }
|
---|
319 | else
|
---|
320 | htab->entries = (PTR *) xcalloc (nsize, sizeof (PTR));
|
---|
321 |
|
---|
322 | htab->size = nsize;
|
---|
323 | htab->n_elements -= htab->n_deleted;
|
---|
324 | htab->n_deleted = 0;
|
---|
325 |
|
---|
326 | p = oentries;
|
---|
327 | do
|
---|
328 | {
|
---|
329 | PTR x = *p;
|
---|
330 |
|
---|
331 | if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
|
---|
332 | {
|
---|
333 | PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
|
---|
334 |
|
---|
335 | *q = x;
|
---|
336 | }
|
---|
337 |
|
---|
338 | p++;
|
---|
339 | }
|
---|
340 | while (p < olimit);
|
---|
341 |
|
---|
342 | free (oentries);
|
---|
343 | return 1;
|
---|
344 | }
|
---|
345 |
|
---|
346 | /* This function searches for a hash table entry equal to the given
|
---|
347 | element. It cannot be used to insert or delete an element. */
|
---|
348 |
|
---|
349 | PTR
|
---|
350 | htab_find_with_hash (htab, element, hash)
|
---|
351 | htab_t htab;
|
---|
352 | const PTR element;
|
---|
353 | hashval_t hash;
|
---|
354 | {
|
---|
355 | unsigned int index;
|
---|
356 | hashval_t hash2;
|
---|
357 | size_t size;
|
---|
358 | PTR entry;
|
---|
359 |
|
---|
360 | htab->searches++;
|
---|
361 | size = htab->size;
|
---|
362 | index = hash % size;
|
---|
363 |
|
---|
364 | entry = htab->entries[index];
|
---|
365 | if (entry == EMPTY_ENTRY
|
---|
366 | || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
|
---|
367 | return entry;
|
---|
368 |
|
---|
369 | hash2 = 1 + hash % (size - 2);
|
---|
370 |
|
---|
371 | for (;;)
|
---|
372 | {
|
---|
373 | htab->collisions++;
|
---|
374 | index += hash2;
|
---|
375 | if (index >= size)
|
---|
376 | index -= size;
|
---|
377 |
|
---|
378 | entry = htab->entries[index];
|
---|
379 | if (entry == EMPTY_ENTRY
|
---|
380 | || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
|
---|
381 | return entry;
|
---|
382 | }
|
---|
383 | }
|
---|
384 |
|
---|
385 | /* Like htab_find_slot_with_hash, but compute the hash value from the
|
---|
386 | element. */
|
---|
387 |
|
---|
388 | PTR
|
---|
389 | htab_find (htab, element)
|
---|
390 | htab_t htab;
|
---|
391 | const PTR element;
|
---|
392 | {
|
---|
393 | return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
|
---|
394 | }
|
---|
395 |
|
---|
396 | /* This function searches for a hash table slot containing an entry
|
---|
397 | equal to the given element. To delete an entry, call this with
|
---|
398 | INSERT = 0, then call htab_clear_slot on the slot returned (possibly
|
---|
399 | after doing some checks). To insert an entry, call this with
|
---|
400 | INSERT = 1, then write the value you want into the returned slot.
