1 | /*
|
---|
2 | * Minimal code for RSA support from LibTomMath 0.41
|
---|
3 | * http://libtom.org/
|
---|
4 | * http://libtom.org/files/ltm-0.41.tar.bz2
|
---|
5 | * This library was released in public domain by Tom St Denis.
|
---|
6 | *
|
---|
7 | * The combination in this file may not use all of the optimized algorithms
|
---|
8 | * from LibTomMath and may be considerable slower than the LibTomMath with its
|
---|
9 | * default settings. The main purpose of having this version here is to make it
|
---|
10 | * easier to build bignum.c wrapper without having to install and build an
|
---|
11 | * external library.
|
---|
12 | *
|
---|
13 | * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this
|
---|
14 | * libtommath.c file instead of using the external LibTomMath library.
|
---|
15 | */
|
---|
16 |
|
---|
17 | #ifndef CHAR_BIT
|
---|
18 | #define CHAR_BIT 8
|
---|
19 | #endif
|
---|
20 |
|
---|
21 | #define BN_MP_INVMOD_C
|
---|
22 | #define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would
|
---|
23 | * require BN_MP_EXPTMOD_FAST_C instead */
|
---|
24 | #define BN_S_MP_MUL_DIGS_C
|
---|
25 | #define BN_MP_INVMOD_SLOW_C
|
---|
26 | #define BN_S_MP_SQR_C
|
---|
27 | #define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this
|
---|
28 | * would require other than mp_reduce */
|
---|
29 |
|
---|
30 | #ifdef LTM_FAST
|
---|
31 |
|
---|
32 | /* Use faster div at the cost of about 1 kB */
|
---|
33 | #define BN_MP_MUL_D_C
|
---|
34 |
|
---|
35 | /* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */
|
---|
36 | #define BN_MP_EXPTMOD_FAST_C
|
---|
37 | #define BN_MP_MONTGOMERY_SETUP_C
|
---|
38 | #define BN_FAST_MP_MONTGOMERY_REDUCE_C
|
---|
39 | #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
|
---|
40 | #define BN_MP_MUL_2_C
|
---|
41 |
|
---|
42 | /* Include faster sqr at the cost of about 0.5 kB in code */
|
---|
43 | #define BN_FAST_S_MP_SQR_C
|
---|
44 |
|
---|
45 | /* About 0.25 kB of code, but ~1.7kB of stack space! */
|
---|
46 | #define BN_FAST_S_MP_MUL_DIGS_C
|
---|
47 |
|
---|
48 | #else /* LTM_FAST */
|
---|
49 |
|
---|
50 | #define BN_MP_DIV_SMALL
|
---|
51 | #define BN_MP_INIT_MULTI_C
|
---|
52 | #define BN_MP_CLEAR_MULTI_C
|
---|
53 | #define BN_MP_ABS_C
|
---|
54 | #endif /* LTM_FAST */
|
---|
55 |
|
---|
56 | /* Current uses do not require support for negative exponent in exptmod, so we
|
---|
57 | * can save about 1.5 kB in leaving out invmod. */
|
---|
58 | #define LTM_NO_NEG_EXP
|
---|
59 |
|
---|
60 | /* from tommath.h */
|
---|
61 |
|
---|
62 | #ifndef MIN
|
---|
63 | #define MIN(x,y) ((x)<(y)?(x):(y))
|
---|
64 | #endif
|
---|
65 |
|
---|
66 | #ifndef MAX
|
---|
67 | #define MAX(x,y) ((x)>(y)?(x):(y))
|
---|
68 | #endif
|
---|
69 |
|
---|
70 | #define OPT_CAST(x)
|
---|
71 |
|
---|
72 | #ifdef __x86_64__
|
---|
73 | typedef unsigned long mp_digit;
|
---|
74 | typedef unsigned long mp_word __attribute__((mode(TI)));
|
---|
75 |
|
---|
76 | #define DIGIT_BIT 60
|
---|
77 | #define MP_64BIT
|
---|
78 | #else
|
---|
79 | typedef unsigned long mp_digit;
|
---|
80 | typedef u64 mp_word;
|
---|
81 |
|
---|
82 | #define DIGIT_BIT 28
|
---|
83 | #define MP_28BIT
|
---|
84 | #endif
|
---|
85 |
|
---|
86 |
|
---|
87 | #define XMALLOC os_malloc
|
---|
88 | #define XFREE os_free
|
---|
89 | #define XREALLOC os_realloc
|
---|
90 |
|
---|
91 |
|
---|
92 | #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
|
---|
93 |
|
---|
94 | #define MP_LT -1 /* less than */
|
---|
95 | #define MP_EQ 0 /* equal to */
|
---|
96 | #define MP_GT 1 /* greater than */
|
---|
97 |
|
---|
98 | #define MP_ZPOS 0 /* positive integer */
|
---|
99 | #define MP_NEG 1 /* negative */
|
---|
100 |
|
---|
101 | #define MP_OKAY 0 /* ok result */
|
---|
102 | #define MP_MEM -2 /* out of mem */
|
---|
103 | #define MP_VAL -3 /* invalid input */
|
---|
104 |
|
---|
105 | #define MP_YES 1 /* yes response */
|
---|
106 | #define MP_NO 0 /* no response */
|
---|
107 |
|
---|
108 | typedef int mp_err;
|
---|
109 |
|
---|
110 | /* define this to use lower memory usage routines (exptmods mostly) */
|
---|
111 | #define MP_LOW_MEM
|
---|
112 |
|
---|
113 | /* default precision */
|
---|
114 | #ifndef MP_PREC
|
---|
115 | #ifndef MP_LOW_MEM
|
---|
116 | #define MP_PREC 32 /* default digits of precision */
|
---|
117 | #else
|
---|
118 | #define MP_PREC 8 /* default digits of precision */
|
---|
119 | #endif
|
---|
120 | #endif
|
---|
121 |
|
---|
122 | /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
|
---|
123 | #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
|
---|
124 |
|
---|
125 | /* the infamous mp_int structure */
|
---|
126 | typedef struct {
|
---|
127 | int used, alloc, sign;
|
---|
128 | mp_digit *dp;
|
---|
129 | } mp_int;
|
---|
130 |
|
---|
131 |
|
---|
132 | /* ---> Basic Manipulations <--- */
|
---|
133 | #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
|
---|
134 | #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
|
---|
135 | #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
|
---|
136 |
|
---|
137 |
|
---|
138 | /* prototypes for copied functions */
|
---|
139 | #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
|
---|
140 | static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
|
---|
141 | static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
|
---|
142 | static int s_mp_sqr(mp_int * a, mp_int * b);
|
---|
143 | static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs);
|
---|
144 |
|
---|
145 | #ifdef BN_FAST_S_MP_MUL_DIGS_C
|
---|
146 | static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
|
---|
147 | #endif
|
---|
148 |
|
---|
149 | #ifdef BN_MP_INIT_MULTI_C
|
---|
150 | static int mp_init_multi(mp_int *mp, ...);
|
---|
151 | #endif
|
---|
152 | #ifdef BN_MP_CLEAR_MULTI_C
|
---|
153 | static void mp_clear_multi(mp_int *mp, ...);
|
---|
154 | #endif
|
---|
155 | static int mp_lshd(mp_int * a, int b);
|
---|
156 | static void mp_set(mp_int * a, mp_digit b);
|
---|
157 | static void mp_clamp(mp_int * a);
|
---|
158 | static void mp_exch(mp_int * a, mp_int * b);
|
---|
159 | static void mp_rshd(mp_int * a, int b);
|
---|
160 | static void mp_zero(mp_int * a);
|
---|
161 | static int mp_mod_2d(mp_int * a, int b, mp_int * c);
|
---|
162 | static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d);
|
---|
163 | static int mp_init_copy(mp_int * a, mp_int * b);
|
---|
164 | static int mp_mul_2d(mp_int * a, int b, mp_int * c);
|
---|
165 | #ifndef LTM_NO_NEG_EXP
|
---|
166 | static int mp_div_2(mp_int * a, mp_int * b);
|
---|
167 | static int mp_invmod(mp_int * a, mp_int * b, mp_int * c);
|
---|
168 | static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c);
|
---|
169 | #endif /* LTM_NO_NEG_EXP */
|
---|
170 | static int mp_copy(mp_int * a, mp_int * b);
|
---|
171 | static int mp_count_bits(mp_int * a);
|
---|
172 | static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
|
---|
173 | static int mp_mod(mp_int * a, mp_int * b, mp_int * c);
|
---|
174 | static int mp_grow(mp_int * a, int size);
|
---|
175 | static int mp_cmp_mag(mp_int * a, mp_int * b);
|
---|
176 | #ifdef BN_MP_ABS_C
|
---|
177 | static int mp_abs(mp_int * a, mp_int * b);
|
---|
178 | #endif
|
---|
179 | static int mp_sqr(mp_int * a, mp_int * b);
|
---|
180 | static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
|
---|
181 | static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
|
---|
182 | static int mp_2expt(mp_int * a, int b);
|
---|
183 | static int mp_reduce_setup(mp_int * a, mp_int * b);
|
---|
184 | static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu);
|
---|
185 | static int mp_init_size(mp_int * a, int size);
|
---|
186 | #ifdef BN_MP_EXPTMOD_FAST_C
|
---|
187 | static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
|
---|
188 | #endif /* BN_MP_EXPTMOD_FAST_C */
|
---|
189 | #ifdef BN_FAST_S_MP_SQR_C
|
---|
190 | static int fast_s_mp_sqr (mp_int * a, mp_int * b);
|
---|
191 | #endif /* BN_FAST_S_MP_SQR_C */
|
---|
192 | #ifdef BN_MP_MUL_D_C
|
---|
193 | static int mp_mul_d (mp_int * a, mp_digit b, mp_int * c);
|
---|
194 | #endif /* BN_MP_MUL_D_C */
|
---|
195 |
|
---|
196 |
|
---|
197 |
|
---|
198 | /* functions from bn_<func name>.c */
|
---|
199 |
|
---|
200 |
|
---|
201 | /* reverse an array, used for radix code */
|
---|
202 | static void bn_reverse (unsigned char *s, int len)
|
---|
203 | {
|
---|
204 | int ix, iy;
|
---|
205 | unsigned char t;
|
---|
206 |
|
---|
207 | ix = 0;
|
---|
208 | iy = len - 1;
|
---|
209 | while (ix < iy) {
|
---|
210 | t = s[ix];
|
---|
211 | s[ix] = s[iy];
|
---|
212 | s[iy] = t;
|
---|
213 | ++ix;
|
---|
214 | --iy;
|
---|
215 | }
|
---|
216 | }
|
---|
217 |
|
---|
218 |
|
---|
219 | /* low level addition, based on HAC pp.594, Algorithm 14.7 */
|
---|
220 | static int s_mp_add (mp_int * a, mp_int * b, mp_int * c)
|
---|
221 | {
|
---|
222 | mp_int *x;
|
---|
223 | int olduse, res, min, max;
|
---|
224 |
|
---|
225 | /* find sizes, we let |a| <= |b| which means we have to sort
|
---|
226 | * them. "x" will point to the input with the most digits
|
---|
227 | */
|
---|
228 | if (a->used > b->used) {
|
---|
229 | min = b->used;
|
---|
230 | max = a->used;
|
---|
231 | x = a;
|
---|
232 | } else {
|
---|
233 | min = a->used;
|
---|
234 | max = b->used;
|
---|
235 | x = b;
|
---|
236 | }
|
---|
237 |
|
---|
238 | /* init result */
|
---|
239 | if (c->alloc < max + 1) {
|
---|
240 | if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
|
---|
241 | return res;
|
---|
242 | }
|
---|
243 | }
|
---|
244 |
|
---|
245 | /* get old used digit count and set new one */
|
---|
246 | olduse = c->used;
|
---|
247 | c->used = max + 1;
|
---|
248 |
|
---|
249 | {
|
---|
250 | register mp_digit u, *tmpa, *tmpb, *tmpc;
|
---|
251 | register int i;
|
---|
252 |
|
---|
253 | /* alias for digit pointers */
|
---|
254 |
|
---|
255 | /* first input */
|
---|
256 | tmpa = a->dp;
|
---|
257 |
|
---|
258 | /* second input */
|
---|
259 | tmpb = b->dp;
|
---|
260 |
|
---|
261 | /* destination */
|
---|
262 | tmpc = c->dp;
|
---|
263 |
|
---|
264 | /* zero the carry */
|
---|
265 | u = 0;
|
---|
266 | for (i = 0; i < min; i++) {
|
---|
267 | /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
|
---|
268 | *tmpc = *tmpa++ + *tmpb++ + u;
|
---|
269 |
|
---|
270 | /* U = carry bit of T[i] */
|
---|
271 | u = *tmpc >> ((mp_digit)DIGIT_BIT);
|
---|
272 |
|
---|
273 | /* take away carry bit from T[i] */
|
---|
274 | *tmpc++ &= MP_MASK;
|
---|
275 | }
|
---|
276 |
|
---|
277 | /* now copy higher words if any, that is in A+B
|
---|
278 | * if A or B has more digits add those in
|
---|
279 | */
|
---|
280 | if (min != max) {
|
---|
281 | for (; i < max; i++) {
|
---|
282 | /* T[i] = X[i] + U */
|
---|
283 | *tmpc = x->dp[i] + u;
|
---|
284 |
|
---|
285 | /* U = carry bit of T[i] */
|
---|
286 | u = *tmpc >> ((mp_digit)DIGIT_BIT);
|
---|
287 |
|
---|
288 | /* take away carry bit from T[i] */
|
---|
289 | *tmpc++ &= MP_MASK;
|
---|
290 | }
|
---|
291 | }
|
---|
292 |
|
---|
293 | /* add carry */
|
---|
294 | *tmpc++ = u;
|
---|
295 |
|
---|
296 | /* clear digits above oldused */
|
---|
297 | for (i = c->used; i < olduse; i++) {
|
---|
298 | *tmpc++ = 0;
|
---|
299 | }
|
---|
300 | }
|
---|
301 |
|
---|
302 | mp_clamp (c);
|
---|
303 | return MP_OKAY;
|
---|
304 | }
|
---|
305 |
|
---|
306 |
|
---|
307 | /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
|
---|
308 | static int s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
|
---|
309 | {
|
---|
310 | int olduse, res, min, max;
|
---|
311 |
|
---|
312 | /* find sizes */
|
---|
313 | min = b->used;
|
---|
314 | max = a->used;
|
---|
315 |
|
---|
316 | /* init result */
|
---|
317 | if (c->alloc < max) {
|
---|
318 | if ((res = mp_grow (c, max)) != MP_OKAY) {
|
---|
319 | return res;
|
---|
320 | }
|
---|
321 | }
|
---|
322 | olduse = c->used;
|
---|
323 | c->used = max;
|
---|
324 |
|
---|
325 | {
|
---|
326 | register mp_digit u, *tmpa, *tmpb, *tmpc;
|
---|
327 | register int i;
|
---|
328 |
|
---|
329 | /* alias for digit pointers */
|
---|
330 | tmpa = a->dp;
|
---|
331 | tmpb = b->dp;
|
---|
332 | tmpc = c->dp;
|
---|
333 |
|
---|
334 | /* set carry to zero */
|
---|
335 | u = 0;
|
---|
336 | for (i = 0; i < min; i++) {
|
---|
337 | /* T[i] = A[i] - B[i] - U */
|
---|
338 | *tmpc = *tmpa++ - *tmpb++ - u;
|
---|
339 |
|
---|
340 | /* U = carry bit of T[i]
|
---|
341 | * Note this saves performing an AND operation since
|
---|
342 | * if a carry does occur it will propagate all the way to the
|
---|
343 | * MSB. As a result a single shift is enough to get the carry
|
---|
344 | */
|
---|
345 | u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
|
---|
346 |
|
---|
347 | /* Clear carry from T[i] */
|
---|
348 | *tmpc++ &= MP_MASK;
|
---|
349 | }
|
---|
350 |
|
---|
351 | /* now copy higher words if any, e.g. if A has more digits than B */
|
---|
352 | for (; i < max; i++) {
|
---|
353 | /* T[i] = A[i] - U */
|
---|
354 | *tmpc = *tmpa++ - u;
|
---|
355 |
|
---|
356 | /* U = carry bit of T[i] */
|
---|
357 | u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
|
---|
358 |
|
---|
359 | /* Clear carry from T[i] */
|
---|
360 | *tmpc++ &= MP_MASK;
|
---|
361 | }
|
---|
362 |
|
---|
363 | /* clear digits above used (since we may not have grown result above) */
|
---|
364 | for (i = c->used; i < olduse; i++) {
|
---|
365 | *tmpc++ = 0;
|
---|
366 | }
|
---|
367 | }
|
---|
368 |
|
---|
369 | mp_clamp (c);
|
---|
370 | return MP_OKAY;
|
---|
371 | }
|
---|
372 |
|
---|
373 |
|
---|
374 | /* init a new mp_int */
|
---|
375 | static int mp_init (mp_int * a)
|
---|
376 | {
|
---|
377 | int i;
|
---|
378 |
|
---|
379 | /* allocate memory required and clear it */
|
---|
380 | a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
|
---|
381 | if (a->dp == NULL) {
|
---|
382 | return MP_MEM;
|
---|
383 | }
|
---|
384 |
|
---|
385 | /* set the digits to zero */
|
---|
386 | for (i = 0; i < MP_PREC; i++) {
|
---|
387 | a->dp[i] = 0;
|
---|
388 | }
|
---|
389 |
|
---|
390 | /* set the used to zero, allocated digits to the default precision
|
---|
391 | * and sign to positive */
|
---|
392 | a->used = 0;
|
---|
393 | a->alloc = MP_PREC;
|
---|
394 | a->sign = MP_ZPOS;
|
---|
395 |
|
---|
396 | return MP_OKAY;
|
---|
397 | }
|
---|
398 |
|
---|
399 |
|
---|
400 | /* clear one (frees) */
|
---|
401 | static void mp_clear (mp_int * a)
|
---|
402 | {
|
---|
403 | int i;
|
---|
404 |
|
---|
405 | /* only do anything if a hasn't been freed previously */
|
---|
406 | if (a->dp != NULL) {
|
---|
407 | /* first zero the digits */
|
---|
408 | for (i = 0; i < a->used; i++) {
|
---|
409 | a->dp[i] = 0;
|
---|
410 | }
|
---|
411 |
|
---|
412 | /* free ram */
|
---|
413 | XFREE(a->dp);
|
---|
414 |
|
---|
415 | /* reset members to make debugging easier */
|
---|
416 | a->dp = NULL;
|
---|
417 | a->alloc = a->used = 0;
|
---|
418 | a->sign = MP_ZPOS;
|
---|
419 | }
|
---|
420 | }
|
---|
421 |
|
---|
422 |
|
---|
423 | /* high level addition (handles signs) */
|
---|
424 | static int mp_add (mp_int * a, mp_int * b, mp_int * c)
|
---|
425 | {
|
---|
426 | int sa, sb, res;
|
---|
427 |
|
---|
428 | /* get sign of both inputs */
|
---|
429 | sa = a->sign;
|
---|
430 | sb = b->sign;
|
---|
431 |
|
---|
432 | /* handle two cases, not four */
|
---|
433 | if (sa == sb) {
|
---|
434 | /* both positive or both negative */
|
---|
435 | /* add their magnitudes, copy the sign */
|
---|
436 | c->sign = sa;
|
---|
437 | res = s_mp_add (a, b, c);
|
---|
438 | } else {
|
---|
439 | /* one positive, the other negative */
|
---|
440 | /* subtract the one with the greater magnitude from */
|
---|
441 | /* the one of the lesser magnitude. The result gets */
|
---|
442 | /* the sign of the one with the greater magnitude. */
|
---|
443 | if (mp_cmp_mag (a, b) == MP_LT) {
|
---|
444 | c->sign = sb;
|
---|
445 | res = s_mp_sub (b, a, c);
|
---|
446 | } else {
|
---|
447 | c->sign = sa;
|
---|
448 | res = s_mp_sub (a, b, c);
|
---|
449 | }
|
---|
450 | }
|
---|
451 | return res;
|
---|
452 | }
|
---|
453 |
|
---|
454 |
|
---|
455 | /* high level subtraction (handles signs) */
|
---|
456 | static int mp_sub (mp_int * a, mp_int * b, mp_int * c)
|
---|
457 | {
|
---|
458 | int sa, sb, res;
|
---|
459 |
|
---|
460 | sa = a->sign;
|
---|
461 | sb = b->sign;
|
---|
462 |
|
---|
463 | if (sa != sb) {
|
---|
464 | /* subtract a negative from a positive, OR */
|
---|
465 | /* subtract a positive from a negative. */
|
---|
466 | /* In either case, ADD their magnitudes, */
|
---|
467 | /* and use the sign of the first number. */
|
---|
468 | c->sign = sa;
|
---|
469 | res = s_mp_add (a, b, c);
|
---|
470 | } else {
|
---|
471 | /* subtract a positive from a positive, OR */
|
---|
472 | /* subtract a negative from a negative. */
|
---|
473 | /* First, take the difference between their */
|
---|
474 | /* magnitudes, then... */
|
---|
475 | if (mp_cmp_mag (a, b) != MP_LT) {
|
---|
476 | /* Copy the sign from the first */
|
---|
477 | c->sign = sa;
|
---|
478 | /* The first has a larger or equal magnitude */
|
---|
479 | res = s_mp_sub (a, b, c);
|
---|
480 | } else {
|
---|
481 | /* The result has the *opposite* sign from */
|
---|
482 | /* the first number. */
|
---|
483 | c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
---|
484 | /* The second has a larger magnitude */
|
---|
485 | res = s_mp_sub (b, a, c);
|
---|
486 | }
|
---|
487 | }
|
---|
488 | return res;
|
---|
489 | }
|
---|
490 |
|
---|
491 |
|
---|
492 | /* high level multiplication (handles sign) */
|
---|
493 | static int mp_mul (mp_int * a, mp_int * b, mp_int * c)
|
---|
494 | {
|
---|
495 | int res, neg;
|
---|
496 | neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
---|
497 |
|
---|
498 | /* use Toom-Cook? */
|
---|
499 | #ifdef BN_MP_TOOM_MUL_C
|
---|
500 | if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
|
---|
501 | res = mp_toom_mul(a, b, c);
|
---|
502 | } else
|
---|
503 | #endif
|
---|
504 | #ifdef BN_MP_KARATSUBA_MUL_C
|
---|
505 | /* use Karatsuba? */
|
---|
506 | if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
|
---|
507 | res = mp_karatsuba_mul (a, b, c);
|
---|
508 | } else
|
---|
509 | #endif
|
---|
510 | {
|
---|
511 | /* can we use the fast multiplier?
