source: clamav/trunk/libclamav/c++/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp@ 319

Last change on this file since 319 was 319, checked in by Yuri Dario, 14 years ago

clamav: update trunk to 0.97.

File size: 24.5 KB
Line 
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineMemOperand.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/PseudoSourceValue.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26#include "llvm/Target/TargetSubtarget.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/ADT/SmallSet.h"
30using namespace llvm;
31
32ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
33 const MachineLoopInfo &mli,
34 const MachineDominatorTree &mdt)
35 : ScheduleDAG(mf), MLI(mli), MDT(mdt), Defs(TRI->getNumRegs()),
36 Uses(TRI->getNumRegs()), LoopRegs(MLI, MDT) {
37 MFI = mf.getFrameInfo();
38 DbgValueVec.clear();
39}
40
41/// Run - perform scheduling.
42///
43void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
44 MachineBasicBlock::iterator begin,
45 MachineBasicBlock::iterator end,
46 unsigned endcount) {
47 BB = bb;
48 Begin = begin;
49 InsertPosIndex = endcount;
50
51 ScheduleDAG::Run(bb, end);
52}
53
54/// getUnderlyingObjectFromInt - This is the function that does the work of
55/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
56static const Value *getUnderlyingObjectFromInt(const Value *V) {
57 do {
58 if (const Operator *U = dyn_cast<Operator>(V)) {
59 // If we find a ptrtoint, we can transfer control back to the
60 // regular getUnderlyingObjectFromInt.
61 if (U->getOpcode() == Instruction::PtrToInt)
62 return U->getOperand(0);
63 // If we find an add of a constant or a multiplied value, it's
64 // likely that the other operand will lead us to the base
65 // object. We don't have to worry about the case where the
66 // object address is somehow being computed by the multiply,
67 // because our callers only care when the result is an
68 // identifibale object.
69 if (U->getOpcode() != Instruction::Add ||
70 (!isa<ConstantInt>(U->getOperand(1)) &&
71 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
72 return V;
73 V = U->getOperand(0);
74 } else {
75 return V;
76 }
77 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
78 } while (1);
79}
80
81/// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
82/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
83static const Value *getUnderlyingObject(const Value *V) {
84 // First just call Value::getUnderlyingObject to let it do what it does.
85 do {
86 V = V->getUnderlyingObject();
87 // If it found an inttoptr, use special code to continue climing.
88 if (Operator::getOpcode(V) != Instruction::IntToPtr)
89 break;
90 const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
91 // If that succeeded in finding a pointer, continue the search.
92 if (!O->getType()->isPointerTy())
93 break;
94 V = O;
95 } while (1);
96 return V;
97}
98
99/// getUnderlyingObjectForInstr - If this machine instr has memory reference
100/// information and it can be tracked to a normal reference to a known
101/// object, return the Value for that object. Otherwise return null.
102static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
103 const MachineFrameInfo *MFI,
104 bool &MayAlias) {
105 MayAlias = true;
106 if (!MI->hasOneMemOperand() ||
107 !(*MI->memoperands_begin())->getValue() ||
108 (*MI->memoperands_begin())->isVolatile())
109 return 0;
110
111 const Value *V = (*MI->memoperands_begin())->getValue();
112 if (!V)
113 return 0;
114
115 V = getUnderlyingObject(V);
116 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
117 // For now, ignore PseudoSourceValues which may alias LLVM IR values
118 // because the code that uses this function has no way to cope with
119 // such aliases.
120 if (PSV->isAliased(MFI))
121 return 0;
122
123 MayAlias = PSV->mayAlias(MFI);
124 return V;
125 }
126
127 if (isIdentifiedObject(V))
128 return V;
129
130 return 0;
131}
132
133void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
134 if (MachineLoop *ML = MLI.getLoopFor(BB))
135 if (BB == ML->getLoopLatch()) {
136 MachineBasicBlock *Header = ML->getHeader();
137 for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
138 E = Header->livein_end(); I != E; ++I)
139 LoopLiveInRegs.insert(*I);
140 LoopRegs.VisitLoop(ML);
141 }
142}
143
144void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
145 // We'll be allocating one SUnit for each instruction, plus one for
146 // the region exit node.