|
---|
401 | When inserting an entry, NULL may be returned if memory allocation
|
---|
402 | fails. */
|
---|
403 |
|
---|
404 | PTR *
|
---|
405 | htab_find_slot_with_hash (htab, element, hash, insert)
|
---|
406 | htab_t htab;
|
---|
407 | const PTR element;
|
---|
408 | hashval_t hash;
|
---|
409 | enum insert_option insert;
|
---|
410 | {
|
---|
411 | PTR *first_deleted_slot;
|
---|
412 | unsigned int index;
|
---|
413 | hashval_t hash2;
|
---|
414 | size_t size;
|
---|
415 | PTR entry;
|
---|
416 |
|
---|
417 | if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4
|
---|
418 | && htab_expand (htab) == 0)
|
---|
419 | return NULL;
|
---|
420 |
|
---|
421 | size = htab->size;
|
---|
422 | index = hash % size;
|
---|
423 |
|
---|
424 | htab->searches++;
|
---|
425 | first_deleted_slot = NULL;
|
---|
426 |
|
---|
427 | entry = htab->entries[index];
|
---|
428 | if (entry == EMPTY_ENTRY)
|
---|
429 | goto empty_entry;
|
---|
430 | else if (entry == DELETED_ENTRY)
|
---|
431 | first_deleted_slot = &htab->entries[index];
|
---|
432 | else if ((*htab->eq_f) (entry, element))
|
---|
433 | return &htab->entries[index];
|
---|
434 |
|
---|
435 | hash2 = 1 + hash % (size - 2);
|
---|
436 | for (;;)
|
---|
437 | {
|
---|
438 | htab->collisions++;
|
---|
439 | index += hash2;
|
---|
440 | if (index >= size)
|
---|
441 | index -= size;
|
---|
442 |
|
---|
443 | entry = htab->entries[index];
|
---|
444 | if (entry == EMPTY_ENTRY)
|
---|
445 | goto empty_entry;
|
---|
446 | else if (entry == DELETED_ENTRY)
|
---|
447 | {
|
---|
448 | if (!first_deleted_slot)
|
---|
449 | first_deleted_slot = &htab->entries[index];
|
---|
450 | }
|
---|
451 | else if ((*htab->eq_f) (entry, element))
|
---|
452 | return &htab->entries[index];
|
---|
453 | }
|
---|
454 |
|
---|
455 | empty_entry:
|
---|
456 | if (insert == NO_INSERT)
|
---|
457 | return NULL;
|
---|
458 |
|
---|
459 | htab->n_elements++;
|
---|
460 |
|
---|
461 | if (first_deleted_slot)
|
---|
462 | {
|
---|
463 | *first_deleted_slot = EMPTY_ENTRY;
|
---|
464 | return first_deleted_slot;
|
---|
465 | }
|
---|
466 |
|
---|
467 | return &htab->entries[index];
|
---|
468 | }
|
---|
469 |
|
---|
470 | /* Like htab_find_slot_with_hash, but compute the hash value from the
|
---|
471 | element. */
|
---|
472 |
|
---|
473 | PTR *
|
---|
474 | htab_find_slot (htab, element, insert)
|
---|
475 | htab_t htab;
|
---|
476 | const PTR element;
|
---|
477 | enum insert_option insert;
|
---|
478 | {
|
---|
479 | return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
|
---|
480 | insert);
|
---|
481 | }
|
---|
482 |
|
---|
483 | /* This function deletes an element with the given value from hash
|
---|
484 | table. If there is no matching element in the hash table, this
|
---|
485 | function does nothing. */
|
---|
486 |
|
---|
487 | void
|
---|
488 | htab_remove_elt (htab, element)
|
---|
489 | htab_t htab;
|
---|
490 | PTR element;
|
---|
491 | {
|
---|
492 | PTR *slot;
|
---|
493 |
|
---|
494 | slot = htab_find_slot (htab, element, NO_INSERT);
|
---|
495 | if (*slot == EMPTY_ENTRY)
|
---|
496 | return;
|
---|
497 |
|
---|
498 | if (htab->del_f)
|
---|
499 | (*htab->del_f) (*slot);
|
---|
500 |
|
---|
501 | *slot = DELETED_ENTRY;
|
---|
502 | htab->n_deleted++;
|
---|
503 | }
|
---|
504 |
|
---|
505 | /* This function clears a specified slot in a hash table. It is
|
---|
506 | useful when you've already done the lookup and don't want to do it
|
---|
507 | again. */
|
---|
508 |
|
---|
509 | void
|
---|
510 | htab_clear_slot (htab, slot)
|
---|
511 | htab_t htab;
|
---|
512 | PTR *slot;
|
---|
513 | {
|
---|
514 | if (slot < htab->entries || slot >= htab->entries + htab->size
|
---|
515 | || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