|
---|
512 | *
|
---|
513 | * The fast multiplier can be used if the output will
|
---|
514 | * have less than MP_WARRAY digits and the number of
|
---|
515 | * digits won't affect carry propagation
|
---|
516 | */
|
---|
517 | #ifdef BN_FAST_S_MP_MUL_DIGS_C
|
---|
518 | int digs = a->used + b->used + 1;
|
---|
519 |
|
---|
520 | if ((digs < MP_WARRAY) &&
|
---|
521 | MIN(a->used, b->used) <=
|
---|
522 | (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
---|
523 | res = fast_s_mp_mul_digs (a, b, c, digs);
|
---|
524 | } else
|
---|
525 | #endif
|
---|
526 | #ifdef BN_S_MP_MUL_DIGS_C
|
---|
527 | res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
|
---|
528 | #else
|
---|
529 | #error mp_mul could fail
|
---|
530 | res = MP_VAL;
|
---|
531 | #endif
|
---|
532 |
|
---|
533 | }
|
---|
534 | c->sign = (c->used > 0) ? neg : MP_ZPOS;
|
---|
535 | return res;
|
---|
536 | }
|
---|
537 |
|
---|
538 |
|
---|
539 | /* d = a * b (mod c) */
|
---|
540 | static int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
---|
541 | {
|
---|
542 | int res;
|
---|
543 | mp_int t;
|
---|
544 |
|
---|
545 | if ((res = mp_init (&t)) != MP_OKAY) {
|
---|
546 | return res;
|
---|
547 | }
|
---|
548 |
|
---|
549 | if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
|
---|
550 | mp_clear (&t);
|
---|
551 | return res;
|
---|
552 | }
|
---|
553 | res = mp_mod (&t, c, d);
|
---|
554 | mp_clear (&t);
|
---|
555 | return res;
|
---|
556 | }
|
---|
557 |
|
---|
558 |
|
---|
559 | /* c = a mod b, 0 <= c < b */
|
---|
560 | static int mp_mod (mp_int * a, mp_int * b, mp_int * c)
|
---|
561 | {
|
---|
562 | mp_int t;
|
---|
563 | int res;
|
---|
564 |
|
---|
565 | if ((res = mp_init (&t)) != MP_OKAY) {
|
---|
566 | return res;
|
---|
567 | }
|
---|
568 |
|
---|
569 | if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
|
---|
570 | mp_clear (&t);
|
---|
571 | return res;
|
---|
572 | }
|
---|
573 |
|
---|
574 | if (t.sign != b->sign) {
|
---|
575 | res = mp_add (b, &t, c);
|
---|
576 | } else {
|
---|
577 | res = MP_OKAY;
|
---|
578 | mp_exch (&t, c);
|
---|
579 | }
|
---|
580 |
|
---|
581 | mp_clear (&t);
|
---|
582 | return res;
|
---|
583 | }
|
---|
584 |
|
---|
585 |
|
---|
586 | /* this is a shell function that calls either the normal or Montgomery
|
---|
587 | * exptmod functions. Originally the call to the montgomery code was
|
---|
588 | * embedded in the normal function but that wasted a lot of stack space
|
---|
589 | * for nothing (since 99% of the time the Montgomery code would be called)
|
---|
590 | */
|
---|
591 | static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
---|
592 | {
|
---|
593 | int dr;
|
---|
594 |
|
---|
595 | /* modulus P must be positive */
|
---|
596 | if (P->sign == MP_NEG) {
|
---|
597 | return MP_VAL;
|
---|
598 | }
|
---|
599 |
|
---|
600 | /* if exponent X is negative we have to recurse */
|
---|
601 | if (X->sign == MP_NEG) {
|
---|
602 | #ifdef LTM_NO_NEG_EXP
|
---|
603 | return MP_VAL;
|
---|
604 | #else /* LTM_NO_NEG_EXP */
|
---|
605 | #ifdef BN_MP_INVMOD_C
|
---|
606 | mp_int tmpG, tmpX;
|
---|
607 | int err;
|
---|
608 |
|
---|
609 | /* first compute 1/G mod P */
|
---|
610 | if ((err = mp_init(&tmpG)) != MP_OKAY) {
|
---|
611 | return err;
|
---|
612 | }
|
---|
613 | if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
|
---|
614 | mp_clear(&tmpG);
|
---|
615 | return err;
|
---|
616 | }
|
---|
617 |
|
---|
618 | /* now get |X| */
|
---|
619 | if ((err = mp_init(&tmpX)) != MP_OKAY) {
|
---|
620 | mp_clear(&tmpG);
|
---|
621 | return err;
|
---|
622 | }
|
---|
623 | if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
|
---|
624 | mp_clear_multi(&tmpG, &tmpX, NULL);
|
---|
625 | return err;
|
---|
626 | }
|
---|
627 |
|
---|
628 | /* and now compute (1/G)**|X| instead of G**X [X < 0] */
|
---|
629 | err = mp_exptmod(&tmpG, &tmpX, P, Y);
|
---|
630 | mp_clear_multi(&tmpG, &tmpX, NULL);
|
---|
631 | return err;
|
---|
632 | #else
|
---|
633 | #error mp_exptmod would always fail
|
---|
634 | /* no invmod */
|
---|
635 | return MP_VAL;
|
---|
636 | #endif
|
---|
637 | #endif /* LTM_NO_NEG_EXP */
|
---|
638 | }
|
---|
639 |
|
---|
640 | /* modified diminished radix reduction */
|
---|
641 | #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
|
---|
642 | if (mp_reduce_is_2k_l(P) == MP_YES) {
|
---|
643 | return s_mp_exptmod(G, X, P, Y, 1);
|
---|
644 | }
|
---|
645 | #endif
|
---|
646 |
|
---|
647 | #ifdef BN_MP_DR_IS_MODULUS_C
|
---|
648 | /* is it a DR modulus? */
|
---|
649 | dr = mp_dr_is_modulus(P);
|
---|
650 | #else
|
---|
651 | /* default to no */
|
---|
652 | dr = 0;
|
---|
653 | #endif
|
---|
654 |
|
---|
655 | #ifdef BN_MP_REDUCE_IS_2K_C
|
---|
656 | /* if not, is it a unrestricted DR modulus? */
|
---|
657 | if (dr == 0) {
|
---|
658 | dr = mp_reduce_is_2k(P) << 1;
|
---|
659 | }
|
---|
660 | #endif
|
---|
661 |
|
---|
662 | /* if the modulus is odd or dr != 0 use the montgomery method */
|
---|
663 | #ifdef BN_MP_EXPTMOD_FAST_C
|
---|
664 | if (mp_isodd (P) == 1 || dr != 0) {
|
---|
665 | return mp_exptmod_fast (G, X, P, Y, dr);
|
---|
666 | } else {
|
---|
667 | #endif
|
---|
668 | #ifdef BN_S_MP_EXPTMOD_C
|
---|
669 | /* otherwise use the generic Barrett reduction technique */
|
---|
670 | return s_mp_exptmod (G, X, P, Y, 0);
|
---|
671 | #else
|
---|
672 | #error mp_exptmod could fail
|
---|
673 | /* no exptmod for evens */
|
---|
674 | return MP_VAL;
|
---|
675 | #endif
|
---|
676 | #ifdef BN_MP_EXPTMOD_FAST_C
|
---|
677 | }
|
---|
678 | #endif
|
---|
679 | if (dr == 0) {
|
---|
680 | /* avoid compiler warnings about possibly unused variable */
|
---|
681 | }
|
---|
682 | }
|
---|
683 |
|
---|
684 |
|
---|
685 | /* compare two ints (signed)*/
|
---|
686 | static int mp_cmp (mp_int * a, mp_int * b)
|
---|
687 | {
|
---|
688 | /* compare based on sign */
|
---|
689 | if (a->sign != b->sign) {
|
---|
690 | if (a->sign == MP_NEG) {
|
---|
691 | return MP_LT;
|
---|
692 | } else {
|
---|
693 | return MP_GT;
|
---|
694 | }
|
---|
695 | }
|
---|
696 |
|
---|
697 | /* compare digits */
|
---|
698 | if (a->sign == MP_NEG) {
|
---|
699 | /* if negative compare opposite direction */
|
---|
700 | return mp_cmp_mag(b, a);
|
---|
701 | } else {
|
---|
702 | return mp_cmp_mag(a, b);
|
---|
703 | }
|
---|
704 | }
|
---|
705 |
|
---|
706 |
|
---|
707 | /* compare a digit */
|
---|
708 | static int mp_cmp_d(mp_int * a, mp_digit b)
|
---|
709 | {
|
---|
710 | /* compare based on sign */
|
---|
711 | if (a->sign == MP_NEG) {
|
---|
712 | return MP_LT;
|
---|
713 | }
|
---|
714 |
|
---|
715 | /* compare based on magnitude */
|
---|
716 | if (a->used > 1) {
|
---|
717 | return MP_GT;
|
---|
718 | }
|
---|
719 |
|
---|
720 | /* compare the only digit of a to b */
|
---|
721 | if (a->dp[0] > b) {
|
---|
722 | return MP_GT;
|
---|
723 | } else if (a->dp[0] < b) {
|
---|
724 | return MP_LT;
|
---|
725 | } else {
|
---|
726 | return MP_EQ;
|
---|
727 | }
|
---|
728 | }
|
---|
729 |
|
---|
730 |
|
---|
731 | #ifndef LTM_NO_NEG_EXP
|
---|
732 | /* hac 14.61, pp608 */
|
---|
733 | static int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
---|
734 | {
|
---|
735 | /* b cannot be negative */
|
---|
736 | if (b->sign == MP_NEG || mp_iszero(b) == 1) {
|
---|
737 | return MP_VAL;
|
---|
738 | }
|
---|
739 |
|
---|
740 | #ifdef BN_FAST_MP_INVMOD_C
|
---|
741 | /* if the modulus is odd we can use a faster routine instead */
|
---|
742 | if (mp_isodd (b) == 1) {
|
---|
743 | return fast_mp_invmod (a, b, c);
|
---|
744 | }
|
---|
745 | #endif
|
---|
746 |
|
---|
747 | #ifdef BN_MP_INVMOD_SLOW_C
|
---|
748 | return mp_invmod_slow(a, b, c);
|
---|
749 | #endif
|
---|
750 |
|
---|
751 | #ifndef BN_FAST_MP_INVMOD_C
|
---|
752 | #ifndef BN_MP_INVMOD_SLOW_C
|
---|
753 | #error mp_invmod would always fail
|
---|
754 | #endif
|
---|
755 | #endif
|
---|
756 | return MP_VAL;
|
---|
757 | }
|
---|
758 | #endif /* LTM_NO_NEG_EXP */
|
---|
759 |
|
---|
760 |
|
---|
761 | /* get the size for an unsigned equivalent */
|
---|
762 | static int mp_unsigned_bin_size (mp_int * a)
|
---|
763 | {
|
---|
764 | int size = mp_count_bits (a);
|
---|
765 | return (size / 8 + ((size & 7) != 0 ? 1 : 0));
|
---|
766 | }
|
---|
767 |
|
---|
768 |
|
---|
769 | #ifndef LTM_NO_NEG_EXP
|
---|
770 | /* hac 14.61, pp608 */
|
---|
771 | static int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
|
---|
772 | {
|
---|
773 | mp_int x, y, u, v, A, B, C, D;
|
---|
774 | int res;
|
---|
775 |
|
---|
776 | /* b cannot be negative */
|
---|
777 | if (b->sign == MP_NEG || mp_iszero(b) == 1) {
|
---|
778 | return MP_VAL;
|
---|
779 | }
|
---|
780 |
|
---|
781 | /* init temps */
|
---|
782 | if ((res = mp_init_multi(&x, &y, &u, &v,
|
---|
783 | &A, &B, &C, &D, NULL)) != MP_OKAY) {
|
---|
784 | return res;
|
---|
785 | }
|
---|
786 |
|
---|
787 | /* x = a, y = b */
|
---|
788 | if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
|
---|
789 | goto LBL_ERR;
|
---|
790 | }
|
---|
791 | if ((res = mp_copy (b, &y)) != MP_OKAY) {
|
---|
792 | goto LBL_ERR;
|
---|
793 | }
|
---|
794 |
|
---|
795 | /* 2. [modified] if x,y are both even then return an error! */
|
---|
796 | if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
|
---|
797 | res = MP_VAL;
|
---|
798 | goto LBL_ERR;
|
---|
799 | }
|
---|
800 |
|
---|
801 | /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
---|
802 | if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
---|
803 | goto LBL_ERR;
|
---|
804 | }
|
---|
805 | if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
---|
806 | goto LBL_ERR;
|
---|
807 | }
|
---|
808 | mp_set (&A, 1);
|
---|
809 | mp_set (&D, 1);
|
---|
810 |
|
---|
811 | top:
|
---|
812 | /* 4. while u is even do */
|
---|
813 | while (mp_iseven (&u) == 1) {
|
---|
814 | /* 4.1 u = u/2 */
|
---|
815 | if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
---|
816 | goto LBL_ERR;
|
---|
817 | }
|
---|
818 | /* 4.2 if A or B is odd then */
|
---|
819 | if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
|
---|
820 | /* A = (A+y)/2, B = (B-x)/2 */
|
---|
821 | if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
|
---|
822 | goto LBL_ERR;
|
---|
823 | }
|
---|
824 | if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
---|
825 | goto LBL_ERR;
|
---|
826 | }
|
---|
827 | }
|
---|
828 | /* A = A/2, B = B/2 */
|
---|
829 | if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
|
---|
830 | goto LBL_ERR;
|
---|
831 | }
|
---|
832 | if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
---|
833 | goto LBL_ERR;
|
---|
834 | }
|
---|
835 | }
|
---|
836 |
|
---|
837 | /* 5. while v is even do */
|
---|
838 | while (mp_iseven (&v) == 1) {
|
---|
839 | /* 5.1 v = v/2 */
|
---|
840 | if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
---|
841 | goto LBL_ERR;
|
---|
842 | }
|
---|
843 | /* 5.2 if C or D is odd then */
|
---|
844 | if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
|
---|
845 | /* C = (C+y)/2, D = (D-x)/2 */
|
---|
846 | if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
|
---|
847 | goto LBL_ERR;
|
---|
848 | }
|
---|
849 | if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
---|
850 | goto LBL_ERR;
|
---|
851 | }
|
---|
852 | }
|
---|
853 | /* C = C/2, D = D/2 */
|
---|
854 | if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
|
---|
855 | goto LBL_ERR;
|
---|
856 | }
|
---|
857 | if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
---|
858 | goto LBL_ERR;
|
---|
859 | }
|
---|
860 | }
|
---|
861 |
|
---|
862 | /* 6. if u >= v then */
|
---|
863 | if (mp_cmp (&u, &v) != MP_LT) {
|
---|
864 | /* u = u - v, A = A - C, B = B - D */
|
---|
865 | if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
---|
866 | goto LBL_ERR;
|
---|
867 | }
|
---|
868 |
|
---|
869 | if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
|
---|
870 | goto LBL_ERR;
|
---|
871 | }
|
---|
872 |
|
---|
873 | if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
---|
874 | goto LBL_ERR;
|
---|
875 | }
|
---|
876 | } else {
|
---|
877 | /* v - v - u, C = C - A, D = D - B */
|
---|
878 | if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
