source: trunk/src/gcc/libiberty/hashtab.c@ 2

Last change on this file since 2 was 2, checked in by bird, 22 years ago

Initial revision

  • Property cvs2svn:cvs-rev set to 1.1
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 15.2 KB
Line 
1/* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5This file is part of the libiberty library.
6Libiberty is free software; you can redistribute it and/or
7modify it under the terms of the GNU Library General Public
8License as published by the Free Software Foundation; either
9version 2 of the License, or (at your option) any later version.
10
11Libiberty is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14Library General Public License for more details.
15
16You should have received a copy of the GNU Library General Public
17License along with libiberty; see the file COPYING.LIB. If
18not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
20
21/* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
23
24 Elements in the table are generic pointers.
25
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
28
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
33
34#ifdef HAVE_CONFIG_H
35#include "config.h"
36#endif
37
38#include <sys/types.h>
39
40#ifdef HAVE_STDLIB_H
41#include <stdlib.h>
42#endif
43
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
47
48#include <stdio.h>
49
50#include "libiberty.h"
51#include "hashtab.h"
52
53/* This macro defines reserved value for empty table entry. */
54
55#define EMPTY_ENTRY ((PTR) 0)
56
57/* This macro defines reserved value for table entry which contained
58 a deleted element. */
59
60#define DELETED_ENTRY ((PTR) 1)
61
62static unsigned long higher_prime_number PARAMS ((unsigned long));
63static hashval_t hash_pointer PARAMS ((const void *));
64static int eq_pointer PARAMS ((const void *, const void *));
65static int htab_expand PARAMS ((htab_t));
66static PTR *find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
67
68/* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71htab_hash htab_hash_pointer = hash_pointer;
72htab_eq htab_eq_pointer = eq_pointer;
73
74/* The following function returns a nearest prime number which is
75 greater than N, and near a power of two. */
76
77static unsigned long
78higher_prime_number (n)
79 unsigned long n;
80{
81 /* These are primes that are near, but slightly smaller than, a
82 power of two. */
83 static const unsigned long primes[] = {
84 (unsigned long) 7,
85 (unsigned long) 13,
86 (unsigned long) 31,
87 (unsigned long) 61,
88 (unsigned long) 127,
89 (unsigned long) 251,
90 (unsigned long) 509,
91 (unsigned long) 1021,
92 (unsigned long) 2039,
93 (unsigned long) 4093,
94 (unsigned long) 8191,
95 (unsigned long) 16381,
96 (unsigned long) 32749,
97 (unsigned long) 65521,
98 (unsigned long) 131071,
99 (unsigned long) 262139,
100 (unsigned long) 524287,
101 (unsigned long) 1048573,
102 (unsigned long) 2097143,
103 (unsigned long) 4194301,
104 (unsigned long) 8388593,
105 (unsigned long) 16777213,
106 (unsigned long) 33554393,
107 (unsigned long) 67108859,
108 (unsigned long) 134217689,
109 (unsigned long) 268435399,
110 (unsigned long) 536870909,
111 (unsigned long) 1073741789,
112 (unsigned long) 2147483647,
113 /* 4294967291L */
114 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
115 };
116
117 const unsigned long *low = &primes[0];
118 const unsigned long *high = &primes[sizeof(primes) / sizeof(primes[0])];