|
---|
516 | abort ();
|
---|
517 |
|
---|
518 | if (htab->del_f)
|
---|
519 | (*htab->del_f) (*slot);
|
---|
520 |
|
---|
521 | *slot = DELETED_ENTRY;
|
---|
522 | htab->n_deleted++;
|
---|
523 | }
|
---|
524 |
|
---|
525 | /* This function scans over the entire hash table calling
|
---|
526 | CALLBACK for each live entry. If CALLBACK returns false,
|
---|
527 | the iteration stops. INFO is passed as CALLBACK's second
|
---|
528 | argument. */
|
---|
529 |
|
---|
530 | void
|
---|
531 | htab_traverse (htab, callback, info)
|
---|
532 | htab_t htab;
|
---|
533 | htab_trav callback;
|
---|
534 | PTR info;
|
---|
535 | {
|
---|
536 | PTR *slot = htab->entries;
|
---|
537 | PTR *limit = slot + htab->size;
|
---|
538 |
|
---|
539 | do
|
---|
540 | {
|
---|
541 | PTR x = *slot;
|
---|
542 |
|
---|
543 | if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
|
---|
544 | if (!(*callback) (slot, info))
|
---|
545 | break;
|
---|
546 | }
|
---|
547 | while (++slot < limit);
|
---|
548 | }
|
---|
549 |
|
---|
550 | /* Return the current size of given hash table. */
|
---|
551 |
|
---|
552 | size_t
|
---|
553 | htab_size (htab)
|
---|
554 | htab_t htab;
|
---|
555 | {
|
---|
556 | return htab->size;
|
---|
557 | }
|
---|
558 |
|
---|
559 | /* Return the current number of elements in given hash table. */
|
---|
560 |
|
---|
561 | size_t
|
---|
562 | htab_elements (htab)
|
---|
563 | htab_t htab;
|
---|
564 | {
|
---|
565 | return htab->n_elements - htab->n_deleted;
|
---|
566 | }
|
---|
567 |
|
---|
568 | /* Return the fraction of fixed collisions during all work with given
|
---|
569 | hash table. */
|
---|
570 |
|
---|
571 | double
|
---|
572 | htab_collisions (htab)
|
---|
573 | htab_t htab;
|
---|
574 | {
|
---|
575 | if (htab->searches == 0)
|
---|
576 | return 0.0;
|
---|
577 |
|
---|
578 | return (double) htab->collisions / (double) htab->searches;
|
---|
579 | }
|
---|
580 |
|
---|
581 | /* Hash P as a null-terminated string.
|
---|
582 |
|
---|
583 | Copied from gcc/hashtable.c. Zack had the following to say with respect
|
---|
584 | to applicability, though note that unlike hashtable.c, this hash table
|
---|
585 | implementation re-hashes rather than chain buckets.
|
---|
586 |
|
---|
587 | http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
|
---|
588 | From: Zack Weinberg <zackw@panix.com>
|
---|
589 | Date: Fri, 17 Aug 2001 02:15:56 -0400
|
---|
590 |
|
---|
591 | I got it by extracting all the identifiers from all the source code
|
---|
592 | I had lying around in mid-1999, and testing many recurrences of
|
---|
593 | the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
|
---|
594 | prime numbers or the appropriate identity. This was the best one.
|
---|
595 | I don't remember exactly what constituted "best", except I was
|
---|
596 | looking at bucket-length distributions mostly.
|
---|
597 |
|
---|
598 | So it should be very good at hashing identifiers, but might not be
|
---|
599 | as good at arbitrary strings.
|
---|
600 |
|
---|
601 | I'll add that it thoroughly trounces the hash functions recommended
|
---|
602 | for this use at http://burtleburtle.net/bob/hash/index.html, both
|
---|
603 | on speed and bucket distribution. I haven't tried it against the
|
---|
604 | function they just started using for Perl's hashes. */
|
---|
605 |
|
---|
606 | hashval_t
|
---|
607 | htab_hash_string (p)
|
---|
608 | const PTR p;
|
---|
609 | {
|
---|
610 | const unsigned char *str = (const unsigned char *) p;
|
---|
611 | hashval_t r = 0;
|
---|
612 | unsigned char c;
|
---|
613 |
|
---|
614 | while ((c = *str++) != 0)
|
---|
615 | r = r * 67 + c - 113;
|
---|
616 |
|
---|
617 | return r;
|
---|
618 | }
|
---|