---|
879 | goto LBL_ERR;
|
---|
880 | }
|
---|
881 |
|
---|
882 | if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
|
---|
883 | goto LBL_ERR;
|
---|
884 | }
|
---|
885 |
|
---|
886 | if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
---|
887 | goto LBL_ERR;
|
---|
888 | }
|
---|
889 | }
|
---|
890 |
|
---|
891 | /* if not zero goto step 4 */
|
---|
892 | if (mp_iszero (&u) == 0)
|
---|
893 | goto top;
|
---|
894 |
|
---|
895 | /* now a = C, b = D, gcd == g*v */
|
---|
896 |
|
---|
897 | /* if v != 1 then there is no inverse */
|
---|
898 | if (mp_cmp_d (&v, 1) != MP_EQ) {
|
---|
899 | res = MP_VAL;
|
---|
900 | goto LBL_ERR;
|
---|
901 | }
|
---|
902 |
|
---|
903 | /* if its too low */
|
---|
904 | while (mp_cmp_d(&C, 0) == MP_LT) {
|
---|
905 | if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
|
---|
906 | goto LBL_ERR;
|
---|
907 | }
|
---|
908 | }
|
---|
909 |
|
---|
910 | /* too big */
|
---|
911 | while (mp_cmp_mag(&C, b) != MP_LT) {
|
---|
912 | if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
|
---|
913 | goto LBL_ERR;
|
---|
914 | }
|
---|
915 | }
|
---|
916 |
|
---|
917 | /* C is now the inverse */
|
---|
918 | mp_exch (&C, c);
|
---|
919 | res = MP_OKAY;
|
---|
920 | LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
|
---|
921 | return res;
|
---|
922 | }
|
---|
923 | #endif /* LTM_NO_NEG_EXP */
|
---|
924 |
|
---|
925 |
|
---|
926 | /* compare maginitude of two ints (unsigned) */
|
---|
927 | static int mp_cmp_mag (mp_int * a, mp_int * b)
|
---|
928 | {
|
---|
929 | int n;
|
---|
930 | mp_digit *tmpa, *tmpb;
|
---|
931 |
|
---|
932 | /* compare based on # of non-zero digits */
|
---|
933 | if (a->used > b->used) {
|
---|
934 | return MP_GT;
|
---|
935 | }
|
---|
936 |
|
---|
937 | if (a->used < b->used) {
|
---|
938 | return MP_LT;
|
---|
939 | }
|
---|
940 |
|
---|
941 | /* alias for a */
|
---|
942 | tmpa = a->dp + (a->used - 1);
|
---|
943 |
|
---|
944 | /* alias for b */
|
---|
945 | tmpb = b->dp + (a->used - 1);
|
---|
946 |
|
---|
947 | /* compare based on digits */
|
---|
948 | for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
|
---|
949 | if (*tmpa > *tmpb) {
|
---|
950 | return MP_GT;
|
---|
951 | }
|
---|
952 |
|
---|
953 | if (*tmpa < *tmpb) {
|
---|
954 | return MP_LT;
|
---|
955 | }
|
---|
956 | }
|
---|
957 | return MP_EQ;
|
---|
958 | }
|
---|
959 |
|
---|
960 |
|
---|
961 | /* reads a unsigned char array, assumes the msb is stored first [big endian] */
|
---|
962 | static int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
|
---|
963 | {
|
---|
964 | int res;
|
---|
965 |
|
---|
966 | /* make sure there are at least two digits */
|
---|
967 | if (a->alloc < 2) {
|
---|
968 | if ((res = mp_grow(a, 2)) != MP_OKAY) {
|
---|
969 | return res;
|
---|
970 | }
|
---|
971 | }
|
---|
972 |
|
---|
973 | /* zero the int */
|
---|
974 | mp_zero (a);
|
---|
975 |
|
---|
976 | /* read the bytes in */
|
---|
977 | while (c-- > 0) {
|
---|
978 | if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
|
---|
979 | return res;
|
---|
980 | }
|
---|
981 |
|
---|
982 | #ifndef MP_8BIT
|
---|
983 | a->dp[0] |= *b++;
|
---|
984 | a->used += 1;
|
---|
985 | #else
|
---|
986 | a->dp[0] = (*b & MP_MASK);
|
---|
987 | a->dp[1] |= ((*b++ >> 7U) & 1);
|
---|
988 | a->used += 2;
|
---|
989 | #endif
|
---|
990 | }
|
---|
991 | mp_clamp (a);
|
---|
992 | return MP_OKAY;
|
---|
993 | }
|
---|
994 |
|
---|
995 |
|
---|
996 | /* store in unsigned [big endian] format */
|
---|
997 | static int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
|
---|
998 | {
|
---|
999 | int x, res;
|
---|
1000 | mp_int t;
|
---|
1001 |
|
---|
1002 | if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
---|
1003 | return res;
|
---|
1004 | }
|
---|
1005 |
|
---|
1006 | x = 0;
|
---|
1007 | while (mp_iszero (&t) == 0) {
|
---|
1008 | #ifndef MP_8BIT
|
---|
1009 | b[x++] = (unsigned char) (t.dp[0] & 255);
|
---|
1010 | #else
|
---|
1011 | b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
|
---|
1012 | #endif
|
---|
1013 | if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
|
---|
1014 | mp_clear (&t);
|
---|
1015 | return res;
|
---|
1016 | }
|
---|
1017 | }
|
---|
1018 | bn_reverse (b, x);
|
---|
1019 | mp_clear (&t);
|
---|
1020 | return MP_OKAY;
|
---|
1021 | }
|
---|
1022 |
|
---|
1023 |
|
---|
1024 | /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
|
---|
1025 | static int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
|
---|
1026 | {
|
---|
1027 | mp_digit D, r, rr;
|
---|
1028 | int x, res;
|
---|
1029 | mp_int t;
|
---|
1030 |
|
---|
1031 |
|
---|
1032 | /* if the shift count is <= 0 then we do no work */
|
---|
1033 | if (b <= 0) {
|
---|
1034 | res = mp_copy (a, c);
|
---|
1035 | if (d != NULL) {
|
---|
1036 | mp_zero (d);
|
---|
1037 | }
|
---|
1038 | return res;
|
---|
1039 | }
|
---|
1040 |
|
---|
1041 | if ((res = mp_init (&t)) != MP_OKAY) {
|
---|
1042 | return res;
|
---|
1043 | }
|
---|
1044 |
|
---|
1045 | /* get the remainder */
|
---|
1046 | if (d != NULL) {
|
---|
1047 | if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
|
---|
1048 | mp_clear (&t);
|
---|
1049 | return res;
|
---|
1050 | }
|
---|
1051 | }
|
---|
1052 |
|
---|
1053 | /* copy */
|
---|
1054 | if ((res = mp_copy (a, c)) != MP_OKAY) {
|
---|
1055 | mp_clear (&t);
|
---|
1056 | return res;
|
---|
1057 | }
|
---|
1058 |
|
---|
1059 | /* shift by as many digits in the bit count */
|
---|
1060 | if (b >= (int)DIGIT_BIT) {
|
---|
1061 | mp_rshd (c, b / DIGIT_BIT);
|
---|
1062 | }
|
---|
1063 |
|
---|
1064 | /* shift any bit count < DIGIT_BIT */
|
---|
1065 | D = (mp_digit) (b % DIGIT_BIT);
|
---|
1066 | if (D != 0) {
|
---|
1067 | register mp_digit *tmpc, mask, shift;
|
---|
1068 |
|
---|
1069 | /* mask */
|
---|
1070 | mask = (((mp_digit)1) << D) - 1;
|
---|
1071 |
|
---|
1072 | /* shift for lsb */
|
---|
1073 | shift = DIGIT_BIT - D;
|
---|
1074 |
|
---|
1075 | /* alias */
|
---|
1076 | tmpc = c->dp + (c->used - 1);
|
---|
1077 |
|
---|
1078 | /* carry */
|
---|
1079 | r = 0;
|
---|
1080 | for (x = c->used - 1; x >= 0; x--) {
|
---|
1081 | /* get the lower bits of this word in a temp */
|
---|
1082 | rr = *tmpc & mask;
|
---|
1083 |
|
---|
1084 | /* shift the current word and mix in the carry bits from the previous word */
|
---|
1085 | *tmpc = (*tmpc >> D) | (r << shift);
|
---|
1086 | --tmpc;
|
---|
1087 |
|
---|
1088 | /* set the carry to the carry bits of the current word found above */
|
---|
1089 | r = rr;
|
---|
1090 | }
|
---|
1091 | }
|
---|
1092 | mp_clamp (c);
|
---|
1093 | if (d != NULL) {
|
---|
1094 | mp_exch (&t, d);
|
---|
1095 | }
|
---|
1096 | mp_clear (&t);
|
---|
1097 | return MP_OKAY;
|
---|
1098 | }
|
---|
1099 |
|
---|
1100 |
|
---|
1101 | static int mp_init_copy (mp_int * a, mp_int * b)
|
---|
1102 | {
|
---|
1103 | int res;
|
---|
1104 |
|
---|
1105 | if ((res = mp_init (a)) != MP_OKAY) {
|
---|
1106 | return res;
|
---|
1107 | }
|
---|
1108 | return mp_copy (b, a);
|
---|
1109 | }
|
---|
1110 |
|
---|
1111 |
|
---|
1112 | /* set to zero */
|
---|
1113 | static void mp_zero (mp_int * a)
|
---|
1114 | {
|
---|
1115 | int n;
|
---|
1116 | mp_digit *tmp;
|
---|
1117 |
|
---|
1118 | a->sign = MP_ZPOS;
|
---|
1119 | a->used = 0;
|
---|
1120 |
|
---|
1121 | tmp = a->dp;
|
---|
1122 | for (n = 0; n < a->alloc; n++) {
|
---|
1123 | *tmp++ = 0;
|
---|
1124 | }
|
---|
1125 | }
|
---|
1126 |
|
---|
1127 |
|
---|
1128 | /* copy, b = a */
|
---|
1129 | static int mp_copy (mp_int * a, mp_int * b)
|
---|
1130 | {
|
---|
1131 | int res, n;
|
---|
1132 |
|
---|
1133 | /* if dst == src do nothing */
|
---|
1134 | if (a == b) {
|
---|
1135 | return MP_OKAY;
|
---|
1136 | }
|
---|
1137 |
|
---|
1138 | /* grow dest */
|
---|
1139 | if (b->alloc < a->used) {
|
---|
1140 | if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
---|
1141 | return res;
|
---|
1142 | }
|
---|
1143 | }
|
---|
1144 |
|
---|
1145 | /* zero b and copy the parameters over */
|
---|
1146 | {
|
---|
1147 | register mp_digit *tmpa, *tmpb;
|
---|
1148 |
|
---|
1149 | /* pointer aliases */
|
---|
1150 |
|
---|
1151 | /* source */
|
---|
1152 | tmpa = a->dp;
|
---|
1153 |
|
---|
1154 | /* destination */
|
---|
1155 | tmpb = b->dp;
|
---|
1156 |
|
---|
1157 | /* copy all the digits */
|
---|
1158 | for (n = 0; n < a->used; n++) {
|
---|
1159 | *tmpb++ = *tmpa++;
|
---|
1160 | }
|
---|
1161 |
|
---|
1162 | /* clear high digits */
|
---|
1163 | for (; n < b->used; n++) {
|
---|
1164 | *tmpb++ = 0;
|
---|
1165 | }
|
---|
1166 | }
|
---|
1167 |
|
---|
1168 | /* copy used count and sign */
|
---|
1169 | b->used = a->used;
|
---|
1170 | b->sign = a->sign;
|
---|
1171 | return MP_OKAY;
|
---|
1172 | }
|
---|
1173 |
|
---|
1174 |
|
---|
1175 | /* shift right a certain amount of digits */
|
---|
1176 | static void mp_rshd (mp_int * a, int b)
|
---|
1177 | {
|
---|
1178 | int x;
|
---|
1179 |
|
---|
1180 | /* if b <= 0 then ignore it */
|
---|
1181 | if (b <= 0) {
|
---|
1182 | return;
|
---|
1183 | }
|
---|
1184 |
|
---|
1185 | /* if b > used then simply zero it and return */
|
---|
1186 | if (a->used <= b) {
|
---|
1187 | mp_zero (a);
|
---|
1188 | return;
|
---|
1189 | }
|
---|
1190 |
|
---|
1191 | {
|
---|
1192 | register mp_digit *bottom, *top;
|
---|
1193 |
|
---|
1194 | /* shift the digits down */
|
---|
1195 |
|
---|
1196 | /* bottom */
|
---|
1197 | bottom = a->dp;
|
---|
1198 |
|
---|
1199 | /* top [offset into digits] */
|
---|
1200 | top = a->dp + b;
|
---|
1201 |
|
---|
1202 | /* this is implemented as a sliding window where
|
---|
1203 | * the window is b-digits long and digits from
|
---|
1204 | * the top of the window are copied to the bottom
|
---|
1205 | *
|
---|
1206 | * e.g.
|
---|
1207 |
|
---|
1208 | b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
|
---|
1209 | /\ | ---->
|
---|
1210 | \-------------------/ ---->
|
---|
1211 | */
|
---|
1212 | for (x = 0; x < (a->used - b); x++) {
|
---|
1213 | *bottom++ = *top++;
|
---|
1214 | }
|
---|
1215 |
|
---|
1216 | /* zero the top digits */
|
---|
1217 | for (; x < a->used; x++) {
|
---|
1218 | *bottom++ = 0;
|
---|
1219 | }
|
---|
1220 | }
|
---|
1221 |
|
---|
1222 | /* remove excess digits */
|
---|
1223 | a->used -= b;
|
---|
1224 | }
|
---|
1225 |
|
---|
1226 |
|
---|
1227 | /* swap the elements of two integers, for cases where you can't simply swap the
|
---|
1228 | * mp_int pointers around
|
---|
1229 | */
|
---|
1230 | static void mp_exch (mp_int * a, mp_int * b)
|
---|
1231 | {
|
---|
1232 | mp_int t;
|
---|
1233 |
|
---|
1234 | t = *a;
|
---|
1235 | *a = *b;
|
---|
1236 | *b = t;
|
---|
1237 | }
|
---|
1238 |
|
---|
1239 |
|
---|
1240 | /* trim unused digits
|
---|
1241 | *
|
---|
1242 | * This is used to ensure that leading zero digits are
|
---|
1243 | * trimed and the leading "used" digit will be non-zero
|
---|
1244 | * Typically very fast. Also fixes the sign if there
|
---|
1245 | * are no more leading digits
|
---|
1246 | */
|
---|
1247 | static void mp_clamp (mp_int * a)
|
---|
1248 | {
|
---|
1249 | /* decrease used while the most significant digit is
|
---|
1250 | * zero.
|
---|
1251 | */
|
---|
1252 | while (a->used > 0 && a->dp[a->used - 1] == 0) {
|
---|
1253 | --(a->used);
|
---|
1254 | }
|
---|
1255 |
|
---|
1256 | /* reset the sign flag if used == 0 */
|
---|
1257 | if (a->used == 0) {
|
---|
1258 | a->sign = MP_ZPOS;
|
---|
1259 | }
|
---|
1260 | }
|
---|
1261 |
|
---|
1262 |
|
---|
1263 | /* grow as required */
|
---|
1264 | static int mp_grow (mp_int * a, int size)
|
---|
1265 | {
|
---|
1266 | int i;
|
---|
1267 | mp_digit *tmp;
|
---|
1268 |
|
---|
1269 | /* if the alloc size is smaller alloc more ram */
|
---|
1270 | if (a->alloc < size) {
|
---|
1271 | /* ensure there are always at least MP_PREC digits extra on top */
|
---|
1272 | size += (MP_PREC * 2) - (size % MP_PREC);
|
---|
1273 |
|
---|
1274 | /* reallocate the array a->dp
|
---|
1275 | *
|
---|
1276 | * We store the return in a temporary variable
|
---|
1277 | * in case the operation failed we don't want
|
---|
1278 | * to overwrite the dp member of a.