147 SUnits.reserve(BB->size());
148
149 // We build scheduling units by walking a block's instruction list from bottom
150 // to top.
151
152 // Remember where a generic side-effecting instruction is as we procede.
153 SUnit *BarrierChain = 0, *AliasChain = 0;
154
155 // Memory references to specific known memory locations are tracked
156 // so that they can be given more precise dependencies. We track
157 // separately the known memory locations that may alias and those
158 // that are known not to alias
159 std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
160 std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
161
162 // Keep track of dangling debug references to registers.
163 std::vector<std::pair<MachineInstr*, unsigned> >
164 DanglingDebugValue(TRI->getNumRegs(),
165 std::make_pair(static_cast<MachineInstr*>(0), 0));
166
167 // Check to see if the scheduler cares about latencies.
168 bool UnitLatencies = ForceUnitLatencies();
169
170 // Ask the target if address-backscheduling is desirable, and if so how much.
171 const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
172 unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
173
174 // Remove any stale debug info; sometimes BuildSchedGraph is called again
175 // without emitting the info from the previous call.
176 DbgValueVec.clear();
177
178 // Walk the list of instructions, from bottom moving up.
179 for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
180 MII != MIE; --MII) {
181 MachineInstr *MI = prior(MII);
182 // DBG_VALUE does not have SUnit's built, so just remember these for later
183 // reinsertion.
184 if (MI->isDebugValue()) {
185 if (MI->getNumOperands()==3 && MI->getOperand(0).isReg() &&
186 MI->getOperand(0).getReg())
187 DanglingDebugValue[MI->getOperand(0).getReg()] =
188 std::make_pair(MI, DbgValueVec.size());
189 DbgValueVec.push_back(MI);
190 continue;
191 }
192 const TargetInstrDesc &TID = MI->getDesc();
193 assert(!TID.isTerminator() && !MI->isLabel() &&
194 "Cannot schedule terminators or labels!");
195 // Create the SUnit for this MI.
196 SUnit *SU = NewSUnit(MI);
197
198 // Assign the Latency field of SU using target-provided information.
199 if (UnitLatencies)
200 SU->Latency = 1;
201 else
202 ComputeLatency(SU);
203
204 // Add register-based dependencies (data, anti, and output).
205 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
206 const MachineOperand &MO = MI->getOperand(j);
207 if (!MO.isReg()) continue;
208 unsigned Reg = MO.getReg();
209 if (Reg == 0) continue;
210
211 assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
212
213 if (MO.isDef() && DanglingDebugValue[Reg].first!=0) {
214 SU->DbgInstrList.push_back(DanglingDebugValue[Reg].first);
215 DbgValueVec[DanglingDebugValue[Reg].second] = 0;
216 DanglingDebugValue[Reg] = std::make_pair((MachineInstr*)0, 0);
217 }
218
219 std::vector<SUnit *> &UseList = Uses[Reg];
220 std::vector<SUnit *> &DefList = Defs[Reg];
221 // Optionally add output and anti dependencies. For anti
222 // dependencies we use a latency of 0 because for a multi-issue
223 // target we want to allow the defining instruction to issue
224 // in the same cycle as the using instruction.
225 // TODO: Using a latency of 1 here for output dependencies assumes
226 // there's no cost for reusing registers.
227 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
228 unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
229 for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
230 SUnit *DefSU = DefList[i];
231 if (DefSU != SU &&
232 (Kind != SDep::Output || !MO.isDead() ||
233 !DefSU->getInstr()->registerDefIsDead(Reg)))
234 DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
235 }
236 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
237 std::vector<SUnit *> &DefList = Defs[*Alias];
238 for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
239 SUnit *DefSU = DefList[i];
240 if (DefSU != SU &&
241 (Kind != SDep::Output || !MO.isDead() ||
242 !DefSU->getInstr()->registerDefIsDead(*Alias)))
243 DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
244 }
245 }
246
247 if (MO.isDef()) {
248 // Add any data dependencies.
