1 | /*
|
---|
2 | * 3GPP AKA - Milenage algorithm (3GPP TS 35.205, .206, .207, .208)
|
---|
3 | * Copyright (c) 2006-2007 <j@w1.fi>
|
---|
4 | *
|
---|
5 | * This software may be distributed under the terms of the BSD license.
|
---|
6 | * See README for more details.
|
---|
7 | *
|
---|
8 | * This file implements an example authentication algorithm defined for 3GPP
|
---|
9 | * AKA. This can be used to implement a simple HLR/AuC into hlr_auc_gw to allow
|
---|
10 | * EAP-AKA to be tested properly with real USIM cards.
|
---|
11 | *
|
---|
12 | * This implementations assumes that the r1..r5 and c1..c5 constants defined in
|
---|
13 | * TS 35.206 are used, i.e., r1=64, r2=0, r3=32, r4=64, r5=96, c1=00..00,
|
---|
14 | * c2=00..01, c3=00..02, c4=00..04, c5=00..08. The block cipher is assumed to
|
---|
15 | * be AES (Rijndael).
|
---|
16 | */
|
---|
17 |
|
---|
18 | #include "includes.h"
|
---|
19 |
|
---|
20 | #include "common.h"
|
---|
21 | #include "crypto/aes_wrap.h"
|
---|
22 | #include "milenage.h"
|
---|
23 |
|
---|
24 |
|
---|
25 | /**
|
---|
26 | * milenage_f1 - Milenage f1 and f1* algorithms
|
---|
27 | * @opc: OPc = 128-bit value derived from OP and K
|
---|
28 | * @k: K = 128-bit subscriber key
|
---|
29 | * @_rand: RAND = 128-bit random challenge
|
---|
30 | * @sqn: SQN = 48-bit sequence number
|
---|
31 | * @amf: AMF = 16-bit authentication management field
|
---|
32 | * @mac_a: Buffer for MAC-A = 64-bit network authentication code, or %NULL
|
---|
33 | * @mac_s: Buffer for MAC-S = 64-bit resync authentication code, or %NULL
|
---|
34 | * Returns: 0 on success, -1 on failure
|
---|
35 | */
|
---|
36 | int milenage_f1(const u8 *opc, const u8 *k, const u8 *_rand,
|
---|
37 | const u8 *sqn, const u8 *amf, u8 *mac_a, u8 *mac_s)
|
---|
38 | {
|
---|
39 | u8 tmp1[16], tmp2[16], tmp3[16];
|
---|
40 | int i;
|
---|
41 |
|
---|
42 | /* tmp1 = TEMP = E_K(RAND XOR OP_C) */
|
---|
43 | for (i = 0; i < 16; i++)
|
---|
44 | tmp1[i] = _rand[i] ^ opc[i];
|
---|
45 | if (aes_128_encrypt_block(k, tmp1, tmp1))
|
---|
46 | return -1;
|
---|
47 |
|
---|
48 | /* tmp2 = IN1 = SQN || AMF || SQN || AMF */
|
---|
49 | os_memcpy(tmp2, sqn, 6);
|
---|
50 | os_memcpy(tmp2 + 6, amf, 2);
|
---|
51 | os_memcpy(tmp2 + 8, tmp2, 8);
|
---|
52 |
|
---|
53 | /* OUT1 = E_K(TEMP XOR rot(IN1 XOR OP_C, r1) XOR c1) XOR OP_C */
|
---|
54 |
|
---|
55 | /* rotate (tmp2 XOR OP_C) by r1 (= 0x40 = 8 bytes) */
|
---|
56 | for (i = 0; i < 16; i++)
|
---|
57 | tmp3[(i + 8) % 16] = tmp2[i] ^ opc[i];
|
---|
58 | /* XOR with TEMP = E_K(RAND XOR OP_C) */
|
---|
59 | for (i = 0; i < 16; i++)
|
---|
60 | tmp3[i] ^= tmp1[i];