|
---|
1279 | */
|
---|
1280 | tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
|
---|
1281 | if (tmp == NULL) {
|
---|
1282 | /* reallocation failed but "a" is still valid [can be freed] */
|
---|
1283 | return MP_MEM;
|
---|
1284 | }
|
---|
1285 |
|
---|
1286 | /* reallocation succeeded so set a->dp */
|
---|
1287 | a->dp = tmp;
|
---|
1288 |
|
---|
1289 | /* zero excess digits */
|
---|
1290 | i = a->alloc;
|
---|
1291 | a->alloc = size;
|
---|
1292 | for (; i < a->alloc; i++) {
|
---|
1293 | a->dp[i] = 0;
|
---|
1294 | }
|
---|
1295 | }
|
---|
1296 | return MP_OKAY;
|
---|
1297 | }
|
---|
1298 |
|
---|
1299 |
|
---|
1300 | #ifdef BN_MP_ABS_C
|
---|
1301 | /* b = |a|
|
---|
1302 | *
|
---|
1303 | * Simple function copies the input and fixes the sign to positive
|
---|
1304 | */
|
---|
1305 | static int mp_abs (mp_int * a, mp_int * b)
|
---|
1306 | {
|
---|
1307 | int res;
|
---|
1308 |
|
---|
1309 | /* copy a to b */
|
---|
1310 | if (a != b) {
|
---|
1311 | if ((res = mp_copy (a, b)) != MP_OKAY) {
|
---|
1312 | return res;
|
---|
1313 | }
|
---|
1314 | }
|
---|
1315 |
|
---|
1316 | /* force the sign of b to positive */
|
---|
1317 | b->sign = MP_ZPOS;
|
---|
1318 |
|
---|
1319 | return MP_OKAY;
|
---|
1320 | }
|
---|
1321 | #endif
|
---|
1322 |
|
---|
1323 |
|
---|
1324 | /* set to a digit */
|
---|
1325 | static void mp_set (mp_int * a, mp_digit b)
|
---|
1326 | {
|
---|
1327 | mp_zero (a);
|
---|
1328 | a->dp[0] = b & MP_MASK;
|
---|
1329 | a->used = (a->dp[0] != 0) ? 1 : 0;
|
---|
1330 | }
|
---|
1331 |
|
---|
1332 |
|
---|
1333 | #ifndef LTM_NO_NEG_EXP
|
---|
1334 | /* b = a/2 */
|
---|
1335 | static int mp_div_2(mp_int * a, mp_int * b)
|
---|
1336 | {
|
---|
1337 | int x, res, oldused;
|
---|
1338 |
|
---|
1339 | /* copy */
|
---|
1340 | if (b->alloc < a->used) {
|
---|
1341 | if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
---|
1342 | return res;
|
---|
1343 | }
|
---|
1344 | }
|
---|
1345 |
|
---|
1346 | oldused = b->used;
|
---|
1347 | b->used = a->used;
|
---|
1348 | {
|
---|
1349 | register mp_digit r, rr, *tmpa, *tmpb;
|
---|
1350 |
|
---|
1351 | /* source alias */
|
---|
1352 | tmpa = a->dp + b->used - 1;
|
---|
1353 |
|
---|
1354 | /* dest alias */
|
---|
1355 | tmpb = b->dp + b->used - 1;
|
---|
1356 |
|
---|
1357 | /* carry */
|
---|
1358 | r = 0;
|
---|
1359 | for (x = b->used - 1; x >= 0; x--) {
|
---|
1360 | /* get the carry for the next iteration */
|
---|
1361 | rr = *tmpa & 1;
|
---|
1362 |
|
---|
1363 | /* shift the current digit, add in carry and store */
|
---|
1364 | *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
|
---|
1365 |
|
---|
1366 | /* forward carry to next iteration */
|
---|
1367 | r = rr;
|
---|
1368 | }
|
---|
1369 |
|
---|
1370 | /* zero excess digits */
|
---|
1371 | tmpb = b->dp + b->used;
|
---|
1372 | for (x = b->used; x < oldused; x++) {
|
---|
1373 | *tmpb++ = 0;
|
---|
1374 | }
|
---|
1375 | }
|
---|
1376 | b->sign = a->sign;
|
---|
1377 | mp_clamp (b);
|
---|
1378 | return MP_OKAY;
|
---|
1379 | }
|
---|
1380 | #endif /* LTM_NO_NEG_EXP */
|
---|
1381 |
|
---|
1382 |
|
---|
1383 | /* shift left by a certain bit count */
|
---|
1384 | static int mp_mul_2d (mp_int * a, int b, mp_int * c)
|
---|
1385 | {
|
---|
1386 | mp_digit d;
|
---|
1387 | int res;
|
---|
1388 |
|
---|
1389 | /* copy */
|
---|
1390 | if (a != c) {
|
---|
1391 | if ((res = mp_copy (a, c)) != MP_OKAY) {
|
---|
1392 | return res;
|
---|
1393 | }
|
---|
1394 | }
|
---|
1395 |
|
---|
1396 | if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
|
---|
1397 | if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
|
---|
1398 | return res;
|
---|
1399 | }
|
---|
1400 | }
|
---|
1401 |
|
---|
1402 | /* shift by as many digits in the bit count */
|
---|
1403 | if (b >= (int)DIGIT_BIT) {
|
---|
1404 | if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
|
---|
1405 | return res;
|
---|
1406 | }
|
---|
1407 | }
|
---|
1408 |
|
---|
1409 | /* shift any bit count < DIGIT_BIT */
|
---|
1410 | d = (mp_digit) (b % DIGIT_BIT);
|
---|
1411 | if (d != 0) {
|
---|
1412 | register mp_digit *tmpc, shift, mask, r, rr;
|
---|
1413 | register int x;
|
---|
1414 |
|
---|
1415 | /* bitmask for carries */
|
---|
1416 | mask = (((mp_digit)1) << d) - 1;
|
---|
1417 |
|
---|
1418 | /* shift for msbs */
|
---|
1419 | shift = DIGIT_BIT - d;
|
---|
1420 |
|
---|
1421 | /* alias */
|
---|
1422 | tmpc = c->dp;
|
---|
1423 |
|
---|
1424 | /* carry */
|
---|
1425 | r = 0;
|
---|
1426 | for (x = 0; x < c->used; x++) {
|
---|
1427 | /* get the higher bits of the current word */
|
---|
1428 | rr = (*tmpc >> shift) & mask;
|
---|
1429 |
|
---|
1430 | /* shift the current word and OR in the carry */
|
---|
1431 | *tmpc = ((*tmpc << d) | r) & MP_MASK;
|
---|
1432 | ++tmpc;
|
---|
1433 |
|
---|
1434 | /* set the carry to the carry bits of the current word */
|
---|
1435 | r = rr;
|
---|
1436 | }
|
---|
1437 |
|
---|
1438 | /* set final carry */
|
---|
1439 | if (r != 0) {
|
---|
1440 | c->dp[(c->used)++] = r;
|
---|
1441 | }
|
---|
1442 | }
|
---|
1443 | mp_clamp (c);
|
---|
1444 | return MP_OKAY;
|
---|
1445 | }
|
---|
1446 |
|
---|
1447 |
|
---|
1448 | #ifdef BN_MP_INIT_MULTI_C
|
---|
1449 | static int mp_init_multi(mp_int *mp, ...)
|
---|
1450 | {
|
---|
1451 | mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
|
---|
1452 | int n = 0; /* Number of ok inits */
|
---|
1453 | mp_int* cur_arg = mp;
|
---|
1454 | va_list args;
|
---|
1455 |
|
---|
1456 | va_start(args, mp); /* init args to next argument from caller */
|
---|
1457 | while (cur_arg != NULL) {
|
---|
1458 | if (mp_init(cur_arg) != MP_OKAY) {
|
---|
1459 | /* Oops - error! Back-track and mp_clear what we already
|
---|
1460 | succeeded in init-ing, then return error.
|
---|
1461 | */
|
---|
1462 | va_list clean_args;
|
---|
1463 |
|
---|
1464 | /* end the current list */
|
---|
1465 | va_end(args);
|
---|
1466 |
|
---|
1467 | /* now start cleaning up */
|
---|
1468 | cur_arg = mp;
|
---|
1469 | va_start(clean_args, mp);
|
---|
1470 | while (n--) {
|
---|
1471 | mp_clear(cur_arg);
|
---|
1472 | cur_arg = va_arg(clean_args, mp_int*);
|
---|
1473 | }
|
---|
1474 | va_end(clean_args);
|
---|
1475 | res = MP_MEM;
|
---|
1476 | break;
|
---|
1477 | }
|
---|
1478 | n++;
|
---|
1479 | cur_arg = va_arg(args, mp_int*);
|
---|
1480 | }
|
---|
1481 | va_end(args);
|
---|
1482 | return res; /* Assumed ok, if error flagged above. */
|
---|
1483 | }
|
---|
1484 | #endif
|
---|
1485 |
|
---|
1486 |
|
---|
1487 | #ifdef BN_MP_CLEAR_MULTI_C
|
---|
1488 | static void mp_clear_multi(mp_int *mp, ...)
|
---|
1489 | {
|
---|
1490 | mp_int* next_mp = mp;
|
---|
1491 | va_list args;
|
---|
1492 | va_start(args, mp);
|
---|
1493 | while (next_mp != NULL) {
|
---|
1494 | mp_clear(next_mp);
|
---|
1495 | next_mp = va_arg(args, mp_int*);
|
---|
1496 | }
|
---|
1497 | va_end(args);
|
---|
1498 | }
|
---|
1499 | #endif
|
---|
1500 |
|
---|
1501 |
|
---|
1502 | /* shift left a certain amount of digits */
|
---|
1503 | static int mp_lshd (mp_int * a, int b)
|
---|
1504 | {
|
---|
1505 | int x, res;
|
---|
1506 |
|
---|
1507 | /* if its less than zero return */
|
---|
1508 | if (b <= 0) {
|
---|
1509 | return MP_OKAY;
|
---|
1510 | }
|
---|
1511 |
|
---|
1512 | /* grow to fit the new digits */
|
---|
1513 | if (a->alloc < a->used + b) {
|
---|
1514 | if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
|
---|
1515 | return res;
|
---|
1516 | }
|
---|
1517 | }
|
---|
1518 |
|
---|
1519 | {
|
---|
1520 | register mp_digit *top, *bottom;
|
---|
1521 |
|
---|
1522 | /* increment the used by the shift amount then copy upwards */
|
---|
1523 | a->used += b;
|
---|
1524 |
|
---|
1525 | /* top */
|
---|
1526 | top = a->dp + a->used - 1;
|
---|
1527 |
|
---|
1528 | /* base */
|
---|
1529 | bottom = a->dp + a->used - 1 - b;
|
---|
1530 |
|
---|
1531 | /* much like mp_rshd this is implemented using a sliding window
|
---|
1532 | * except the window goes the otherway around. Copying from
|
---|
1533 | * the bottom to the top. see bn_mp_rshd.c for more info.
|
---|
1534 | */
|
---|
1535 | for (x = a->used - 1; x >= b; x--) {
|
---|
1536 | *top-- = *bottom--;
|
---|
1537 | }
|
---|
1538 |
|
---|
1539 | /* zero the lower digits */
|
---|
1540 | top = a->dp;
|
---|
1541 | for (x = 0; x < b; x++) {
|
---|
1542 | *top++ = 0;
|
---|
1543 | }
|
---|
1544 | }
|
---|
1545 | return MP_OKAY;
|
---|
1546 | }
|
---|
1547 |
|
---|
1548 |
|
---|
1549 | /* returns the number of bits in an int */
|
---|
1550 | static int mp_count_bits (mp_int * a)
|
---|
1551 | {
|
---|
1552 | int r;
|
---|
1553 | mp_digit q;
|
---|
1554 |
|
---|
1555 | /* shortcut */
|
---|
1556 | if (a->used == 0) {
|
---|
1557 | return 0;
|
---|
1558 | }
|
---|
1559 |
|
---|
1560 | /* get number of digits and add that */
|
---|
1561 | r = (a->used - 1) * DIGIT_BIT;
|
---|
1562 |
|
---|
1563 | /* take the last digit and count the bits in it */
|
---|
1564 | q = a->dp[a->used - 1];
|
---|
1565 | while (q > ((mp_digit) 0)) {
|
---|
1566 | ++r;
|
---|
1567 | q >>= ((mp_digit) 1);
|
---|
1568 | }
|
---|
1569 | return r;
|
---|
1570 | }
|
---|
1571 |
|
---|
1572 |
|
---|
1573 | /* calc a value mod 2**b */
|
---|
1574 | static int mp_mod_2d (mp_int * a, int b, mp_int * c)
|
---|
1575 | {
|
---|
1576 | int x, res;
|
---|
1577 |
|
---|
1578 | /* if b is <= 0 then zero the int */
|
---|
1579 | if (b <= 0) {
|
---|
1580 | mp_zero (c);
|
---|
1581 | return MP_OKAY;
|
---|
1582 | }
|
---|
1583 |
|
---|
1584 | /* if the modulus is larger than the value than return */
|
---|
1585 | if (b >= (int) (a->used * DIGIT_BIT)) {
|
---|
1586 | res = mp_copy (a, c);
|
---|
1587 | return res;
|
---|
1588 | }
|
---|
1589 |
|
---|
1590 | /* copy */
|
---|
1591 | if ((res = mp_copy (a, c)) != MP_OKAY) {
|
---|
1592 | return res;
|
---|
1593 | }
|
---|
1594 |
|
---|
1595 | /* zero digits above the last digit of the modulus */
|
---|
1596 | for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
|
---|
1597 | c->dp[x] = 0;
|
---|
1598 | }
|
---|
1599 | /* clear the digit that is not completely outside/inside the modulus */
|
---|
1600 | c->dp[b / DIGIT_BIT] &=
|
---|
1601 | (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
|
---|
1602 | mp_clamp (c);
|
---|
1603 | return MP_OKAY;
|
---|
1604 | }
|
---|
1605 |
|
---|
1606 |
|
---|
1607 | #ifdef BN_MP_DIV_SMALL
|
---|
1608 |
|
---|
1609 | /* slower bit-bang division... also smaller */
|
---|
1610 | static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
---|
1611 | {
|
---|
1612 | mp_int ta, tb, tq, q;
|
---|
1613 | int res, n, n2;
|
---|
1614 |
|
---|
1615 | /* is divisor zero ? */
|
---|
1616 | if (mp_iszero (b) == 1) {
|
---|
1617 | return MP_VAL;
|
---|
1618 | }
|
---|
1619 |
|
---|
1620 | /* if a < b then q=0, r = a */
|
---|
1621 | if (mp_cmp_mag (a, b) == MP_LT) {
|
---|
1622 | if (d != NULL) {
|
---|
1623 | res = mp_copy (a, d);
|
---|
1624 | } else {
|
---|
1625 | res = MP_OKAY;
|
---|
1626 | }
|
---|
1627 | if (c != NULL) {
|
---|
1628 | mp_zero (c);
|
---|
1629 | }
|
---|
1630 | return res;
|
---|
1631 | }
|
---|
1632 |
|
---|
1633 | /* init our temps */
|
---|
1634 | if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
|
---|
1635 | return res;
|
---|
1636 | }
|
---|
1637 |
|
---|
1638 |
|
---|
1639 | mp_set(&tq, 1);
|
---|
1640 | n = mp_count_bits(a) - mp_count_bits(b);
|
---|
1641 | if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
|
---|
1642 | ((res = mp_abs(b, &tb)) != MP_OKAY) ||
|
---|
1643 | ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
|
---|
1644 | ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
|
---|
1645 | goto LBL_ERR;
|
---|
1646 | }
|
---|
1647 |
|
---|
1648 | while (n-- >= 0) {
|
---|
1649 | if (mp_cmp(&tb, &ta) != MP_GT) {
|
---|
1650 | if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
|
---|
1651 | ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
|
---|
1652 | goto LBL_ERR;
|
---|
1653 | }
|
---|
1654 | }
|
---|
1655 | if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
|
---|
1656 | ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
|
---|
1657 | goto LBL_ERR;
|
---|
1658 | }
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 | /* now q == quotient and ta == remainder */
|
---|
1662 | n = a->sign;
|
---|
1663 | n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
|
---|
1664 | if (c != NULL) {
|
---|
1665 | mp_exch(c, &q);
|
---|
1666 | c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
|
---|
1667 | }
|
---|
1668 | if (d != NULL) {
|
---|
1669 | mp_exch(d, &ta);
|
---|
1670 | d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
|
---|
1671 | }
|
---|
1672 | LBL_ERR:
|
---|
1673 | mp_clear_multi(&ta, &tb, &tq, &q, NULL);
|
---|
1674 | return res;
|
---|
1675 | }
|
---|
1676 |
|
---|
1677 | #else
|
---|
1678 |
|
---|
1679 | /* integer signed division.
|
---|
1680 | * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
|
---|
1681 | * HAC pp.598 Algorithm 14.20
|
---|
1682 | *
|
---|
1683 | * Note that the description in HAC is horribly
|
---|
1684 | * incomplete. For example, it doesn't consider
|
---|
1685 | * the case where digits are removed from 'x' in
|
---|
1686 | * the inner loop. It also doesn't consider the
|
---|
1687 | * case that y has fewer than three digits, etc..
|
---|
1688 | *
|
---|
1689 | * The overall algorithm is as described as
|
---|
1690 | * 14.20 from HAC but fixed to treat these cases.