119
120 while (low != high)
121 {
122 const unsigned long *mid = low + (high - low) / 2;
123 if (n > *mid)
124 low = mid + 1;
125 else
126 high = mid;
127 }
128
129 /* If we've run out of primes, abort. */
130 if (n > *low)
131 {
132 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
133 abort ();
134 }
135
136 return *low;
137}
138
139/* Returns a hash code for P. */
140
141static hashval_t
142hash_pointer (p)
143 const PTR p;
144{
145 return (hashval_t) ((long)p >> 3);
146}
147
148/* Returns non-zero if P1 and P2 are equal. */
149
150static int
151eq_pointer (p1, p2)
152 const PTR p1;
153 const PTR p2;
154{
155 return p1 == p2;
156}
157
158/* This function creates table with length slightly longer than given
159 source length. Created hash table is initiated as empty (all the
160 hash table entries are EMPTY_ENTRY). The function returns the
161 created hash table. Memory allocation must not fail. */
162
163htab_t
164htab_create (size, hash_f, eq_f, del_f)
165 size_t size;
166 htab_hash hash_f;
167 htab_eq eq_f;
168 htab_del del_f;
169{
170 htab_t result;
171
172 size = higher_prime_number (size);
173 result = (htab_t) xcalloc (1, sizeof (struct htab));
174 result->entries = (PTR *) xcalloc (size, sizeof (PTR));
175 result->size = size;
176 result->hash_f = hash_f;
177 result->eq_f = eq_f;
178 result->del_f = del_f;
179 result->return_allocation_failure = 0;
180 return result;
181}
182
183/* This function creates table with length slightly longer than given
184 source length. The created hash table is initiated as empty (all the
185 hash table entries are EMPTY_ENTRY). The function returns the created
186 hash table. Memory allocation may fail; it may return NULL. */
187
188htab_t
189htab_try_create (size, hash_f, eq_f, del_f)
190 size_t size;
191 htab_hash hash_f;
192 htab_eq eq_f;
193 htab_del del_f;
194{
195 htab_t result;
196
197 size = higher_prime_number (size);
198 result = (htab_t) calloc (1, sizeof (struct htab));
199 if (result == NULL)
200 return NULL;
201
202 result->entries = (PTR *) calloc (size, sizeof (PTR));
203 if (result->entries == NULL)
204 {
205 free (result);
206 return NULL;
207 }
208
209 result->size = size;
210 result->hash_f = hash_f;
211 result->eq_f = eq_f;
212 result->del_f = del_f;
213 result->return_allocation_failure = 1;
214 return result;
215}
216
217/* This function frees all memory allocated for given hash table.
218 Naturally the hash table must already exist. */
219
220void
221htab_delete (htab)
222 htab_t htab;
223{
224 int i;
225
226 if (htab->del_f)
227 for (i = htab->size - 1; i >= 0; i--)
228 if (htab->entries[i] != EMPTY_ENTRY
229 && htab->entries[i] != DELETED_ENTRY)
230 (*htab->del_f) (htab->entries[i]);
231
232 free (htab->entries);
233 free (htab);
234}
235
236/* This function clears all entries in the given hash table. */
237
238void
239htab_empty (htab)
240 htab_t htab;
241{
242 int i;
243
244 if (htab->del_f)
245 for (i = htab->size - 1; i >= 0; i--)
246 if (htab->entries[i] != EMPTY_ENTRY
247 && htab->entries[i] != DELETED_ENTRY)
248 (*htab->del_f) (htab->entries[i]);
249
250 memset (htab->entries, 0, htab->size * sizeof (PTR));
251}
252
253/* Similar to htab_find_slot, but without several unwanted side effects:
254 - Does not call htab->eq_f when it finds an existing entry.
255 - Does not change the count of elements/searches/collisions in the
256 hash table.