249 unsigned DataLatency = SU->Latency;
250 for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
251 SUnit *UseSU = UseList[i];
252 if (UseSU == SU)
253 continue;
254 unsigned LDataLatency = DataLatency;
255 // Optionally add in a special extra latency for nodes that
256 // feed addresses.
257 // TODO: Do this for register aliases too.
258 // TODO: Perhaps we should get rid of
259 // SpecialAddressLatency and just move this into
260 // adjustSchedDependency for the targets that care about it.
261 if (SpecialAddressLatency != 0 && !UnitLatencies) {
262 MachineInstr *UseMI = UseSU->getInstr();
263 const TargetInstrDesc &UseTID = UseMI->getDesc();
264 int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
265 assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
266 if ((UseTID.mayLoad() || UseTID.mayStore()) &&
267 (unsigned)RegUseIndex < UseTID.getNumOperands() &&
268 UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
269 LDataLatency += SpecialAddressLatency;
270 }
271 // Adjust the dependence latency using operand def/use
272 // information (if any), and then allow the target to
273 // perform its own adjustments.
274 const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
275 if (!UnitLatencies) {
276 ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
277 ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
278 }
279 UseSU->addPred(dep);
280 }
281 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
282 std::vector<SUnit *> &UseList = Uses[*Alias];
283 for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
284 SUnit *UseSU = UseList[i];
285 if (UseSU == SU)
286 continue;
287 const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
288 if (!UnitLatencies) {
289 ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
290 ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
291 }
292 UseSU->addPred(dep);
293 }
294 }
295
296 // If a def is going to wrap back around to the top of the loop,
297 // backschedule it.
298 if (!UnitLatencies && DefList.empty()) {
299 LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
300 if (I != LoopRegs.Deps.end()) {
301 const MachineOperand *UseMO = I->second.first;
302 unsigned Count = I->second.second;
303 const MachineInstr *UseMI = UseMO->getParent();
304 unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
305 const TargetInstrDesc &UseTID = UseMI->getDesc();
306 // TODO: If we knew the total depth of the region here, we could
307 // handle the case where the whole loop is inside the region but
308 // is large enough that the isScheduleHigh trick isn't needed.
309 if (UseMOIdx < UseTID.getNumOperands()) {
310 // Currently, we only support scheduling regions consisting of
311 // single basic blocks. Check to see if the instruction is in
312 // the same region by checking to see if it has the same parent.
313 if (UseMI->getParent() != MI->getParent()) {
314 unsigned Latency = SU->Latency;
315 if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
316 Latency += SpecialAddressLatency;
317 // This is a wild guess as to the portion of the latency which
318 // will be overlapped by work done outside the current
319 // scheduling region.
320 Latency -= std::min(Latency, Count);
321 // Add the artifical edge.
322 ExitSU.addPred(SDep(SU, SDep::Order, Latency,
323 /*Reg=*/0, /*isNormalMemory=*/false,
324 /*isMustAlias=*/false,
325 /*isArtificial=*/true));
326 } else if (SpecialAddressLatency > 0 &&
327 UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
328 // The entire loop body is within the current scheduling region
329 // and the latency of this operation is assumed to be greater
330 // than the latency of the loop.
331 // TODO: Recursively mark data-edge predecessors as
332 // isScheduleHigh too.
333 SU->isScheduleHigh = true;
334 }
335 }
336 LoopRegs.Deps.erase(I);
337 }
338 }
339
340 UseList.clear();
341 if (!MO.isDead())
342 DefList.clear();
343 DefList.push_back(SU);
344 } else {
345 UseList.push_back(SU);
346 }
347 }
348
349 // Add chain dependencies.
350 // Chain dependencies used to enforce memory order should have
351 // latency of 0 (except for true dependency of Store followed by
352 // aliased Load... we estimate that with a single cycle of latency
353 // assuming the hardware will bypass)
354 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
355 // after stack slots are lowered to actual addresses.
356 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
357 // produce more precise dependence information.
