1 | ------------------------------------------------------------------------------
|
---|
2 | -- --
|
---|
3 | -- GNAT RUNTIME COMPONENTS --
|
---|
4 | -- --
|
---|
5 | -- S Y S T E M . E X P _ M O D --
|
---|
6 | -- --
|
---|
7 | -- B o d y --
|
---|
8 | -- --
|
---|
9 | -- $Revision: 1.1.16.2 $
|
---|
10 | -- --
|
---|
11 | -- Copyright (C) 1992,1993,1994,1995 Free Software Foundation, Inc. --
|
---|
12 | -- --
|
---|
13 | -- GNAT is free software; you can redistribute it and/or modify it under --
|
---|
14 | -- terms of the GNU General Public License as published by the Free Soft- --
|
---|
15 | -- ware Foundation; either version 2, or (at your option) any later ver- --
|
---|
16 | -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
---|
17 | -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
---|
18 | -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
---|
19 | -- for more details. You should have received a copy of the GNU General --
|
---|
20 | -- Public License distributed with GNAT; see file COPYING. If not, write --
|
---|
21 | -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
|
---|
22 | -- MA 02111-1307, USA. --
|
---|
23 | -- --
|
---|
24 | -- As a special exception, if other files instantiate generics from this --
|
---|
25 | -- unit, or you link this unit with other files to produce an executable, --
|
---|
26 | -- this unit does not by itself cause the resulting executable to be --
|
---|
27 | -- covered by the GNU General Public License. This exception does not --
|
---|
28 | -- however invalidate any other reasons why the executable file might be --
|
---|
29 | -- covered by the GNU Public License. --
|
---|
30 | -- --
|
---|
31 | -- GNAT was originally developed by the GNAT team at New York University. --
|
---|
32 | -- Extensive contributions were provided by Ada Core Technologies Inc. --
|
---|
33 | -- --
|
---|
34 | ------------------------------------------------------------------------------
|
---|
35 |
|
---|
36 | package body System.Exp_Mod is
|
---|
37 |
|
---|
38 | -----------------
|
---|
39 | -- Exp_Modular --
|
---|
40 | -----------------
|
---|
41 |
|
---|
42 | function Exp_Modular
|
---|
43 | (Left : Integer;
|
---|
44 | Modulus : Integer;
|
---|
45 | Right : Natural)
|
---|
46 | return Integer
|
---|
47 | is
|
---|
48 | Result : Integer := 1;
|
---|
49 | Factor : Integer := Left;
|
---|
50 | Exp : Natural := Right;
|
---|
51 |
|
---|
52 | function Mult (X, Y : Integer) return Integer;
|
---|
53 | pragma Inline (Mult);
|
---|
54 | -- Modular multiplication. Note that we can't take advantage of the
|
---|
55 | -- compiler's circuit, because the modulus is not known statically.
|
---|
56 |
|
---|
57 | function Mult (X, Y : Integer) return Integer is
|
---|
58 | begin
|
---|
59 | return Integer
|
---|
60 | (Long_Long_Integer (X) * Long_Long_Integer (Y)
|
---|
61 | mod Long_Long_Integer (Modulus));
|
---|
62 | end Mult;
|
---|
63 |
|
---|
64 | -- Start of processing for Exp_Modular
|
---|
65 |
|
---|
66 | begin
|
---|
67 | -- We use the standard logarithmic approach, Exp gets shifted right
|
---|
68 | -- testing successive low order bits and Factor is the value of the
|
---|
69 | -- base raised to the next power of 2.
|
---|
70 |
|
---|
71 | -- Note: it is not worth special casing the cases of base values -1,0,+1
|
---|
72 | -- since the expander does this when the base is a literal, and other
|
---|
73 | -- cases will be extremely rare.
|
---|
74 |
|
---|
75 | if Exp /= 0 then
|
---|
76 | loop
|
---|
77 | if Exp rem 2 /= 0 then
|
---|
78 | Result := Mult (Result, Factor);
|
---|
79 | end if;
|
---|
80 |
|
---|
81 | Exp := Exp / 2;
|
---|
82 | exit when Exp = 0;
|
---|
83 | Factor := Mult (Factor, Factor);
|
---|
84 | end loop;
|
---|
85 | end if;
|
---|
86 |
|
---|
87 | return Result;
|
---|
88 |
|
---|
89 | end Exp_Modular;
|
---|
90 |
|
---|
91 | end System.Exp_Mod;
|
---|