257 This function also assumes there are no deleted entries in the table.
258 HASH is the hash value for the element to be inserted. */
259
260static PTR *
261find_empty_slot_for_expand (htab, hash)
262 htab_t htab;
263 hashval_t hash;
264{
265 size_t size = htab->size;
266 unsigned int index = hash % size;
267 PTR *slot = htab->entries + index;
268 hashval_t hash2;
269
270 if (*slot == EMPTY_ENTRY)
271 return slot;
272 else if (*slot == DELETED_ENTRY)
273 abort ();
274
275 hash2 = 1 + hash % (size - 2);
276 for (;;)
277 {
278 index += hash2;
279 if (index >= size)
280 index -= size;
281
282 slot = htab->entries + index;
283 if (*slot == EMPTY_ENTRY)
284 return slot;
285 else if (*slot == DELETED_ENTRY)
286 abort ();
287 }
288}
289
290/* The following function changes size of memory allocated for the
291 entries and repeatedly inserts the table elements. The occupancy
292 of the table after the call will be about 50%. Naturally the hash
293 table must already exist. Remember also that the place of the
294 table entries is changed. If memory allocation failures are allowed,
295 this function will return zero, indicating that the table could not be
296 expanded. If all goes well, it will return a non-zero value. */
297
298static int
299htab_expand (htab)
300 htab_t htab;
301{
302 PTR *oentries;
303 PTR *olimit;
304 PTR *p;
305 size_t nsize;
306
307 oentries = htab->entries;
308 olimit = oentries + htab->size;
309
310 nsize = higher_prime_number (htab->size * 2);
311
312 if (htab->return_allocation_failure)
313 {
314 PTR *nentries = (PTR *) calloc (nsize, sizeof (PTR));
315 if (nentries == NULL)
316 return 0;
317 htab->entries = nentries;
318 }
319 else
320 htab->entries = (PTR *) xcalloc (nsize, sizeof (PTR));
321
322 htab->size = nsize;
323 htab->n_elements -= htab->n_deleted;
324 htab->n_deleted = 0;
325
326 p = oentries;
327 do
328 {
329 PTR x = *p;
330
331 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
332 {
333 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
334
335 *q = x;
336 }
337
338 p++;
339 }
340 while (p < olimit);
341
342 free (oentries);
343 return 1;
344}
345
346/* This function searches for a hash table entry equal to the given
347 element. It cannot be used to insert or delete an element. */
348
349PTR
350htab_find_with_hash (htab, element, hash)
351 htab_t htab;
352 const PTR element;
353 hashval_t hash;
354{
355 unsigned int index;
356 hashval_t hash2;
357 size_t size;
358 PTR entry;
359
360 htab->searches++;
361 size = htab->size;
362 index = hash % size;
363
364 entry = htab->entries[index];
365 if (entry == EMPTY_ENTRY
366 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
367 return entry;
368
369 hash2 = 1 + hash % (size - 2);
370
371 for (;;)
372 {
373 htab->collisions++;
374 index += hash2;
375 if (index >= size)
376 index -= size;
377
378 entry = htab->entries[index];
379 if (entry == EMPTY_ENTRY
380 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
381 return entry;
382 }
383}
384
385/* Like htab_find_slot_with_hash, but compute the hash value from the
386 element. */
387
388PTR
389htab_find (htab, element)
390 htab_t htab;
391 const PTR element;
392{
393 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
394}
395
396/* This function searches for a hash table slot containing an entry
397 equal to the given element. To delete an entry, call this with
398 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
399 after doing some checks). To insert an entry, call this with
400 INSERT = 1, then write the value you want into the returned slot.
401 When inserting an entry, NULL may be returned if memory allocation
402 fails. */
403
404PTR *
405htab_find_slot_with_hash (htab, element, hash, insert)
406 htab_t htab;
407 const PTR element;
408 hashval_t hash;
409 enum insert_option insert;
410{
411 PTR *first_deleted_slot;
412 unsigned int index;
413 hashval_t hash2;
414 size_t size;
415 PTR entry;
416
417 if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4
418 && htab_expand (htab) == 0)
419 return NULL;
420
421 size = htab->size;
422 index = hash % size;
423
424 htab->searches++;
425 first_deleted_slot = NULL;
426
427 entry = htab->entries[index];
428 if (entry == EMPTY_ENTRY)
429 goto empty_entry;
430 else if (entry == DELETED_ENTRY)
431 first_deleted_slot = &htab->entries[index];
432 else if ((*htab->eq_f) (entry, element))
433 return &htab->entries[index];
434
435 hash2 = 1 + hash % (size - 2);
436 for (;;)
437 {
438 htab->collisions++;
439 index += hash2;
440 if (index >= size)