358#define STORE_LOAD_LATENCY 1
359 unsigned TrueMemOrderLatency = 0;
360 if (TID.isCall() || TID.hasUnmodeledSideEffects() ||
361 (MI->hasVolatileMemoryRef() &&
362 (!TID.mayLoad() || !MI->isInvariantLoad(AA)))) {
363 // Be conservative with these and add dependencies on all memory
364 // references, even those that are known to not alias.
365 for (std::map<const Value *, SUnit *>::iterator I =
366 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
367 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
368 }
369 for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
370 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
371 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
372 I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
373 }
374 NonAliasMemDefs.clear();
375 NonAliasMemUses.clear();
376 // Add SU to the barrier chain.
377 if (BarrierChain)
378 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
379 BarrierChain = SU;
380
381 // fall-through
382 new_alias_chain:
383 // Chain all possibly aliasing memory references though SU.
384 if (AliasChain)
385 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
386 AliasChain = SU;
387 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
388 PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
389 for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
390 E = AliasMemDefs.end(); I != E; ++I) {
391 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
392 }
393 for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
394 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
395 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
396 I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
397 }
398 PendingLoads.clear();
399 AliasMemDefs.clear();
400 AliasMemUses.clear();
401 } else if (TID.mayStore()) {
402 bool MayAlias = true;
403 TrueMemOrderLatency = STORE_LOAD_LATENCY;
404 if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
405 // A store to a specific PseudoSourceValue. Add precise dependencies.
406 // Record the def in MemDefs, first adding a dep if there is
407 // an existing def.
408 std::map<const Value *, SUnit *>::iterator I =
409 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
410 std::map<const Value *, SUnit *>::iterator IE =
411 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
412 if (I != IE) {
413 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
414 /*isNormalMemory=*/true));
415 I->second = SU;
416 } else {
417 if (MayAlias)
418 AliasMemDefs[V] = SU;
419 else
420 NonAliasMemDefs[V] = SU;
421 }
422 // Handle the uses in MemUses, if there are any.
423 std::map<const Value *, std::vector<SUnit *> >::iterator J =
424 ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
425 std::map<const Value *, std::vector<SUnit *> >::iterator JE =
426 ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
427 if (J != JE) {
428 for (unsigned i = 0, e = J->second.size(); i != e; ++i)
429 J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
430 /*Reg=*/0, /*isNormalMemory=*/true));
431 J->second.clear();
432 }
433 if (MayAlias) {
434 // Add dependencies from all the PendingLoads, i.e. loads
435 // with no underlying object.
436 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
437 PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
438 // Add dependence on alias chain, if needed.
439 if (AliasChain)
440 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
441 }
442 // Add dependence on barrier chain, if needed.
443 if (BarrierChain)
444 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
445 } else {
446 // Treat all other stores conservatively.
447 goto new_alias_chain;
448 }
449 } else if (TID.mayLoad()) {
450 bool MayAlias = true;
451 TrueMemOrderLatency = 0;
452 if (MI->isInvariantLoad(AA)) {
453 // Invariant load, no chain dependencies needed!
454 } else {
455 if (const Value *V =
456 getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
457 // A load from a specific PseudoSourceValue. Add precise dependencies.
458 std::map<const Value *, SUnit *>::iterator I =
459 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
460 std::map<const Value *, SUnit *>::iterator IE =
461 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
462 if (I != IE)
463 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
464 /*isNormalMemory=*/true));
465 if (MayAlias)
466 AliasMemUses[V].push_back(SU);
467 else
468 NonAliasMemUses[V].push_back(SU);
469 } else {
470 // A load with no underlying object. Depend on all
471 // potentially aliasing stores.
472 for (std::map<const Value *, SUnit *>::iterator I =
473 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
474 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
475
476 PendingLoads.push_back(SU);
477 MayAlias = true;
478 }
479
480 // Add dependencies on alias and barrier chains, if needed.
481 if (MayAlias && AliasChain)
482 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
483 if (BarrierChain)
484 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
485 }
486 }
487 }
488
489 for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
490 Defs[i].clear();
491 Uses[i].clear();
492 }
493 PendingLoads.clear();
494}
495
496void ScheduleDAGInstrs::FinishBlock() {
497 // Nothing to do.
