source: clamav/trunk/libclamav/c++/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp@ 190

Last change on this file since 190 was 189, checked in by Yuri Dario, 14 years ago

clamav: initial clamav 0.96.4 import.

File size: 22.7 KB
Line 
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineMemOperand.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/PseudoSourceValue.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26#include "llvm/Target/TargetSubtarget.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/ADT/SmallSet.h"
30using namespace llvm;
31
32ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
33 const MachineLoopInfo &mli,
34 const MachineDominatorTree &mdt)
35 : ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) {
36 MFI = mf.getFrameInfo();
37}
38
39/// Run - perform scheduling.
40///
41void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
42 MachineBasicBlock::iterator begin,
43 MachineBasicBlock::iterator end,
44 unsigned endcount) {
45 BB = bb;
46 Begin = begin;
47 InsertPosIndex = endcount;
48
49 ScheduleDAG::Run(bb, end);
50}
51
52/// getUnderlyingObjectFromInt - This is the function that does the work of
53/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
54static const Value *getUnderlyingObjectFromInt(const Value *V) {
55 do {
56 if (const Operator *U = dyn_cast<Operator>(V)) {
57 // If we find a ptrtoint, we can transfer control back to the
58 // regular getUnderlyingObjectFromInt.
59 if (U->getOpcode() == Instruction::PtrToInt)
60 return U->getOperand(0);
61 // If we find an add of a constant or a multiplied value, it's
62 // likely that the other operand will lead us to the base
63 // object. We don't have to worry about the case where the
64 // object address is somehow being computed by the multiply,
65 // because our callers only care when the result is an
66 // identifibale object.
67 if (U->getOpcode() != Instruction::Add ||
68 (!isa<ConstantInt>(U->getOperand(1)) &&
69 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
70 return V;
71 V = U->getOperand(0);
72 } else {
73 return V;
74 }
75 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
76 } while (1);
77}
78
79/// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
80/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
81static const Value *getUnderlyingObject(const Value *V) {
82 // First just call Value::getUnderlyingObject to let it do what it does.
83 do {
84 V = V->getUnderlyingObject();
85 // If it found an inttoptr, use special code to continue climing.
86 if (Operator::getOpcode(V) != Instruction::IntToPtr)
87 break;
88 const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
89 // If that succeeded in finding a pointer, continue the search.
90 if (!O->getType()->isPointerTy())
91 break;
92 V = O;
93 } while (1);
94 return V;
95}
96
97/// getUnderlyingObjectForInstr - If this machine instr has memory reference
98/// information and it can be tracked to a normal reference to a known
99/// object, return the Value for that object. Otherwise return null.
100static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
101 const MachineFrameInfo *MFI,
102 bool &MayAlias) {
103 MayAlias = true;
104 if (!MI->hasOneMemOperand() ||
105 !(*MI->memoperands_begin())->getValue() ||
106 (*MI->memoperands_begin())->isVolatile())
107 return 0;
108
109 const Value *V = (*MI->memoperands_begin())->getValue();
110 if (!V)
111 return 0;
112
113 V = getUnderlyingObject(V);
114 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
115 // For now, ignore PseudoSourceValues which may alias LLVM IR values
116 // because the code that uses this function has no way to cope with
117 // such aliases.
118 if (PSV->isAliased(MFI))
119 return 0;
120
121 MayAlias = PSV->mayAlias(MFI);
122 return V;
123 }
124
125 if (isIdentifiedObject(V))
126 return V;
127
128 return 0;
129}
130
131void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
132 if (MachineLoop *ML = MLI.getLoopFor(BB))
133 if (BB == ML->getLoopLatch()) {
134 MachineBasicBlock *Header = ML->getHeader();
135 for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
136 E = Header->livein_end(); I != E; ++I)
137 LoopLiveInRegs.insert(*I);
138 LoopRegs.VisitLoop(ML);
139 }
140}
141
142void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
143 // We'll be allocating one SUnit for each instruction, plus one for
144 // the region exit node.
145 SUnits.reserve(BB->size());
146
147 // We build scheduling units by walking a block's instruction list from bottom
148 // to top.
149
150 // Remember where a generic side-effecting instruction is as we procede.
151 SUnit *BarrierChain = 0, *AliasChain = 0;
152
153 // Memory references to specific known memory locations are tracked
154 // so that they can be given more precise dependencies. We track
155 // separately the known memory locations that may alias and those
156 // that are known not to alias
157 std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
158 std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
159
160 // Check to see if the scheduler cares about latencies.