|
---|
1691 | */
|
---|
1692 | static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
---|
1693 | {
|
---|
1694 | mp_int q, x, y, t1, t2;
|
---|
1695 | int res, n, t, i, norm, neg;
|
---|
1696 |
|
---|
1697 | /* is divisor zero ? */
|
---|
1698 | if (mp_iszero (b) == 1) {
|
---|
1699 | return MP_VAL;
|
---|
1700 | }
|
---|
1701 |
|
---|
1702 | /* if a < b then q=0, r = a */
|
---|
1703 | if (mp_cmp_mag (a, b) == MP_LT) {
|
---|
1704 | if (d != NULL) {
|
---|
1705 | res = mp_copy (a, d);
|
---|
1706 | } else {
|
---|
1707 | res = MP_OKAY;
|
---|
1708 | }
|
---|
1709 | if (c != NULL) {
|
---|
1710 | mp_zero (c);
|
---|
1711 | }
|
---|
1712 | return res;
|
---|
1713 | }
|
---|
1714 |
|
---|
1715 | if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
|
---|
1716 | return res;
|
---|
1717 | }
|
---|
1718 | q.used = a->used + 2;
|
---|
1719 |
|
---|
1720 | if ((res = mp_init (&t1)) != MP_OKAY) {
|
---|
1721 | goto LBL_Q;
|
---|
1722 | }
|
---|
1723 |
|
---|
1724 | if ((res = mp_init (&t2)) != MP_OKAY) {
|
---|
1725 | goto LBL_T1;
|
---|
1726 | }
|
---|
1727 |
|
---|
1728 | if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
|
---|
1729 | goto LBL_T2;
|
---|
1730 | }
|
---|
1731 |
|
---|
1732 | if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
|
---|
1733 | goto LBL_X;
|
---|
1734 | }
|
---|
1735 |
|
---|
1736 | /* fix the sign */
|
---|
1737 | neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
---|
1738 | x.sign = y.sign = MP_ZPOS;
|
---|
1739 |
|
---|
1740 | /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
|
---|
1741 | norm = mp_count_bits(&y) % DIGIT_BIT;
|
---|
1742 | if (norm < (int)(DIGIT_BIT-1)) {
|
---|
1743 | norm = (DIGIT_BIT-1) - norm;
|
---|
1744 | if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
|
---|
1745 | goto LBL_Y;
|
---|
1746 | }
|
---|
1747 | if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
|
---|
1748 | goto LBL_Y;
|
---|
1749 | }
|
---|
1750 | } else {
|
---|
1751 | norm = 0;
|
---|
1752 | }
|
---|
1753 |
|
---|
1754 | /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
|
---|
1755 | n = x.used - 1;
|
---|
1756 | t = y.used - 1;
|
---|
1757 |
|
---|
1758 | /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
|
---|
1759 | if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
|
---|
1760 | goto LBL_Y;
|
---|
1761 | }
|
---|
1762 |
|
---|
1763 | while (mp_cmp (&x, &y) != MP_LT) {
|
---|
1764 | ++(q.dp[n - t]);
|
---|
1765 | if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
|
---|
1766 | goto LBL_Y;
|
---|
1767 | }
|
---|
1768 | }
|
---|
1769 |
|
---|
1770 | /* reset y by shifting it back down */
|
---|
1771 | mp_rshd (&y, n - t);
|
---|
1772 |
|
---|
1773 | /* step 3. for i from n down to (t + 1) */
|
---|
1774 | for (i = n; i >= (t + 1); i--) {
|
---|
1775 | if (i > x.used) {
|
---|
1776 | continue;
|
---|
1777 | }
|
---|
1778 |
|
---|
1779 | /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
|
---|
1780 | * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
|
---|
1781 | if (x.dp[i] == y.dp[t]) {
|
---|
1782 | q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
|
---|
1783 | } else {
|
---|
1784 | mp_word tmp;
|
---|
1785 | tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
|
---|
1786 | tmp |= ((mp_word) x.dp[i - 1]);
|
---|
1787 | tmp /= ((mp_word) y.dp[t]);
|
---|
1788 | if (tmp > (mp_word) MP_MASK)
|
---|
1789 | tmp = MP_MASK;
|
---|
1790 | q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
|
---|
1791 | }
|
---|
1792 |
|
---|
1793 | /* while (q{i-t-1} * (yt * b + y{t-1})) >
|
---|
1794 | xi * b**2 + xi-1 * b + xi-2
|
---|
1795 |
|
---|
1796 | do q{i-t-1} -= 1;
|
---|
1797 | */
|
---|
1798 | q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
|
---|
1799 | do {
|
---|
1800 | q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
|
---|
1801 |
|
---|
1802 | /* find left hand */
|
---|
1803 | mp_zero (&t1);
|
---|
1804 | t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
|
---|
1805 | t1.dp[1] = y.dp[t];
|
---|
1806 | t1.used = 2;
|
---|
1807 | if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
---|
1808 | goto LBL_Y;
|
---|
1809 | }
|
---|
1810 |
|
---|
1811 | /* find right hand */
|
---|
1812 | t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
|
---|
1813 | t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
|
---|
1814 | t2.dp[2] = x.dp[i];
|
---|
1815 | t2.used = 3;
|
---|
1816 | } while (mp_cmp_mag(&t1, &t2) == MP_GT);
|
---|
1817 |
|
---|
1818 | /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
|
---|
1819 | if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
---|
1820 | goto LBL_Y;
|
---|
1821 | }
|
---|
1822 |
|
---|
1823 | if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
---|
1824 | goto LBL_Y;
|
---|
1825 | }
|
---|
1826 |
|
---|
1827 | if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
|
---|
1828 | goto LBL_Y;
|
---|
1829 | }
|
---|
1830 |
|
---|
1831 | /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
|
---|
1832 | if (x.sign == MP_NEG) {
|
---|
1833 | if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
|
---|
1834 | goto LBL_Y;
|
---|
1835 | }
|
---|
1836 | if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
---|
1837 | goto LBL_Y;
|
---|
1838 | }
|
---|
1839 | if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
|
---|
1840 | goto LBL_Y;
|
---|
1841 | }
|
---|
1842 |
|
---|
1843 | q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
|
---|
1844 | }
|
---|
1845 | }
|
---|
1846 |
|
---|
1847 | /* now q is the quotient and x is the remainder
|
---|
1848 | * [which we have to normalize]
|
---|
1849 | */
|
---|
1850 |
|
---|
1851 | /* get sign before writing to c */
|
---|
1852 | x.sign = x.used == 0 ? MP_ZPOS : a->sign;
|
---|
1853 |
|
---|
1854 | if (c != NULL) {
|
---|
1855 | mp_clamp (&q);
|
---|
1856 | mp_exch (&q, c);
|
---|
1857 | c->sign = neg;
|
---|
1858 | }
|
---|
1859 |
|
---|
1860 | if (d != NULL) {
|
---|
1861 | mp_div_2d (&x, norm, &x, NULL);
|
---|
1862 | mp_exch (&x, d);
|
---|
1863 | }
|
---|
1864 |
|
---|
1865 | res = MP_OKAY;
|
---|
1866 |
|
---|
1867 | LBL_Y:mp_clear (&y);
|
---|
1868 | LBL_X:mp_clear (&x);
|
---|
1869 | LBL_T2:mp_clear (&t2);
|
---|
1870 | LBL_T1:mp_clear (&t1);
|
---|
1871 | LBL_Q:mp_clear (&q);
|
---|
1872 | return res;
|
---|
1873 | }
|
---|
1874 |
|
---|
1875 | #endif
|
---|
1876 |
|
---|
1877 |
|
---|
1878 | #ifdef MP_LOW_MEM
|
---|
1879 | #define TAB_SIZE 32
|
---|
1880 | #else
|
---|
1881 | #define TAB_SIZE 256
|
---|
1882 | #endif
|
---|
1883 |
|
---|
1884 | static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
---|
1885 | {
|
---|
1886 | mp_int M[TAB_SIZE], res, mu;
|
---|
1887 | mp_digit buf;
|
---|
1888 | int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
---|
1889 | int (*redux)(mp_int*,mp_int*,mp_int*);
|
---|
1890 |
|
---|
1891 | /* find window size */
|
---|
1892 | x = mp_count_bits (X);
|
---|
1893 | if (x <= 7) {
|
---|
1894 | winsize = 2;
|
---|
1895 | } else if (x <= 36) {
|
---|
1896 | winsize = 3;
|
---|
1897 | } else if (x <= 140) {
|
---|
1898 | winsize = 4;
|
---|
1899 | } else if (x <= 450) {
|
---|
1900 | winsize = 5;
|
---|
1901 | } else if (x <= 1303) {
|
---|
1902 | winsize = 6;
|
---|
1903 | } else if (x <= 3529) {
|
---|
1904 | winsize = 7;
|
---|
1905 | } else {
|
---|
1906 | winsize = 8;
|
---|
1907 | }
|
---|
1908 |
|
---|
1909 | #ifdef MP_LOW_MEM
|
---|
1910 | if (winsize > 5) {
|
---|
1911 | winsize = 5;
|
---|
1912 | }
|
---|
1913 | #endif
|
---|
1914 |
|
---|
1915 | /* init M array */
|
---|
1916 | /* init first cell */
|
---|
1917 | if ((err = mp_init(&M[1])) != MP_OKAY) {
|
---|
1918 | return err;
|
---|
1919 | }
|
---|
1920 |
|
---|
1921 | /* now init the second half of the array */
|
---|
1922 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
---|
1923 | if ((err = mp_init(&M[x])) != MP_OKAY) {
|
---|
1924 | for (y = 1<<(winsize-1); y < x; y++) {
|
---|
1925 | mp_clear (&M[y]);
|
---|
1926 | }
|
---|
1927 | mp_clear(&M[1]);
|
---|
1928 | return err;
|
---|
1929 | }
|
---|
1930 | }
|
---|
1931 |
|
---|
1932 | /* create mu, used for Barrett reduction */
|
---|
1933 | if ((err = mp_init (&mu)) != MP_OKAY) {
|
---|
1934 | goto LBL_M;
|
---|
1935 | }
|
---|
1936 |
|
---|
1937 | if (redmode == 0) {
|
---|
1938 | if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
|
---|
1939 | goto LBL_MU;
|
---|
1940 | }
|
---|
1941 | redux = mp_reduce;
|
---|
1942 | } else {
|
---|
1943 | if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
|
---|
1944 | goto LBL_MU;
|
---|
1945 | }
|
---|
1946 | redux = mp_reduce_2k_l;
|
---|
1947 | }
|
---|
1948 |
|
---|
1949 | /* create M table
|
---|
1950 | *
|
---|
1951 | * The M table contains powers of the base,
|
---|
1952 | * e.g. M[x] = G**x mod P
|
---|
1953 | *
|
---|
1954 | * The first half of the table is not
|
---|
1955 | * computed though accept for M[0] and M[1]
|
---|
1956 | */
|
---|
1957 | if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
|
---|
1958 | goto LBL_MU;
|
---|
1959 | }
|
---|
1960 |
|
---|
1961 | /* compute the value at M[1<<(winsize-1)] by squaring
|
---|
1962 | * M[1] (winsize-1) times
|
---|
1963 | */
|
---|
1964 | if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
---|
1965 | goto LBL_MU;
|
---|
1966 | }
|
---|
1967 |
|
---|
1968 | for (x = 0; x < (winsize - 1); x++) {
|
---|
1969 | /* square it */
|
---|
1970 | if ((err = mp_sqr (&M[1 << (winsize - 1)],
|
---|
1971 | &M[1 << (winsize - 1)])) != MP_OKAY) {
|
---|
1972 | goto LBL_MU;
|
---|
1973 | }
|
---|
1974 |
|
---|
1975 | /* reduce modulo P */
|
---|
1976 | if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
|
---|
1977 | goto LBL_MU;
|
---|
1978 | }
|
---|
1979 | }
|
---|
1980 |
|
---|
1981 | /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
|
---|
1982 | * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
|
---|
1983 | */
|
---|
1984 | for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
---|
1985 | if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
---|
1986 | goto LBL_MU;
|
---|
1987 | }
|
---|
1988 | if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
|
---|
1989 | goto LBL_MU;
|
---|
1990 | }
|
---|
1991 | }
|
---|
1992 |
|
---|
1993 | /* setup result */
|
---|
1994 | if ((err = mp_init (&res)) != MP_OKAY) {
|
---|
1995 | goto LBL_MU;
|
---|
1996 | }
|
---|
1997 | mp_set (&res, 1);
|
---|
1998 |
|
---|
1999 | /* set initial mode and bit cnt */
|
---|
2000 | mode = 0;
|
---|
2001 | bitcnt = 1;
|
---|
2002 | buf = 0;
|
---|
2003 | digidx = X->used - 1;
|
---|
2004 | bitcpy = 0;
|
---|
2005 | bitbuf = 0;
|
---|
2006 |
|
---|
2007 | for (;;) {
|
---|
2008 | /* grab next digit as required */
|
---|
2009 | if (--bitcnt == 0) {
|
---|
2010 | /* if digidx == -1 we are out of digits */
|
---|
2011 | if (digidx == -1) {
|
---|
2012 | break;
|
---|
2013 | }
|
---|
2014 | /* read next digit and reset the bitcnt */
|
---|
2015 | buf = X->dp[digidx--];
|
---|
2016 | bitcnt = (int) DIGIT_BIT;
|
---|
2017 | }
|
---|
2018 |
|
---|
2019 | /* grab the next msb from the exponent */
|
---|
2020 | y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
|
---|
2021 | buf <<= (mp_digit)1;
|
---|
2022 |
|
---|
2023 | /* if the bit is zero and mode == 0 then we ignore it
|
---|
2024 | * These represent the leading zero bits before the first 1 bit
|
---|
2025 | * in the exponent. Technically this opt is not required but it
|
---|
2026 | * does lower the # of trivial squaring/reductions used
|
---|
2027 | */
|
---|
2028 | if (mode == 0 && y == 0) {
|
---|
2029 | continue;
|
---|
2030 | }
|
---|
2031 |
|
---|
2032 | /* if the bit is zero and mode == 1 then we square */
|
---|
2033 | if (mode == 1 && y == 0) {
|
---|
2034 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
2035 | goto LBL_RES;
|
---|
2036 | }
|
---|
2037 | if ((err = redux (&res, P, &mu)) != MP_OKAY) {
|
---|
2038 | goto LBL_RES;
|
---|
2039 | }
|
---|
2040 | continue;
|
---|
2041 | }
|
---|
2042 |
|
---|
2043 | /* else we add it to the window */
|
---|
2044 | bitbuf |= (y << (winsize - ++bitcpy));
|
---|
2045 | mode = 2;
|
---|
2046 |
|
---|
2047 | if (bitcpy == winsize) {
|
---|
2048 | /* ok window is filled so square as required and multiply */
|
---|
2049 | /* square first */
|
---|
2050 | for (x = 0; x < winsize; x++) {
|
---|
2051 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
2052 | goto LBL_RES;
|
---|
2053 | }
|
---|
2054 | if ((err = redux (&res, P, &mu)) != MP_OKAY) {
|
---|
2055 | goto LBL_RES;
|
---|
2056 | }
|
---|
2057 | }
|
---|
2058 |
|
---|
2059 | /* then multiply */
|
---|
2060 | if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
---|
2061 | goto LBL_RES;
|
---|
2062 | }
|
---|
2063 | if ((err = redux (&res, P, &mu)) != MP_OKAY) {
|
---|
2064 | goto LBL_RES;
|
---|
2065 | }
|
---|
2066 |
|
---|
2067 | /* empty window and reset */
|
---|
2068 | bitcpy = 0;
|
---|
2069 | bitbuf = 0;
|
---|
2070 | mode = 1;
|
---|
2071 | }
|
---|
2072 | }
|
---|
2073 |
|
---|
2074 | /* if bits remain then square/multiply */
|
---|
2075 | if (mode == 2 && bitcpy > 0) {
|
---|
2076 | /* square then multiply if the bit is set */
|
---|
2077 | for (x = 0; x < bitcpy; x++) {
|
---|
2078 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
2079 | goto LBL_RES;
|
---|
2080 | }
|
---|
2081 | if ((err = redux (&res, P, &mu)) != MP_OKAY) {
|
---|
2082 | goto LBL_RES;
|
---|
2083 | }
|
---|
2084 |
|
---|
2085 | bitbuf <<= 1;
|
---|
2086 | if ((bitbuf & (1 << winsize)) != 0) {
|
---|
2087 | /* then multiply */
|
---|
2088 | if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
---|
2089 | goto LBL_RES;
|
---|
2090 | }
|
---|
2091 | if ((err = redux (&res, P, &mu)) != MP_OKAY) {
|
---|
2092 | goto LBL_RES;
|
---|
2093 | }
|
---|
2094 | }
|
---|
2095 | }
|
---|
2096 | }
|
---|
2097 |
|
---|
2098 | mp_exch (&res, Y);
|
---|
2099 | err = MP_OKAY;
|
---|
2100 | LBL_RES:mp_clear (&res);
|
---|
2101 | LBL_MU:mp_clear (&mu);
|
---|
2102 | LBL_M:
|
---|
2103 | mp_clear(&M[1]);
|
---|
2104 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
---|
2105 | mp_clear (&M[x]);
|
---|
2106 | }
|
---|
2107 | return err;
|
---|
2108 | }
|
---|
2109 |
|
---|
2110 |
|
---|
2111 | /* computes b = a*a */
|
---|
2112 | static int mp_sqr (mp_int * a, mp_int * b)
|
---|
2113 | {
|
---|
2114 | int res;
|
---|
2115 |
|
---|
2116 | #ifdef BN_MP_TOOM_SQR_C
|
---|
2117 | /* use Toom-Cook? */
|
---|
2118 | if (a->used >= TOOM_SQR_CUTOFF) {
|
---|
2119 | res = mp_toom_sqr(a, b);
|
---|
2120 | /* Karatsuba? */
|
---|
2121 | } else
|
---|
2122 | #endif
|
---|
2123 | #ifdef BN_MP_KARATSUBA_SQR_C
|
---|
2124 | if (a->used >= KARATSUBA_SQR_CUTOFF) {
|
---|
2125 | res = mp_karatsuba_sqr (a, b);
|
---|
2126 | } else
|
---|
2127 | #endif
|
---|
2128 | {
|
---|
2129 | #ifdef BN_FAST_S_MP_SQR_C
|
---|
2130 | /* can we use the fast comba multiplier? */
|
---|
2131 | if ((a->used * 2 + 1) < MP_WARRAY &&
|
---|
2132 | a->used <
|
---|
2133 | (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
|
---|
2134 | res = fast_s_mp_sqr (a, b);
|
---|
2135 | } else
|
---|
2136 | #endif
|
---|
2137 | #ifdef BN_S_MP_SQR_C
|
---|
2138 | res = s_mp_sqr (a, b);
|
---|
2139 | #else
|
---|
2140 | #error mp_sqr could fail
|
---|
2141 | res = MP_VAL;
|
---|
2142 | #endif
|
---|
2143 | }
|
---|
2144 | b->sign = MP_ZPOS;
|
---|
2145 | return res;
|
---|
2146 | }
|
---|
2147 |
|
---|
2148 |
|
---|
2149 | /* reduces a modulo n where n is of the form 2**p - d
|
---|
2150 | This differs from reduce_2k since "d" can be larger
|
---|
2151 | than a single digit.