498}
499
500void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
501 const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
502
503 // Compute the latency for the node.
504 SU->Latency =
505 InstrItins.getStageLatency(SU->getInstr()->getDesc().getSchedClass());
506
507 // Simplistic target-independent heuristic: assume that loads take
508 // extra time.
509 if (InstrItins.isEmpty())
510 if (SU->getInstr()->getDesc().mayLoad())
511 SU->Latency += 2;
512}
513
514void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
515 SDep& dep) const {
516 const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
517 if (InstrItins.isEmpty())
518 return;
519
520 // For a data dependency with a known register...
521 if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
522 return;
523
524 const unsigned Reg = dep.getReg();
525
526 // ... find the definition of the register in the defining
527 // instruction
528 MachineInstr *DefMI = Def->getInstr();
529 int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
530 if (DefIdx != -1) {
531 int DefCycle = InstrItins.getOperandCycle(DefMI->getDesc().getSchedClass(),
532 DefIdx);
533 if (DefCycle >= 0) {
534 MachineInstr *UseMI = Use->getInstr();
535 const unsigned UseClass = UseMI->getDesc().getSchedClass();
536
537 // For all uses of the register, calculate the maxmimum latency
538 int Latency = -1;
539 for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
540 const MachineOperand &MO = UseMI->getOperand(i);
541 if (!MO.isReg() || !MO.isUse())
542 continue;
543 unsigned MOReg = MO.getReg();
544 if (MOReg != Reg)
545 continue;
546
547 int UseCycle = InstrItins.getOperandCycle(UseClass, i);
548 if (UseCycle >= 0)
549 Latency = std::max(Latency, DefCycle - UseCycle + 1);
550 }
551
552 // If we found a latency, then replace the existing dependence latency.
553 if (Latency >= 0)
554 dep.setLatency(Latency);
555 }
556 }
557}
558
559void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
560 SU->getInstr()->dump();
561}
562
563std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
564 std::string s;
565 raw_string_ostream oss(s);
566 if (SU == &EntrySU)
567 oss << "<entry>";
568 else if (SU == &ExitSU)
569 oss << "<exit>";
570 else
571 SU->getInstr()->print(oss);
572 return oss.str();
573}
574
575// EmitSchedule - Emit the machine code in scheduled order.
576MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
577 // For MachineInstr-based scheduling, we're rescheduling the instructions in
578 // the block, so start by removing them from the block.
579 while (Begin != InsertPos) {
580 MachineBasicBlock::iterator I = Begin;
581 ++Begin;
582 BB->remove(I);
583 }
584
585 // First reinsert any remaining debug_values; these are either constants,
586 // or refer to live-in registers. The beginning of the block is the right
587 // place for the latter. The former might reasonably be placed elsewhere
588 // using some kind of ordering algorithm, but right now it doesn't matter.
589 for (int i = DbgValueVec.size()-1; i>=0; --i)
590 if (DbgValueVec[i])
591 BB->insert(InsertPos, DbgValueVec[i]);
592
593 // Then re-insert them according to the given schedule.
594 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
595 SUnit *SU = Sequence[i];
596 if (!SU) {
597 // Null SUnit* is a noop.
598 EmitNoop();
599 continue;
600 }
601
602 BB->insert(InsertPos, SU->getInstr());
603 for (unsigned i = 0, e = SU->DbgInstrList.size() ; i < e ; ++i)
604 BB->insert(InsertPos, SU->DbgInstrList[i]);
605 }
606
607 // Update the Begin iterator, as the first instruction in the block
608 // may have been scheduled later.
609 if (!DbgValueVec.empty()) {
610 for (int i = DbgValueVec.size()-1; i>=0; --i)
611 if (DbgValueVec[i]!=0) {
612 Begin = DbgValueVec[DbgValueVec.size()-1];
613 break;
614 }
615 } else if (!Sequence.empty())
616 Begin = Sequence[0]->getInstr();
617
618 DbgValueVec.clear();
619 return BB;
620}
Note: See TracBrowser for help on using the repository browser.