161 bool UnitLatencies = ForceUnitLatencies();
162
163 // Ask the target if address-backscheduling is desirable, and if so how much.
164 const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
165 unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
166
167 // Walk the list of instructions, from bottom moving up.
168 for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
169 MII != MIE; --MII) {
170 MachineInstr *MI = prior(MII);
171 const TargetInstrDesc &TID = MI->getDesc();
172 assert(!TID.isTerminator() && !MI->isLabel() &&
173 "Cannot schedule terminators or labels!");
174 // Create the SUnit for this MI.
175 SUnit *SU = NewSUnit(MI);
176
177 // Assign the Latency field of SU using target-provided information.
178 if (UnitLatencies)
179 SU->Latency = 1;
180 else
181 ComputeLatency(SU);
182
183 // Add register-based dependencies (data, anti, and output).
184 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
185 const MachineOperand &MO = MI->getOperand(j);
186 if (!MO.isReg()) continue;
187 unsigned Reg = MO.getReg();
188 if (Reg == 0) continue;
189
190 assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
191 std::vector<SUnit *> &UseList = Uses[Reg];
192 std::vector<SUnit *> &DefList = Defs[Reg];
193 // Optionally add output and anti dependencies. For anti
194 // dependencies we use a latency of 0 because for a multi-issue
195 // target we want to allow the defining instruction to issue
196 // in the same cycle as the using instruction.
197 // TODO: Using a latency of 1 here for output dependencies assumes
198 // there's no cost for reusing registers.
199 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
200 unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
201 for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
202 SUnit *DefSU = DefList[i];
203 if (DefSU != SU &&
204 (Kind != SDep::Output || !MO.isDead() ||
205 !DefSU->getInstr()->registerDefIsDead(Reg)))
206 DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
207 }
208 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
209 std::vector<SUnit *> &DefList = Defs[*Alias];
210 for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
211 SUnit *DefSU = DefList[i];
212 if (DefSU != SU &&
213 (Kind != SDep::Output || !MO.isDead() ||
214 !DefSU->getInstr()->registerDefIsDead(*Alias)))
215 DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
216 }
217 }
218
219 if (MO.isDef()) {
220 // Add any data dependencies.
221 unsigned DataLatency = SU->Latency;
222 for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
223 SUnit *UseSU = UseList[i];
224 if (UseSU != SU) {
225 unsigned LDataLatency = DataLatency;
226 // Optionally add in a special extra latency for nodes that
227 // feed addresses.
228 // TODO: Do this for register aliases too.
229 // TODO: Perhaps we should get rid of
230 // SpecialAddressLatency and just move this into
231 // adjustSchedDependency for the targets that care about
232 // it.
233 if (SpecialAddressLatency != 0 && !UnitLatencies) {
234 MachineInstr *UseMI = UseSU->getInstr();
235 const TargetInstrDesc &UseTID = UseMI->getDesc();
236 int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
237 assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
238 if ((UseTID.mayLoad() || UseTID.mayStore()) &&
239 (unsigned)RegUseIndex < UseTID.getNumOperands() &&
240 UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
241 LDataLatency += SpecialAddressLatency;
242 }
243 // Adjust the dependence latency using operand def/use
244 // information (if any), and then allow the target to
245 // perform its own adjustments.
246 const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
247 if (!UnitLatencies) {
248 ComputeOperandLatency(SU, UseSU, (SDep &)dep);
249 ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
250 }
251 UseSU->addPred(dep);
252 }
253 }
254 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
255 std::vector<SUnit *> &UseList = Uses[*Alias];
256 for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
257 SUnit *UseSU = UseList[i];
258 if (UseSU != SU) {
259 const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
260 if (!UnitLatencies) {
261 ComputeOperandLatency(SU, UseSU, (SDep &)dep);
262 ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
263 }
264 UseSU->addPred(dep);
265 }
266 }
267 }
268
269 // If a def is going to wrap back around to the top of the loop,
270 // backschedule it.
271 if (!UnitLatencies && DefList.empty()) {
272 LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
273 if (I != LoopRegs.Deps.end()) {
274 const MachineOperand *UseMO = I->second.first;
275 unsigned Count = I->second.second;
276 const MachineInstr *UseMI = UseMO->getParent();
277 unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
278 const TargetInstrDesc &UseTID = UseMI->getDesc();
279 // TODO: If we knew the total depth of the region here, we could
280 // handle the case where the whole loop is inside the region but
281 // is large enough that the isScheduleHigh trick isn't needed.