|
---|
2152 | */
|
---|
2153 | static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
|
---|
2154 | {
|
---|
2155 | mp_int q;
|
---|
2156 | int p, res;
|
---|
2157 |
|
---|
2158 | if ((res = mp_init(&q)) != MP_OKAY) {
|
---|
2159 | return res;
|
---|
2160 | }
|
---|
2161 |
|
---|
2162 | p = mp_count_bits(n);
|
---|
2163 | top:
|
---|
2164 | /* q = a/2**p, a = a mod 2**p */
|
---|
2165 | if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
|
---|
2166 | goto ERR;
|
---|
2167 | }
|
---|
2168 |
|
---|
2169 | /* q = q * d */
|
---|
2170 | if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
|
---|
2171 | goto ERR;
|
---|
2172 | }
|
---|
2173 |
|
---|
2174 | /* a = a + q */
|
---|
2175 | if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
|
---|
2176 | goto ERR;
|
---|
2177 | }
|
---|
2178 |
|
---|
2179 | if (mp_cmp_mag(a, n) != MP_LT) {
|
---|
2180 | s_mp_sub(a, n, a);
|
---|
2181 | goto top;
|
---|
2182 | }
|
---|
2183 |
|
---|
2184 | ERR:
|
---|
2185 | mp_clear(&q);
|
---|
2186 | return res;
|
---|
2187 | }
|
---|
2188 |
|
---|
2189 |
|
---|
2190 | /* determines the setup value */
|
---|
2191 | static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
|
---|
2192 | {
|
---|
2193 | int res;
|
---|
2194 | mp_int tmp;
|
---|
2195 |
|
---|
2196 | if ((res = mp_init(&tmp)) != MP_OKAY) {
|
---|
2197 | return res;
|
---|
2198 | }
|
---|
2199 |
|
---|
2200 | if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
|
---|
2201 | goto ERR;
|
---|
2202 | }
|
---|
2203 |
|
---|
2204 | if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
|
---|
2205 | goto ERR;
|
---|
2206 | }
|
---|
2207 |
|
---|
2208 | ERR:
|
---|
2209 | mp_clear(&tmp);
|
---|
2210 | return res;
|
---|
2211 | }
|
---|
2212 |
|
---|
2213 |
|
---|
2214 | /* computes a = 2**b
|
---|
2215 | *
|
---|
2216 | * Simple algorithm which zeroes the int, grows it then just sets one bit
|
---|
2217 | * as required.
|
---|
2218 | */
|
---|
2219 | static int mp_2expt (mp_int * a, int b)
|
---|
2220 | {
|
---|
2221 | int res;
|
---|
2222 |
|
---|
2223 | /* zero a as per default */
|
---|
2224 | mp_zero (a);
|
---|
2225 |
|
---|
2226 | /* grow a to accommodate the single bit */
|
---|
2227 | if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
|
---|
2228 | return res;
|
---|
2229 | }
|
---|
2230 |
|
---|
2231 | /* set the used count of where the bit will go */
|
---|
2232 | a->used = b / DIGIT_BIT + 1;
|
---|
2233 |
|
---|
2234 | /* put the single bit in its place */
|
---|
2235 | a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
|
---|
2236 |
|
---|
2237 | return MP_OKAY;
|
---|
2238 | }
|
---|
2239 |
|
---|
2240 |
|
---|
2241 | /* pre-calculate the value required for Barrett reduction
|
---|
2242 | * For a given modulus "b" it calulates the value required in "a"
|
---|
2243 | */
|
---|
2244 | static int mp_reduce_setup (mp_int * a, mp_int * b)
|
---|
2245 | {
|
---|
2246 | int res;
|
---|
2247 |
|
---|
2248 | if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
|
---|
2249 | return res;
|
---|
2250 | }
|
---|
2251 | return mp_div (a, b, a, NULL);
|
---|
2252 | }
|
---|
2253 |
|
---|
2254 |
|
---|
2255 | /* reduces x mod m, assumes 0 < x < m**2, mu is
|
---|
2256 | * precomputed via mp_reduce_setup.
|
---|
2257 | * From HAC pp.604 Algorithm 14.42
|
---|
2258 | */
|
---|
2259 | static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
|
---|
2260 | {
|
---|
2261 | mp_int q;
|
---|
2262 | int res, um = m->used;
|
---|
2263 |
|
---|
2264 | /* q = x */
|
---|
2265 | if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
|
---|
2266 | return res;
|
---|
2267 | }
|
---|
2268 |
|
---|
2269 | /* q1 = x / b**(k-1) */
|
---|
2270 | mp_rshd (&q, um - 1);
|
---|
2271 |
|
---|
2272 | /* according to HAC this optimization is ok */
|
---|
2273 | if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
|
---|
2274 | if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
|
---|
2275 | goto CLEANUP;
|
---|
2276 | }
|
---|
2277 | } else {
|
---|
2278 | #ifdef BN_S_MP_MUL_HIGH_DIGS_C
|
---|
2279 | if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
|
---|
2280 | goto CLEANUP;
|
---|
2281 | }
|
---|
2282 | #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
|
---|
2283 | if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
|
---|
2284 | goto CLEANUP;
|
---|
2285 | }
|
---|
2286 | #else
|
---|
2287 | {
|
---|
2288 | #error mp_reduce would always fail
|
---|
2289 | res = MP_VAL;
|
---|
2290 | goto CLEANUP;
|
---|
2291 | }
|
---|
2292 | #endif
|
---|
2293 | }
|
---|
2294 |
|
---|
2295 | /* q3 = q2 / b**(k+1) */
|
---|
2296 | mp_rshd (&q, um + 1);
|
---|
2297 |
|
---|
2298 | /* x = x mod b**(k+1), quick (no division) */
|
---|
2299 | if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
|
---|
2300 | goto CLEANUP;
|
---|
2301 | }
|
---|
2302 |
|
---|
2303 | /* q = q * m mod b**(k+1), quick (no division) */
|
---|
2304 | if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
|
---|
2305 | goto CLEANUP;
|
---|
2306 | }
|
---|
2307 |
|
---|
2308 | /* x = x - q */
|
---|
2309 | if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
|
---|
2310 | goto CLEANUP;
|
---|
2311 | }
|
---|
2312 |
|
---|
2313 | /* If x < 0, add b**(k+1) to it */
|
---|
2314 | if (mp_cmp_d (x, 0) == MP_LT) {
|
---|
2315 | mp_set (&q, 1);
|
---|
2316 | if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) {
|
---|
2317 | goto CLEANUP;
|
---|
2318 | }
|
---|
2319 | if ((res = mp_add (x, &q, x)) != MP_OKAY) {
|
---|
2320 | goto CLEANUP;
|
---|
2321 | }
|
---|
2322 | }
|
---|
2323 |
|
---|
2324 | /* Back off if it's too big */
|
---|
2325 | while (mp_cmp (x, m) != MP_LT) {
|
---|
2326 | if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
|
---|
2327 | goto CLEANUP;
|
---|
2328 | }
|
---|
2329 | }
|
---|
2330 |
|
---|
2331 | CLEANUP:
|
---|
2332 | mp_clear (&q);
|
---|
2333 |
|
---|
2334 | return res;
|
---|
2335 | }
|
---|
2336 |
|
---|
2337 |
|
---|
2338 | /* multiplies |a| * |b| and only computes up to digs digits of result
|
---|
2339 | * HAC pp. 595, Algorithm 14.12 Modified so you can control how
|
---|
2340 | * many digits of output are created.
|
---|
2341 | */
|
---|
2342 | static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
---|
2343 | {
|
---|
2344 | mp_int t;
|
---|
2345 | int res, pa, pb, ix, iy;
|
---|
2346 | mp_digit u;
|
---|
2347 | mp_word r;
|
---|
2348 | mp_digit tmpx, *tmpt, *tmpy;
|
---|
2349 |
|
---|
2350 | #ifdef BN_FAST_S_MP_MUL_DIGS_C
|
---|
2351 | /* can we use the fast multiplier? */
|
---|
2352 | if (((digs) < MP_WARRAY) &&
|
---|
2353 | MIN (a->used, b->used) <
|
---|
2354 | (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
---|
2355 | return fast_s_mp_mul_digs (a, b, c, digs);
|
---|
2356 | }
|
---|
2357 | #endif
|
---|
2358 |
|
---|
2359 | if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
|
---|
2360 | return res;
|
---|
2361 | }
|
---|
2362 | t.used = digs;
|
---|
2363 |
|
---|
2364 | /* compute the digits of the product directly */
|
---|
2365 | pa = a->used;
|
---|
2366 | for (ix = 0; ix < pa; ix++) {
|
---|
2367 | /* set the carry to zero */
|
---|
2368 | u = 0;
|
---|
2369 |
|
---|
2370 | /* limit ourselves to making digs digits of output */
|
---|
2371 | pb = MIN (b->used, digs - ix);
|
---|
2372 |
|
---|
2373 | /* setup some aliases */
|
---|
2374 | /* copy of the digit from a used within the nested loop */
|
---|
2375 | tmpx = a->dp[ix];
|
---|
2376 |
|
---|
2377 | /* an alias for the destination shifted ix places */
|
---|
2378 | tmpt = t.dp + ix;
|
---|
2379 |
|
---|
2380 | /* an alias for the digits of b */
|
---|
2381 | tmpy = b->dp;
|
---|
2382 |
|
---|
2383 | /* compute the columns of the output and propagate the carry */
|
---|
2384 | for (iy = 0; iy < pb; iy++) {
|
---|
2385 | /* compute the column as a mp_word */
|
---|
2386 | r = ((mp_word)*tmpt) +
|
---|
2387 | ((mp_word)tmpx) * ((mp_word)*tmpy++) +
|
---|
2388 | ((mp_word) u);
|
---|
2389 |
|
---|
2390 | /* the new column is the lower part of the result */
|
---|
2391 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
2392 |
|
---|
2393 | /* get the carry word from the result */
|
---|
2394 | u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
---|
2395 | }
|
---|
2396 | /* set carry if it is placed below digs */
|
---|
2397 | if (ix + iy < digs) {
|
---|
2398 | *tmpt = u;
|
---|
2399 | }
|
---|
2400 | }
|
---|
2401 |
|
---|
2402 | mp_clamp (&t);
|
---|
2403 | mp_exch (&t, c);
|
---|
2404 |
|
---|
2405 | mp_clear (&t);
|
---|
2406 | return MP_OKAY;
|
---|
2407 | }
|
---|
2408 |
|
---|
2409 |
|
---|
2410 | #ifdef BN_FAST_S_MP_MUL_DIGS_C
|
---|
2411 | /* Fast (comba) multiplier
|
---|
2412 | *
|
---|
2413 | * This is the fast column-array [comba] multiplier. It is
|
---|
2414 | * designed to compute the columns of the product first
|
---|
2415 | * then handle the carries afterwards. This has the effect
|
---|
2416 | * of making the nested loops that compute the columns very
|
---|
2417 | * simple and schedulable on super-scalar processors.
|
---|
2418 | *
|
---|
2419 | * This has been modified to produce a variable number of
|
---|
2420 | * digits of output so if say only a half-product is required
|
---|
2421 | * you don't have to compute the upper half (a feature
|
---|
2422 | * required for fast Barrett reduction).
|
---|
2423 | *
|
---|
2424 | * Based on Algorithm 14.12 on pp.595 of HAC.
|
---|
2425 | *
|
---|
2426 | */
|
---|
2427 | static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
---|
2428 | {
|
---|
2429 | int olduse, res, pa, ix, iz;
|
---|
2430 | mp_digit W[MP_WARRAY];
|
---|
2431 | register mp_word _W;
|
---|
2432 |
|
---|
2433 | /* grow the destination as required */
|
---|
2434 | if (c->alloc < digs) {
|
---|
2435 | if ((res = mp_grow (c, digs)) != MP_OKAY) {
|
---|
2436 | return res;
|
---|
2437 | }
|
---|
2438 | }
|
---|
2439 |
|
---|
2440 | /* number of output digits to produce */
|
---|
2441 | pa = MIN(digs, a->used + b->used);
|
---|
2442 |
|
---|
2443 | /* clear the carry */
|
---|
2444 | _W = 0;
|
---|
2445 | for (ix = 0; ix < pa; ix++) {
|
---|
2446 | int tx, ty;
|
---|
2447 | int iy;
|
---|
2448 | mp_digit *tmpx, *tmpy;
|
---|
2449 |
|
---|
2450 | /* get offsets into the two bignums */
|
---|
2451 | ty = MIN(b->used-1, ix);
|
---|
2452 | tx = ix - ty;
|
---|
2453 |
|
---|
2454 | /* setup temp aliases */
|
---|
2455 | tmpx = a->dp + tx;
|
---|
2456 | tmpy = b->dp + ty;
|
---|
2457 |
|
---|
2458 | /* this is the number of times the loop will iterrate, essentially
|
---|
2459 | while (tx++ < a->used && ty-- >= 0) { ... }
|
---|
2460 | */
|
---|
2461 | iy = MIN(a->used-tx, ty+1);
|
---|
2462 |
|
---|
2463 | /* execute loop */
|
---|
2464 | for (iz = 0; iz < iy; ++iz) {
|
---|
2465 | _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
|
---|
2466 |
|
---|
2467 | }
|
---|
2468 |
|
---|
2469 | /* store term */
|
---|
2470 | W[ix] = ((mp_digit)_W) & MP_MASK;
|
---|
2471 |
|
---|
2472 | /* make next carry */
|
---|
2473 | _W = _W >> ((mp_word)DIGIT_BIT);
|
---|
2474 | }
|
---|
2475 |
|
---|
2476 | /* setup dest */
|
---|
2477 | olduse = c->used;
|
---|
2478 | c->used = pa;
|
---|
2479 |
|
---|
2480 | {
|
---|
2481 | register mp_digit *tmpc;
|
---|
2482 | tmpc = c->dp;
|
---|
2483 | for (ix = 0; ix < pa+1; ix++) {
|
---|
2484 | /* now extract the previous digit [below the carry] */
|
---|
2485 | *tmpc++ = W[ix];
|
---|
2486 | }
|
---|
2487 |
|
---|
2488 | /* clear unused digits [that existed in the old copy of c] */
|
---|
2489 | for (; ix < olduse; ix++) {
|
---|
2490 | *tmpc++ = 0;
|
---|
2491 | }
|
---|
2492 | }
|
---|
2493 | mp_clamp (c);
|
---|
2494 | return MP_OKAY;
|
---|
2495 | }
|
---|
2496 | #endif /* BN_FAST_S_MP_MUL_DIGS_C */
|
---|
2497 |
|
---|
2498 |
|
---|
2499 | /* init an mp_init for a given size */
|
---|
2500 | static int mp_init_size (mp_int * a, int size)
|
---|
2501 | {
|
---|
2502 | int x;
|
---|
2503 |
|
---|
2504 | /* pad size so there are always extra digits */
|
---|
2505 | size += (MP_PREC * 2) - (size % MP_PREC);
|
---|
2506 |
|
---|
2507 | /* alloc mem */
|
---|
2508 | a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
|
---|
2509 | if (a->dp == NULL) {
|
---|
2510 | return MP_MEM;
|
---|
2511 | }
|
---|
2512 |
|
---|
2513 | /* set the members */
|
---|
2514 | a->used = 0;
|
---|
2515 | a->alloc = size;
|
---|
2516 | a->sign = MP_ZPOS;
|
---|
2517 |
|
---|
2518 | /* zero the digits */
|
---|
2519 | for (x = 0; x < size; x++) {
|
---|
2520 | a->dp[x] = 0;
|
---|
2521 | }
|
---|
2522 |
|
---|
2523 | return MP_OKAY;
|
---|
2524 | }
|
---|
2525 |
|
---|
2526 |
|
---|
2527 | /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
|
---|
2528 | static int s_mp_sqr (mp_int * a, mp_int * b)
|
---|
2529 | {
|
---|
2530 | mp_int t;
|
---|
2531 | int res, ix, iy, pa;
|
---|
2532 | mp_word r;
|
---|
2533 | mp_digit u, tmpx, *tmpt;
|
---|
2534 |
|
---|
2535 | pa = a->used;
|
---|
2536 | if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
|
---|
2537 | return res;
|
---|
2538 | }
|
---|
2539 |
|
---|
2540 | /* default used is maximum possible size */
|
---|
2541 | t.used = 2*pa + 1;
|
---|
2542 |
|
---|
2543 | for (ix = 0; ix < pa; ix++) {
|
---|
2544 | /* first calculate the digit at 2*ix */
|
---|
2545 | /* calculate double precision result */
|
---|
2546 | r = ((mp_word) t.dp[2*ix]) +
|
---|
2547 | ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
|
---|
2548 |
|
---|
2549 | /* store lower part in result */
|
---|
2550 | t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
2551 |
|
---|
2552 | /* get the carry */
|
---|
2553 | u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
|
---|
2554 |
|
---|
2555 | /* left hand side of A[ix] * A[iy] */
|
---|
2556 | tmpx = a->dp[ix];
|
---|
2557 |
|
---|
2558 | /* alias for where to store the results */
|
---|
2559 | tmpt = t.dp + (2*ix + 1);
|
---|
2560 |
|
---|
2561 | for (iy = ix + 1; iy < pa; iy++) {
|
---|
2562 | /* first calculate the product */
|
---|
2563 | r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
|
---|
2564 |
|
---|
2565 | /* now calculate the double precision result, note we use
|
---|
2566 | * addition instead of *2 since it's easier to optimize
|
---|
2567 | */
|
---|
2568 | r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
|
---|
2569 |
|