441 index -= size;
442
443 entry = htab->entries[index];
444 if (entry == EMPTY_ENTRY)
445 goto empty_entry;
446 else if (entry == DELETED_ENTRY)
447 {
448 if (!first_deleted_slot)
449 first_deleted_slot = &htab->entries[index];
450 }
451 else if ((*htab->eq_f) (entry, element))
452 return &htab->entries[index];
453 }
454
455 empty_entry:
456 if (insert == NO_INSERT)
457 return NULL;
458
459 htab->n_elements++;
460
461 if (first_deleted_slot)
462 {
463 *first_deleted_slot = EMPTY_ENTRY;
464 return first_deleted_slot;
465 }
466
467 return &htab->entries[index];
468}
469
470/* Like htab_find_slot_with_hash, but compute the hash value from the
471 element. */
472
473PTR *
474htab_find_slot (htab, element, insert)
475 htab_t htab;
476 const PTR element;
477 enum insert_option insert;
478{
479 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
480 insert);
481}
482
483/* This function deletes an element with the given value from hash
484 table. If there is no matching element in the hash table, this
485 function does nothing. */
486
487void
488htab_remove_elt (htab, element)
489 htab_t htab;
490 PTR element;
491{
492 PTR *slot;
493
494 slot = htab_find_slot (htab, element, NO_INSERT);
495 if (*slot == EMPTY_ENTRY)
496 return;
497
498 if (htab->del_f)
499 (*htab->del_f) (*slot);
500
501 *slot = DELETED_ENTRY;
502 htab->n_deleted++;
503}
504
505/* This function clears a specified slot in a hash table. It is
506 useful when you've already done the lookup and don't want to do it
507 again. */
508
509void
510htab_clear_slot (htab, slot)
511 htab_t htab;
512 PTR *slot;
513{
514 if (slot < htab->entries || slot >= htab->entries + htab->size
515 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
516 abort ();
517
518 if (htab->del_f)
519 (*htab->del_f) (*slot);
520
521 *slot = DELETED_ENTRY;
522 htab->n_deleted++;
523}
524
525/* This function scans over the entire hash table calling
526 CALLBACK for each live entry. If CALLBACK returns false,
527 the iteration stops. INFO is passed as CALLBACK's second
528 argument. */
529
530void
531htab_traverse (htab, callback, info)
532 htab_t htab;
533 htab_trav callback;
534 PTR info;
535{
536 PTR *slot = htab->entries;
537 PTR *limit = slot + htab->size;
538
539 do
540 {
541 PTR x = *slot;
542
543 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
544 if (!(*callback) (slot, info))
545 break;
546 }
547 while (++slot < limit);
548}
549
550/* Return the current size of given hash table. */
551
552size_t
553htab_size (htab)
554 htab_t htab;
555{
556 return htab->size;
557}
558
559/* Return the current number of elements in given hash table. */
560
561size_t
562htab_elements (htab)
563 htab_t htab;
564{
565 return htab->n_elements - htab->n_deleted;
566}
567
568/* Return the fraction of fixed collisions during all work with given
569 hash table. */
570
571double
572htab_collisions (htab)
573 htab_t htab;
574{
575 if (htab->searches == 0)
576 return 0.0;
577
578 return (double) htab->collisions / (double) htab->searches;
579}
580
581/* Hash P as a null-terminated string.
582
583 Copied from gcc/hashtable.c. Zack had the following to say with respect
584 to applicability, though note that unlike hashtable.c, this hash table
585 implementation re-hashes rather than chain buckets.
586
587 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
588 From: Zack Weinberg <zackw@panix.com>
589 Date: Fri, 17 Aug 2001 02:15:56 -0400
590
591 I got it by extracting all the identifiers from all the source code
592 I had lying around in mid-1999, and testing many recurrences of
593 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
594 prime numbers or the appropriate identity. This was the best one.
595 I don't remember exactly what constituted "best", except I was
596 looking at bucket-length distributions mostly.
597
598 So it should be very good at hashing identifiers, but might not be
599 as good at arbitrary strings.
600
601 I'll add that it thoroughly trounces the hash functions recommended
602 for this use at http://burtleburtle.net/bob/hash/index.html, both
603 on speed and bucket distribution. I haven't tried it against the
604 function they just started using for Perl's hashes. */
605
606hashval_t
607htab_hash_string (p)
608 const PTR p;
609{
610 const unsigned char *str = (const unsigned char *) p;
611 hashval_t r = 0;
612 unsigned char c;
613
614 while ((c = *str++) != 0)
615 r = r * 67 + c - 113;
616
617 return r;
618}
Note: See TracBrowser for help on using the repository browser.