282 if (UseMOIdx < UseTID.getNumOperands()) {
283 // Currently, we only support scheduling regions consisting of
284 // single basic blocks. Check to see if the instruction is in
285 // the same region by checking to see if it has the same parent.
286 if (UseMI->getParent() != MI->getParent()) {
287 unsigned Latency = SU->Latency;
288 if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
289 Latency += SpecialAddressLatency;
290 // This is a wild guess as to the portion of the latency which
291 // will be overlapped by work done outside the current
292 // scheduling region.
293 Latency -= std::min(Latency, Count);
294 // Add the artifical edge.
295 ExitSU.addPred(SDep(SU, SDep::Order, Latency,
296 /*Reg=*/0, /*isNormalMemory=*/false,
297 /*isMustAlias=*/false,
298 /*isArtificial=*/true));
299 } else if (SpecialAddressLatency > 0 &&
300 UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
301 // The entire loop body is within the current scheduling region
302 // and the latency of this operation is assumed to be greater
303 // than the latency of the loop.
304 // TODO: Recursively mark data-edge predecessors as
305 // isScheduleHigh too.
306 SU->isScheduleHigh = true;
307 }
308 }
309 LoopRegs.Deps.erase(I);
310 }
311 }
312
313 UseList.clear();
314 if (!MO.isDead())
315 DefList.clear();
316 DefList.push_back(SU);
317 } else {
318 UseList.push_back(SU);
319 }
320 }
321
322 // Add chain dependencies.
323 // Chain dependencies used to enforce memory order should have
324 // latency of 0 (except for true dependency of Store followed by
325 // aliased Load... we estimate that with a single cycle of latency
326 // assuming the hardware will bypass)
327 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
328 // after stack slots are lowered to actual addresses.
329 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
330 // produce more precise dependence information.
331#define STORE_LOAD_LATENCY 1
332 unsigned TrueMemOrderLatency = 0;
333 if (TID.isCall() || TID.hasUnmodeledSideEffects() ||
334 (MI->hasVolatileMemoryRef() &&
335 (!TID.mayLoad() || !MI->isInvariantLoad(AA)))) {
336 // Be conservative with these and add dependencies on all memory
337 // references, even those that are known to not alias.
338 for (std::map<const Value *, SUnit *>::iterator I =
339 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
340 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
341 }
342 for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
343 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
344 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
345 I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
346 }
347 NonAliasMemDefs.clear();
348 NonAliasMemUses.clear();
349 // Add SU to the barrier chain.
350 if (BarrierChain)
351 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
352 BarrierChain = SU;
353
354 // fall-through
355 new_alias_chain:
356 // Chain all possibly aliasing memory references though SU.
357 if (AliasChain)
358 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
359 AliasChain = SU;
360 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
361 PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
362 for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
363 E = AliasMemDefs.end(); I != E; ++I) {
364 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
365 }
366 for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
367 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
368 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
369 I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
370 }
371 PendingLoads.clear();
372 AliasMemDefs.clear();
373 AliasMemUses.clear();
374 } else if (TID.mayStore()) {
375 bool MayAlias = true;
376 TrueMemOrderLatency = STORE_LOAD_LATENCY;
377 if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
378 // A store to a specific PseudoSourceValue. Add precise dependencies.
379 // Record the def in MemDefs, first adding a dep if there is
380 // an existing def.
381 std::map<const Value *, SUnit *>::iterator I =
382 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
383 std::map<const Value *, SUnit *>::iterator IE =
384 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
385 if (I != IE) {
386 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
387 /*isNormalMemory=*/true));
388 I->second = SU;
389 } else {
390 if (MayAlias)
391 AliasMemDefs[V] = SU;
392 else
393 NonAliasMemDefs[V] = SU;
394 }
395 // Handle the uses in MemUses, if there are any.
396 std::map<const Value *, std::vector<SUnit *> >::iterator J =
397 ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
398 std::map<const Value *, std::vector<SUnit *> >::iterator JE =
399 ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
400 if (J != JE) {
401 for (unsigned i = 0, e = J->second.size(); i != e; ++i)
402 J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
403 /*Reg=*/0, /*isNormalMemory=*/true));
404 J->second.clear();
405 }
406 if (MayAlias) {
407 // Add dependencies from all the PendingLoads, i.e. loads
408 // with no underlying object.
409 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
410 PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
411 // Add dependence on alias chain, if needed.
412 if (AliasChain)
413 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
414 }
415 // Add dependence on barrier chain, if needed.
416 if (BarrierChain)
417 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
418 } else {
419 // Treat all other stores conservatively.