---|
2570 | /* store lower part */
|
---|
2571 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
2572 |
|
---|
2573 | /* get carry */
|
---|
2574 | u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
|
---|
2575 | }
|
---|
2576 | /* propagate upwards */
|
---|
2577 | while (u != ((mp_digit) 0)) {
|
---|
2578 | r = ((mp_word) *tmpt) + ((mp_word) u);
|
---|
2579 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
2580 | u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
|
---|
2581 | }
|
---|
2582 | }
|
---|
2583 |
|
---|
2584 | mp_clamp (&t);
|
---|
2585 | mp_exch (&t, b);
|
---|
2586 | mp_clear (&t);
|
---|
2587 | return MP_OKAY;
|
---|
2588 | }
|
---|
2589 |
|
---|
2590 |
|
---|
2591 | /* multiplies |a| * |b| and does not compute the lower digs digits
|
---|
2592 | * [meant to get the higher part of the product]
|
---|
2593 | */
|
---|
2594 | static int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
---|
2595 | {
|
---|
2596 | mp_int t;
|
---|
2597 | int res, pa, pb, ix, iy;
|
---|
2598 | mp_digit u;
|
---|
2599 | mp_word r;
|
---|
2600 | mp_digit tmpx, *tmpt, *tmpy;
|
---|
2601 |
|
---|
2602 | /* can we use the fast multiplier? */
|
---|
2603 | #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
|
---|
2604 | if (((a->used + b->used + 1) < MP_WARRAY)
|
---|
2605 | && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
---|
2606 | return fast_s_mp_mul_high_digs (a, b, c, digs);
|
---|
2607 | }
|
---|
2608 | #endif
|
---|
2609 |
|
---|
2610 | if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
|
---|
2611 | return res;
|
---|
2612 | }
|
---|
2613 | t.used = a->used + b->used + 1;
|
---|
2614 |
|
---|
2615 | pa = a->used;
|
---|
2616 | pb = b->used;
|
---|
2617 | for (ix = 0; ix < pa; ix++) {
|
---|
2618 | /* clear the carry */
|
---|
2619 | u = 0;
|
---|
2620 |
|
---|
2621 | /* left hand side of A[ix] * B[iy] */
|
---|
2622 | tmpx = a->dp[ix];
|
---|
2623 |
|
---|
2624 | /* alias to the address of where the digits will be stored */
|
---|
2625 | tmpt = &(t.dp[digs]);
|
---|
2626 |
|
---|
2627 | /* alias for where to read the right hand side from */
|
---|
2628 | tmpy = b->dp + (digs - ix);
|
---|
2629 |
|
---|
2630 | for (iy = digs - ix; iy < pb; iy++) {
|
---|
2631 | /* calculate the double precision result */
|
---|
2632 | r = ((mp_word)*tmpt) +
|
---|
2633 | ((mp_word)tmpx) * ((mp_word)*tmpy++) +
|
---|
2634 | ((mp_word) u);
|
---|
2635 |
|
---|
2636 | /* get the lower part */
|
---|
2637 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
2638 |
|
---|
2639 | /* carry the carry */
|
---|
2640 | u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
---|
2641 | }
|
---|
2642 | *tmpt = u;
|
---|
2643 | }
|
---|
2644 | mp_clamp (&t);
|
---|
2645 | mp_exch (&t, c);
|
---|
2646 | mp_clear (&t);
|
---|
2647 | return MP_OKAY;
|
---|
2648 | }
|
---|
2649 |
|
---|
2650 |
|
---|
2651 | #ifdef BN_MP_MONTGOMERY_SETUP_C
|
---|
2652 | /* setups the montgomery reduction stuff */
|
---|
2653 | static int
|
---|
2654 | mp_montgomery_setup (mp_int * n, mp_digit * rho)
|
---|
2655 | {
|
---|
2656 | mp_digit x, b;
|
---|
2657 |
|
---|
2658 | /* fast inversion mod 2**k
|
---|
2659 | *
|
---|
2660 | * Based on the fact that
|
---|
2661 | *
|
---|
2662 | * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
|
---|
2663 | * => 2*X*A - X*X*A*A = 1
|
---|
2664 | * => 2*(1) - (1) = 1
|
---|
2665 | */
|
---|
2666 | b = n->dp[0];
|
---|
2667 |
|
---|
2668 | if ((b & 1) == 0) {
|
---|
2669 | return MP_VAL;
|
---|
2670 | }
|
---|
2671 |
|
---|
2672 | x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
|
---|
2673 | x *= 2 - b * x; /* here x*a==1 mod 2**8 */
|
---|
2674 | #if !defined(MP_8BIT)
|
---|
2675 | x *= 2 - b * x; /* here x*a==1 mod 2**16 */
|
---|
2676 | #endif
|
---|
2677 | #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
|
---|
2678 | x *= 2 - b * x; /* here x*a==1 mod 2**32 */
|
---|
2679 | #endif
|
---|
2680 | #ifdef MP_64BIT
|
---|
2681 | x *= 2 - b * x; /* here x*a==1 mod 2**64 */
|
---|
2682 | #endif
|
---|
2683 |
|
---|
2684 | /* rho = -1/m mod b */
|
---|
2685 | *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
|
---|
2686 |
|
---|
2687 | return MP_OKAY;
|
---|
2688 | }
|
---|
2689 | #endif
|
---|
2690 |
|
---|
2691 |
|
---|
2692 | #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
|
---|
2693 | /* computes xR**-1 == x (mod N) via Montgomery Reduction
|
---|
2694 | *
|
---|
2695 | * This is an optimized implementation of montgomery_reduce
|
---|
2696 | * which uses the comba method to quickly calculate the columns of the
|
---|
2697 | * reduction.
|
---|
2698 | *
|
---|
2699 | * Based on Algorithm 14.32 on pp.601 of HAC.
|
---|
2700 | */
|
---|
2701 | static int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
---|
2702 | {
|
---|
2703 | int ix, res, olduse;
|
---|
2704 | mp_word W[MP_WARRAY];
|
---|
2705 |
|
---|
2706 | /* get old used count */
|
---|
2707 | olduse = x->used;
|
---|
2708 |
|
---|
2709 | /* grow a as required */
|
---|
2710 | if (x->alloc < n->used + 1) {
|
---|
2711 | if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
|
---|
2712 | return res;
|
---|
2713 | }
|
---|
2714 | }
|
---|
2715 |
|
---|
2716 | /* first we have to get the digits of the input into
|
---|
2717 | * an array of double precision words W[...]
|
---|
2718 | */
|
---|
2719 | {
|
---|
2720 | register mp_word *_W;
|
---|
2721 | register mp_digit *tmpx;
|
---|
2722 |
|
---|
2723 | /* alias for the W[] array */
|
---|
2724 | _W = W;
|
---|
2725 |
|
---|
2726 | /* alias for the digits of x*/
|
---|
2727 | tmpx = x->dp;
|
---|
2728 |
|
---|
2729 | /* copy the digits of a into W[0..a->used-1] */
|
---|
2730 | for (ix = 0; ix < x->used; ix++) {
|
---|
2731 | *_W++ = *tmpx++;
|
---|
2732 | }
|
---|
2733 |
|
---|
2734 | /* zero the high words of W[a->used..m->used*2] */
|
---|
2735 | for (; ix < n->used * 2 + 1; ix++) {
|
---|
2736 | *_W++ = 0;
|
---|
2737 | }
|
---|
2738 | }
|
---|
2739 |
|
---|
2740 | /* now we proceed to zero successive digits
|
---|
2741 | * from the least significant upwards
|
---|
2742 | */
|
---|
2743 | for (ix = 0; ix < n->used; ix++) {
|
---|
2744 | /* mu = ai * m' mod b
|
---|
2745 | *
|
---|
2746 | * We avoid a double precision multiplication (which isn't required)
|
---|
2747 | * by casting the value down to a mp_digit. Note this requires
|
---|
2748 | * that W[ix-1] have the carry cleared (see after the inner loop)
|
---|
2749 | */
|
---|
2750 | register mp_digit mu;
|
---|
2751 | mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
|
---|
2752 |
|
---|
2753 | /* a = a + mu * m * b**i
|
---|
2754 | *
|
---|
2755 | * This is computed in place and on the fly. The multiplication
|
---|
2756 | * by b**i is handled by offseting which columns the results
|
---|
2757 | * are added to.
|
---|
2758 | *
|
---|
2759 | * Note the comba method normally doesn't handle carries in the
|
---|
2760 | * inner loop In this case we fix the carry from the previous
|
---|
2761 | * column since the Montgomery reduction requires digits of the
|
---|
2762 | * result (so far) [see above] to work. This is
|
---|
2763 | * handled by fixing up one carry after the inner loop. The
|
---|
2764 | * carry fixups are done in order so after these loops the
|
---|
2765 | * first m->used words of W[] have the carries fixed
|
---|
2766 | */
|
---|
2767 | {
|
---|
2768 | register int iy;
|
---|
2769 | register mp_digit *tmpn;
|
---|
2770 | register mp_word *_W;
|
---|
2771 |
|
---|
2772 | /* alias for the digits of the modulus */
|
---|
2773 | tmpn = n->dp;
|
---|
2774 |
|
---|
2775 | /* Alias for the columns set by an offset of ix */
|
---|
2776 | _W = W + ix;
|
---|
2777 |
|
---|
2778 | /* inner loop */
|
---|
2779 | for (iy = 0; iy < n->used; iy++) {
|
---|
2780 | *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
|
---|
2781 | }
|
---|
2782 | }
|
---|
2783 |
|
---|
2784 | /* now fix carry for next digit, W[ix+1] */
|
---|
2785 | W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
|
---|
2786 | }
|
---|
2787 |
|
---|
2788 | /* now we have to propagate the carries and
|
---|
2789 | * shift the words downward [all those least
|
---|
2790 | * significant digits we zeroed].
|
---|
2791 | */
|
---|
2792 | {
|
---|
2793 | register mp_digit *tmpx;
|
---|
2794 | register mp_word *_W, *_W1;
|
---|
2795 |
|
---|
2796 | /* nox fix rest of carries */
|
---|
2797 |
|
---|
2798 | /* alias for current word */
|
---|
2799 | _W1 = W + ix;
|
---|
2800 |
|
---|
2801 | /* alias for next word, where the carry goes */
|
---|
2802 | _W = W + ++ix;
|
---|
2803 |
|
---|
2804 | for (; ix <= n->used * 2 + 1; ix++) {
|
---|
2805 | *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
|
---|
2806 | }
|
---|
2807 |
|
---|
2808 | /* copy out, A = A/b**n
|
---|
2809 | *
|
---|
2810 | * The result is A/b**n but instead of converting from an
|
---|
2811 | * array of mp_word to mp_digit than calling mp_rshd
|
---|
2812 | * we just copy them in the right order
|
---|
2813 | */
|
---|
2814 |
|
---|
2815 | /* alias for destination word */
|
---|
2816 | tmpx = x->dp;
|
---|
2817 |
|
---|
2818 | /* alias for shifted double precision result */
|
---|
2819 | _W = W + n->used;
|
---|
2820 |
|
---|
2821 | for (ix = 0; ix < n->used + 1; ix++) {
|
---|
2822 | *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
|
---|
2823 | }
|
---|
2824 |
|
---|
2825 | /* zero oldused digits, if the input a was larger than
|
---|
2826 | * m->used+1 we'll have to clear the digits
|
---|
2827 | */
|
---|
2828 | for (; ix < olduse; ix++) {
|
---|
2829 | *tmpx++ = 0;
|
---|
2830 | }
|
---|
2831 | }
|
---|
2832 |
|
---|
2833 | /* set the max used and clamp */
|
---|
2834 | x->used = n->used + 1;
|
---|
2835 | mp_clamp (x);
|
---|
2836 |
|
---|
2837 | /* if A >= m then A = A - m */
|
---|
2838 | if (mp_cmp_mag (x, n) != MP_LT) {
|
---|
2839 | return s_mp_sub (x, n, x);
|
---|
2840 | }
|
---|
2841 | return MP_OKAY;
|
---|
2842 | }
|
---|
2843 | #endif
|
---|
2844 |
|
---|
2845 |
|
---|
2846 | #ifdef BN_MP_MUL_2_C
|
---|
2847 | /* b = a*2 */
|
---|
2848 | static int mp_mul_2(mp_int * a, mp_int * b)
|
---|
2849 | {
|
---|
2850 | int x, res, oldused;
|
---|
2851 |
|
---|
2852 | /* grow to accommodate result */
|
---|
2853 | if (b->alloc < a->used + 1) {
|
---|
2854 | if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
|
---|
2855 | return res;
|
---|
2856 | }
|
---|
2857 | }
|
---|
2858 |
|
---|
2859 | oldused = b->used;
|
---|
2860 | b->used = a->used;
|
---|
2861 |
|
---|
2862 | {
|
---|
2863 | register mp_digit r, rr, *tmpa, *tmpb;
|
---|
2864 |
|
---|
2865 | /* alias for source */
|
---|
2866 | tmpa = a->dp;
|
---|
2867 |
|
---|
2868 | /* alias for dest */
|
---|
2869 | tmpb = b->dp;
|
---|
2870 |
|
---|
2871 | /* carry */
|
---|
2872 | r = 0;
|
---|
2873 | for (x = 0; x < a->used; x++) {
|
---|
2874 |
|
---|
2875 | /* get what will be the *next* carry bit from the
|
---|
2876 | * MSB of the current digit
|
---|
2877 | */
|
---|
2878 | rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
|
---|
2879 |
|
---|
2880 | /* now shift up this digit, add in the carry [from the previous] */
|
---|
2881 | *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
|
---|
2882 |
|
---|
2883 | /* copy the carry that would be from the source
|
---|
2884 | * digit into the next iteration
|
---|
2885 | */
|
---|
2886 | r = rr;
|
---|
2887 | }
|
---|
2888 |
|
---|
2889 | /* new leading digit? */
|
---|
2890 | if (r != 0) {
|
---|
2891 | /* add a MSB which is always 1 at this point */
|
---|
2892 | *tmpb = 1;
|
---|
2893 | ++(b->used);
|
---|
2894 | }
|
---|
2895 |
|
---|
2896 | /* now zero any excess digits on the destination
|
---|
2897 | * that we didn't write to
|
---|
2898 | */
|
---|
2899 | tmpb = b->dp + b->used;
|
---|
2900 | for (x = b->used; x < oldused; x++) {
|
---|
2901 | *tmpb++ = 0;
|
---|
2902 | }
|
---|
2903 | }
|
---|
2904 | b->sign = a->sign;
|
---|
2905 | return MP_OKAY;
|
---|
2906 | }
|
---|
2907 | #endif
|
---|
2908 |
|
---|
2909 |
|
---|
2910 | #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
|
---|
2911 | /*
|
---|
2912 | * shifts with subtractions when the result is greater than b.
|
---|
2913 | *
|
---|
2914 | * The method is slightly modified to shift B unconditionally up to just under
|
---|
2915 | * the leading bit of b. This saves a lot of multiple precision shifting.
|
---|
2916 | */
|
---|
2917 | static int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
|
---|
2918 | {
|
---|
2919 | int x, bits, res;
|
---|
2920 |
|
---|
2921 | /* how many bits of last digit does b use */
|
---|
2922 | bits = mp_count_bits (b) % DIGIT_BIT;
|
---|
2923 |
|
---|
2924 | if (b->used > 1) {
|
---|
2925 | if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
|
---|
2926 | return res;
|
---|
2927 | }
|
---|
2928 | } else {
|
---|
2929 | mp_set(a, 1);
|
---|
2930 | bits = 1;
|
---|
2931 | }
|
---|
2932 |
|
---|
2933 |
|
---|
2934 | /* now compute C = A * B mod b */
|
---|
2935 | for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
|
---|
2936 | if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
|
---|
2937 | return res;
|
---|
2938 | }
|
---|
2939 | if (mp_cmp_mag (a, b) != MP_LT) {
|
---|
2940 | if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
|
---|
2941 | return res;
|
---|
2942 | }
|
---|
2943 | }
|
---|
2944 | }
|
---|
2945 |
|
---|
2946 | return MP_OKAY;
|
---|
2947 | }
|
---|
2948 | #endif
|
---|
2949 |
|
---|
2950 |
|
---|
2951 | #ifdef BN_MP_EXPTMOD_FAST_C
|
---|
2952 | /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
|
---|
2953 | *
|
---|
2954 | * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
|
---|
2955 | * The value of k changes based on the size of the exponent.
|
---|
2956 | *
|
---|
2957 | * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
|
---|
2958 | */
|
---|
2959 |
|
---|
2960 | static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
---|
2961 | {
|
---|
2962 | mp_int M[TAB_SIZE], res;
|
---|
2963 | mp_digit buf, mp;
|
---|
2964 | int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
---|
2965 |
|
---|
2966 | /* use a pointer to the reduction algorithm. This allows us to use
|
---|
2967 | * one of many reduction algorithms without modding the guts of
|
---|
2968 | * the code with if statements everywhere.