420 goto new_alias_chain;
421 }
422 } else if (TID.mayLoad()) {
423 bool MayAlias = true;
424 TrueMemOrderLatency = 0;
425 if (MI->isInvariantLoad(AA)) {
426 // Invariant load, no chain dependencies needed!
427 } else {
428 if (const Value *V =
429 getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
430 // A load from a specific PseudoSourceValue. Add precise dependencies.
431 std::map<const Value *, SUnit *>::iterator I =
432 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
433 std::map<const Value *, SUnit *>::iterator IE =
434 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
435 if (I != IE)
436 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
437 /*isNormalMemory=*/true));
438 if (MayAlias)
439 AliasMemUses[V].push_back(SU);
440 else
441 NonAliasMemUses[V].push_back(SU);
442 } else {
443 // A load with no underlying object. Depend on all
444 // potentially aliasing stores.
445 for (std::map<const Value *, SUnit *>::iterator I =
446 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
447 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
448
449 PendingLoads.push_back(SU);
450 MayAlias = true;
451 }
452
453 // Add dependencies on alias and barrier chains, if needed.
454 if (MayAlias && AliasChain)
455 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
456 if (BarrierChain)
457 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
458 }
459 }
460 }
461
462 for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
463 Defs[i].clear();
464 Uses[i].clear();
465 }
466 PendingLoads.clear();
467}
468
469void ScheduleDAGInstrs::FinishBlock() {
470 // Nothing to do.
471}
472
473void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
474 const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
475
476 // Compute the latency for the node.
477 SU->Latency =
478 InstrItins.getStageLatency(SU->getInstr()->getDesc().getSchedClass());
479
480 // Simplistic target-independent heuristic: assume that loads take
481 // extra time.
482 if (InstrItins.isEmpty())
483 if (SU->getInstr()->getDesc().mayLoad())
484 SU->Latency += 2;
485}
486
487void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
488 SDep& dep) const {
489 const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
490 if (InstrItins.isEmpty())
491 return;
492
493 // For a data dependency with a known register...
494 if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
495 return;
496
497 const unsigned Reg = dep.getReg();
498
499 // ... find the definition of the register in the defining
500 // instruction
501 MachineInstr *DefMI = Def->getInstr();
502 int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
503 if (DefIdx != -1) {
504 int DefCycle = InstrItins.getOperandCycle(DefMI->getDesc().getSchedClass(), DefIdx);
505 if (DefCycle >= 0) {
506 MachineInstr *UseMI = Use->getInstr();
507 const unsigned UseClass = UseMI->getDesc().getSchedClass();
508
509 // For all uses of the register, calculate the maxmimum latency
510 int Latency = -1;
511 for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
512 const MachineOperand &MO = UseMI->getOperand(i);
513 if (!MO.isReg() || !MO.isUse())
514 continue;
515 unsigned MOReg = MO.getReg();
516 if (MOReg != Reg)
517 continue;
518
519 int UseCycle = InstrItins.getOperandCycle(UseClass, i);
520 if (UseCycle >= 0)
521 Latency = std::max(Latency, DefCycle - UseCycle + 1);
522 }
523
524 // If we found a latency, then replace the existing dependence latency.
525 if (Latency >= 0)
526 dep.setLatency(Latency);
527 }
528 }
529}
530
531void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
532 SU->getInstr()->dump();
533}
534
535std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
536 std::string s;
537 raw_string_ostream oss(s);
538 if (SU == &EntrySU)
539 oss << "<entry>";
540 else if (SU == &ExitSU)
541 oss << "<exit>";
542 else
543 SU->getInstr()->print(oss);
544 return oss.str();
545}
546
547// EmitSchedule - Emit the machine code in scheduled order.
548MachineBasicBlock *ScheduleDAGInstrs::
549EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) {
550 // For MachineInstr-based scheduling, we're rescheduling the instructions in
551 // the block, so start by removing them from the block.
552 while (Begin != InsertPos) {
553 MachineBasicBlock::iterator I = Begin;
554 ++Begin;
555 BB->remove(I);
556 }
557
558 // Then re-insert them according to the given schedule.
559 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
560 SUnit *SU = Sequence[i];
561 if (!SU) {
562 // Null SUnit* is a noop.
563 EmitNoop();
564 continue;
565 }
566
567 BB->insert(InsertPos, SU->getInstr());
568 }
569
570 // Update the Begin iterator, as the first instruction in the block
571 // may have been scheduled later.
572 if (!Sequence.empty())
573 Begin = Sequence[0]->getInstr();
574
575 return BB;
576}
Note: See TracBrowser for help on using the repository browser.