|
---|
2969 | */
|
---|
2970 | int (*redux)(mp_int*,mp_int*,mp_digit);
|
---|
2971 |
|
---|
2972 | /* find window size */
|
---|
2973 | x = mp_count_bits (X);
|
---|
2974 | if (x <= 7) {
|
---|
2975 | winsize = 2;
|
---|
2976 | } else if (x <= 36) {
|
---|
2977 | winsize = 3;
|
---|
2978 | } else if (x <= 140) {
|
---|
2979 | winsize = 4;
|
---|
2980 | } else if (x <= 450) {
|
---|
2981 | winsize = 5;
|
---|
2982 | } else if (x <= 1303) {
|
---|
2983 | winsize = 6;
|
---|
2984 | } else if (x <= 3529) {
|
---|
2985 | winsize = 7;
|
---|
2986 | } else {
|
---|
2987 | winsize = 8;
|
---|
2988 | }
|
---|
2989 |
|
---|
2990 | #ifdef MP_LOW_MEM
|
---|
2991 | if (winsize > 5) {
|
---|
2992 | winsize = 5;
|
---|
2993 | }
|
---|
2994 | #endif
|
---|
2995 |
|
---|
2996 | /* init M array */
|
---|
2997 | /* init first cell */
|
---|
2998 | if ((err = mp_init(&M[1])) != MP_OKAY) {
|
---|
2999 | return err;
|
---|
3000 | }
|
---|
3001 |
|
---|
3002 | /* now init the second half of the array */
|
---|
3003 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
---|
3004 | if ((err = mp_init(&M[x])) != MP_OKAY) {
|
---|
3005 | for (y = 1<<(winsize-1); y < x; y++) {
|
---|
3006 | mp_clear (&M[y]);
|
---|
3007 | }
|
---|
3008 | mp_clear(&M[1]);
|
---|
3009 | return err;
|
---|
3010 | }
|
---|
3011 | }
|
---|
3012 |
|
---|
3013 | /* determine and setup reduction code */
|
---|
3014 | if (redmode == 0) {
|
---|
3015 | #ifdef BN_MP_MONTGOMERY_SETUP_C
|
---|
3016 | /* now setup montgomery */
|
---|
3017 | if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
|
---|
3018 | goto LBL_M;
|
---|
3019 | }
|
---|
3020 | #else
|
---|
3021 | err = MP_VAL;
|
---|
3022 | goto LBL_M;
|
---|
3023 | #endif
|
---|
3024 |
|
---|
3025 | /* automatically pick the comba one if available (saves quite a few calls/ifs) */
|
---|
3026 | #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
|
---|
3027 | if (((P->used * 2 + 1) < MP_WARRAY) &&
|
---|
3028 | P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
---|
3029 | redux = fast_mp_montgomery_reduce;
|
---|
3030 | } else
|
---|
3031 | #endif
|
---|
3032 | {
|
---|
3033 | #ifdef BN_MP_MONTGOMERY_REDUCE_C
|
---|
3034 | /* use slower baseline Montgomery method */
|
---|
3035 | redux = mp_montgomery_reduce;
|
---|
3036 | #else
|
---|
3037 | err = MP_VAL;
|
---|
3038 | goto LBL_M;
|
---|
3039 | #endif
|
---|
3040 | }
|
---|
3041 | } else if (redmode == 1) {
|
---|
3042 | #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
|
---|
3043 | /* setup DR reduction for moduli of the form B**k - b */
|
---|
3044 | mp_dr_setup(P, &mp);
|
---|
3045 | redux = mp_dr_reduce;
|
---|
3046 | #else
|
---|
3047 | err = MP_VAL;
|
---|
3048 | goto LBL_M;
|
---|
3049 | #endif
|
---|
3050 | } else {
|
---|
3051 | #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
|
---|
3052 | /* setup DR reduction for moduli of the form 2**k - b */
|
---|
3053 | if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
|
---|
3054 | goto LBL_M;
|
---|
3055 | }
|
---|
3056 | redux = mp_reduce_2k;
|
---|
3057 | #else
|
---|
3058 | err = MP_VAL;
|
---|
3059 | goto LBL_M;
|
---|
3060 | #endif
|
---|
3061 | }
|
---|
3062 |
|
---|
3063 | /* setup result */
|
---|
3064 | if ((err = mp_init (&res)) != MP_OKAY) {
|
---|
3065 | goto LBL_M;
|
---|
3066 | }
|
---|
3067 |
|
---|
3068 | /* create M table
|
---|
3069 | *
|
---|
3070 |
|
---|
3071 | *
|
---|
3072 | * The first half of the table is not computed though accept for M[0] and M[1]
|
---|
3073 | */
|
---|
3074 |
|
---|
3075 | if (redmode == 0) {
|
---|
3076 | #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
|
---|
3077 | /* now we need R mod m */
|
---|
3078 | if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
|
---|
3079 | goto LBL_RES;
|
---|
3080 | }
|
---|
3081 | #else
|
---|
3082 | err = MP_VAL;
|
---|
3083 | goto LBL_RES;
|
---|
3084 | #endif
|
---|
3085 |
|
---|
3086 | /* now set M[1] to G * R mod m */
|
---|
3087 | if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
|
---|
3088 | goto LBL_RES;
|
---|
3089 | }
|
---|
3090 | } else {
|
---|
3091 | mp_set(&res, 1);
|
---|
3092 | if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
|
---|
3093 | goto LBL_RES;
|
---|
3094 | }
|
---|
3095 | }
|
---|
3096 |
|
---|
3097 | /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
|
---|
3098 | if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
---|
3099 | goto LBL_RES;
|
---|
3100 | }
|
---|
3101 |
|
---|
3102 | for (x = 0; x < (winsize - 1); x++) {
|
---|
3103 | if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
---|
3104 | goto LBL_RES;
|
---|
3105 | }
|
---|
3106 | if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
|
---|
3107 | goto LBL_RES;
|
---|
3108 | }
|
---|
3109 | }
|
---|
3110 |
|
---|
3111 | /* create upper table */
|
---|
3112 | for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
---|
3113 | if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
---|
3114 | goto LBL_RES;
|
---|
3115 | }
|
---|
3116 | if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
|
---|
3117 | goto LBL_RES;
|
---|
3118 | }
|
---|
3119 | }
|
---|
3120 |
|
---|
3121 | /* set initial mode and bit cnt */
|
---|
3122 | mode = 0;
|
---|
3123 | bitcnt = 1;
|
---|
3124 | buf = 0;
|
---|
3125 | digidx = X->used - 1;
|
---|
3126 | bitcpy = 0;
|
---|
3127 | bitbuf = 0;
|
---|
3128 |
|
---|
3129 | for (;;) {
|
---|
3130 | /* grab next digit as required */
|
---|
3131 | if (--bitcnt == 0) {
|
---|
3132 | /* if digidx == -1 we are out of digits so break */
|
---|
3133 | if (digidx == -1) {
|
---|
3134 | break;
|
---|
3135 | }
|
---|
3136 | /* read next digit and reset bitcnt */
|
---|
3137 | buf = X->dp[digidx--];
|
---|
3138 | bitcnt = (int)DIGIT_BIT;
|
---|
3139 | }
|
---|
3140 |
|
---|
3141 | /* grab the next msb from the exponent */
|
---|
3142 | y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
|
---|
3143 | buf <<= (mp_digit)1;
|
---|
3144 |
|
---|
3145 | /* if the bit is zero and mode == 0 then we ignore it
|
---|
3146 | * These represent the leading zero bits before the first 1 bit
|
---|
3147 | * in the exponent. Technically this opt is not required but it
|
---|
3148 | * does lower the # of trivial squaring/reductions used
|
---|
3149 | */
|
---|
3150 | if (mode == 0 && y == 0) {
|
---|
3151 | continue;
|
---|
3152 | }
|
---|
3153 |
|
---|
3154 | /* if the bit is zero and mode == 1 then we square */
|
---|
3155 | if (mode == 1 && y == 0) {
|
---|
3156 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
3157 | goto LBL_RES;
|
---|
3158 | }
|
---|
3159 | if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
---|
3160 | goto LBL_RES;
|
---|
3161 | }
|
---|
3162 | continue;
|
---|
3163 | }
|
---|
3164 |
|
---|
3165 | /* else we add it to the window */
|
---|
3166 | bitbuf |= (y << (winsize - ++bitcpy));
|
---|
3167 | mode = 2;
|
---|
3168 |
|
---|
3169 | if (bitcpy == winsize) {
|
---|
3170 | /* ok window is filled so square as required and multiply */
|
---|
3171 | /* square first */
|
---|
3172 | for (x = 0; x < winsize; x++) {
|
---|
3173 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
3174 | goto LBL_RES;
|
---|
3175 | }
|
---|
3176 | if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
---|
3177 | goto LBL_RES;
|
---|
3178 | }
|
---|
3179 | }
|
---|
3180 |
|
---|
3181 | /* then multiply */
|
---|
3182 | if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
---|
3183 | goto LBL_RES;
|
---|
3184 | }
|
---|
3185 | if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
---|
3186 | goto LBL_RES;
|
---|
3187 | }
|
---|
3188 |
|
---|
3189 | /* empty window and reset */
|
---|
3190 | bitcpy = 0;
|
---|
3191 | bitbuf = 0;
|
---|
3192 | mode = 1;
|
---|
3193 | }
|
---|
3194 | }
|
---|
3195 |
|
---|
3196 | /* if bits remain then square/multiply */
|
---|
3197 | if (mode == 2 && bitcpy > 0) {
|
---|
3198 | /* square then multiply if the bit is set */
|
---|
3199 | for (x = 0; x < bitcpy; x++) {
|
---|
3200 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
3201 | goto LBL_RES;
|
---|
3202 | }
|
---|
3203 | if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
---|
3204 | goto LBL_RES;
|
---|
3205 | }
|
---|
3206 |
|
---|
3207 | /* get next bit of the window */
|
---|
3208 | bitbuf <<= 1;
|
---|
3209 | if ((bitbuf & (1 << winsize)) != 0) {
|
---|
3210 | /* then multiply */
|
---|
3211 | if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
---|
3212 | goto LBL_RES;
|
---|
3213 | }
|
---|
3214 | if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
---|
3215 | goto LBL_RES;
|
---|
3216 | }
|
---|
3217 | }
|
---|
3218 | }
|
---|
3219 | }
|
---|
3220 |
|
---|
3221 | if (redmode == 0) {
|
---|
3222 | /* fixup result if Montgomery reduction is used
|
---|
3223 | * recall that any value in a Montgomery system is
|
---|
3224 | * actually multiplied by R mod n. So we have
|
---|
3225 | * to reduce one more time to cancel out the factor
|
---|
3226 | * of R.
|
---|
3227 | */
|
---|
3228 | if ((err = redux(&res, P, mp)) != MP_OKAY) {
|
---|
3229 | goto LBL_RES;
|
---|
3230 | }
|
---|
3231 | }
|
---|
3232 |
|
---|
3233 | /* swap res with Y */
|
---|
3234 | mp_exch (&res, Y);
|
---|
3235 | err = MP_OKAY;
|
---|
3236 | LBL_RES:mp_clear (&res);
|
---|
3237 | LBL_M:
|
---|
3238 | mp_clear(&M[1]);
|
---|
3239 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
---|
3240 | mp_clear (&M[x]);
|
---|
3241 | }
|
---|
3242 | return err;
|
---|
3243 | }
|
---|
3244 | #endif
|
---|
3245 |
|
---|
3246 |
|
---|
3247 | #ifdef BN_FAST_S_MP_SQR_C
|
---|
3248 | /* the jist of squaring...
|
---|
3249 | * you do like mult except the offset of the tmpx [one that
|
---|
3250 | * starts closer to zero] can't equal the offset of tmpy.
|
---|
3251 | * So basically you set up iy like before then you min it with
|
---|
3252 | * (ty-tx) so that it never happens. You double all those
|
---|
3253 | * you add in the inner loop
|
---|
3254 |
|
---|
3255 | After that loop you do the squares and add them in.
|
---|
3256 | */
|
---|
3257 |
|
---|
3258 | static int fast_s_mp_sqr (mp_int * a, mp_int * b)
|
---|
3259 | {
|
---|
3260 | int olduse, res, pa, ix, iz;
|
---|
3261 | mp_digit W[MP_WARRAY], *tmpx;
|
---|
3262 | mp_word W1;
|
---|
3263 |
|
---|
3264 | /* grow the destination as required */
|
---|
3265 | pa = a->used + a->used;
|
---|
3266 | if (b->alloc < pa) {
|
---|
3267 | if ((res = mp_grow (b, pa)) != MP_OKAY) {
|
---|
3268 | return res;
|
---|
3269 | }
|
---|
3270 | }
|
---|
3271 |
|
---|
3272 | /* number of output digits to produce */
|
---|
3273 | W1 = 0;
|
---|
3274 | for (ix = 0; ix < pa; ix++) {
|
---|
3275 | int tx, ty, iy;
|
---|
3276 | mp_word _W;
|
---|
3277 | mp_digit *tmpy;
|
---|
3278 |
|
---|
3279 | /* clear counter */
|
---|
3280 | _W = 0;
|
---|
3281 |
|
---|
3282 | /* get offsets into the two bignums */
|
---|
3283 | ty = MIN(a->used-1, ix);
|
---|
3284 | tx = ix - ty;
|
---|
3285 |
|
---|
3286 | /* setup temp aliases */
|
---|
3287 | tmpx = a->dp + tx;
|
---|
3288 | tmpy = a->dp + ty;
|
---|
3289 |
|
---|
3290 | /* this is the number of times the loop will iterrate, essentially
|
---|
3291 | while (tx++ < a->used && ty-- >= 0) { ... }
|
---|
3292 | */
|
---|
3293 | iy = MIN(a->used-tx, ty+1);
|
---|
3294 |
|
---|
3295 | /* now for squaring tx can never equal ty
|
---|
3296 | * we halve the distance since they approach at a rate of 2x
|
---|
3297 | * and we have to round because odd cases need to be executed
|
---|
3298 | */
|
---|
3299 | iy = MIN(iy, (ty-tx+1)>>1);
|
---|
3300 |
|
---|
3301 | /* execute loop */
|
---|
3302 | for (iz = 0; iz < iy; iz++) {
|
---|
3303 | _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
|
---|
3304 | }
|
---|
3305 |
|
---|
3306 | /* double the inner product and add carry */
|
---|
3307 | _W = _W + _W + W1;
|
---|
3308 |
|
---|
3309 | /* even columns have the square term in them */
|
---|
3310 | if ((ix&1) == 0) {
|
---|
3311 | _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
|
---|
3312 | }
|
---|
3313 |
|
---|
3314 | /* store it */
|
---|
3315 | W[ix] = (mp_digit)(_W & MP_MASK);
|
---|
3316 |
|
---|
3317 | /* make next carry */
|
---|
3318 | W1 = _W >> ((mp_word)DIGIT_BIT);
|
---|
3319 | }
|
---|
3320 |
|
---|
3321 | /* setup dest */
|
---|
3322 | olduse = b->used;
|
---|
3323 | b->used = a->used+a->used;
|
---|
3324 |
|
---|
3325 | {
|
---|
3326 | mp_digit *tmpb;
|
---|
3327 | tmpb = b->dp;
|
---|
3328 | for (ix = 0; ix < pa; ix++) {
|
---|
3329 | *tmpb++ = W[ix] & MP_MASK;
|
---|
3330 | }
|
---|
3331 |
|
---|
3332 | /* clear unused digits [that existed in the old copy of c] */
|
---|
3333 | for (; ix < olduse; ix++) {
|
---|
3334 | *tmpb++ = 0;
|
---|
3335 | }
|
---|
3336 | }
|
---|
3337 | mp_clamp (b);
|
---|
3338 | return MP_OKAY;
|
---|
3339 | }
|
---|
3340 | #endif
|
---|
3341 |
|
---|
3342 |
|
---|
3343 | #ifdef BN_MP_MUL_D_C
|
---|
3344 | /* multiply by a digit */
|
---|
3345 | static int
|
---|
3346 | mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
|
---|
3347 | {
|
---|
3348 | mp_digit u, *tmpa, *tmpc;
|
---|
3349 | mp_word r;
|
---|
3350 | int ix, res, olduse;
|
---|
3351 |
|
---|
3352 | /* make sure c is big enough to hold a*b */
|
---|
3353 | if (c->alloc < a->used + 1) {
|
---|
3354 | if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
|
---|
3355 | return res;
|
---|
3356 | }
|
---|
3357 | }
|
---|
3358 |
|
---|
3359 | /* get the original destinations used count */
|
---|
3360 | olduse = c->used;
|
---|
3361 |
|
---|
3362 | /* set the sign */
|
---|
3363 | c->sign = a->sign;
|
---|
3364 |
|
---|
3365 | /* alias for a->dp [source] */
|
---|
3366 | tmpa = a->dp;
|
---|
3367 |
|
---|
3368 | /* alias for c->dp [dest] */
|
---|
3369 | tmpc = c->dp;
|
---|
3370 |
|
---|
3371 | /* zero carry */
|
---|
3372 | u = 0;
|
---|
3373 |
|
---|
3374 | /* compute columns */
|
---|
3375 | for (ix = 0; ix < a->used; ix++) {
|
---|
3376 | /* compute product and carry sum for this term */
|
---|
3377 | r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
|
---|
3378 |
|
---|
3379 | /* mask off higher bits to get a single digit */
|
---|
3380 | *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
3381 |
|
---|
3382 | /* send carry into next iteration */
|
---|
3383 | u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
---|
3384 | }
|
---|
3385 |
|
---|
3386 | /* store final carry [if any] and increment ix offset */
|
---|
3387 | *tmpc++ = u;
|
---|
3388 | ++ix;
|
---|
3389 |
|
---|
3390 | /* now zero digits above the top */
|
---|
3391 | while (ix++ < olduse) {
|
---|
3392 | *tmpc++ = 0;
|
---|
3393 | }
|
---|
3394 |
|
---|
3395 | /* set used count */
|
---|
3396 | c->used = a->used + 1;
|
---|
3397 | mp_clamp(c);
|
---|
3398 |
|
---|
3399 | return MP_OKAY;
|
---|
3400 | }
|
---|
3401 | #endif
|
---|