|
---|
61 | /* XOR with c1 (= ..00, i.e., NOP) */
|
---|
62 |
|
---|
63 | /* f1 || f1* = E_K(tmp3) XOR OP_c */
|
---|
64 | if (aes_128_encrypt_block(k, tmp3, tmp1))
|
---|
65 | return -1;
|
---|
66 | for (i = 0; i < 16; i++)
|
---|
67 | tmp1[i] ^= opc[i];
|
---|
68 | if (mac_a)
|
---|
69 | os_memcpy(mac_a, tmp1, 8); /* f1 */
|
---|
70 | if (mac_s)
|
---|
71 | os_memcpy(mac_s, tmp1 + 8, 8); /* f1* */
|
---|
72 | return 0;
|
---|
73 | }
|
---|
74 |
|
---|
75 |
|
---|
76 | /**
|
---|
77 | * milenage_f2345 - Milenage f2, f3, f4, f5, f5* algorithms
|
---|
78 | * @opc: OPc = 128-bit value derived from OP and K
|
---|
79 | * @k: K = 128-bit subscriber key
|
---|
80 | * @_rand: RAND = 128-bit random challenge
|
---|
81 | * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
|
---|
82 | * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
|
---|
83 | * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
|
---|
84 | * @ak: Buffer for AK = 48-bit anonymity key (f5), or %NULL
|
---|
85 | * @akstar: Buffer for AK = 48-bit anonymity key (f5*), or %NULL
|
---|
86 | * Returns: 0 on success, -1 on failure
|
---|
87 | */
|
---|
88 | int milenage_f2345(const u8 *opc, const u8 *k, const u8 *_rand,
|
---|
89 | u8 *res, u8 *ck, u8 *ik, u8 *ak, u8 *akstar)
|
---|
90 | {
|
---|
91 | u8 tmp1[16], tmp2[16], tmp3[16];
|
---|
92 | int i;
|
---|
93 |
|
---|
94 | /* tmp2 = TEMP = E_K(RAND XOR OP_C) */
|
---|
95 | for (i = 0; i < 16; i++)
|
---|
96 | tmp1[i] = _rand[i] ^ opc[i];
|
---|
97 | if (aes_128_encrypt_block(k, tmp1, tmp2))
|
---|
98 | return -1;
|
---|
99 |
|
---|
100 | /* OUT2 = E_K(rot(TEMP XOR OP_C, r2) XOR c2) XOR OP_C */
|
---|
101 | /* OUT3 = E_K(rot(TEMP XOR OP_C, r3) XOR c3) XOR OP_C */
|
---|
102 | /* OUT4 = E_K(rot(TEMP XOR OP_C, r4) XOR c4) XOR OP_C */
|
---|
103 | /* OUT5 = E_K(rot(TEMP XOR OP_C, r5) XOR c5) XOR OP_C */
|
---|
104 |
|
---|
105 | /* f2 and f5 */
|
---|
106 | /* rotate by r2 (= 0, i.e., NOP) */
|
---|
107 | for (i = 0; i < 16; i++)
|
---|
108 | tmp1[i] = tmp2[i] ^ opc[i];
|
---|
109 | tmp1[15] ^= 1; /* XOR c2 (= ..01) */
|
---|
110 | /* f5 || f2 = E_K(tmp1) XOR OP_c */
|
---|
111 | if (aes_128_encrypt_block(k, tmp1, tmp3))
|
---|
112 | return -1;
|
---|
113 | for (i = 0; i < 16; i++)
|
---|
114 | tmp3[i] ^= opc[i];
|
---|
115 | if (res)
|
---|
116 | os_memcpy(res, tmp3 + 8, 8); /* f2 */
|
---|
117 | if (ak)
|
---|
118 | os_memcpy(ak, tmp3, 6); /* f5 */
|
---|
119 |
|
---|
120 | /* f3 */
|
---|
121 | if (ck) {
|
---|
122 | /* rotate by r3 = 0x20 = 4 bytes */
|
---|
123 | for (i = 0; i < 16; i++)
|
---|
124 | tmp1[(i + 12) % 16] = tmp2[i] ^ opc[i];
|
---|
125 | tmp1[15] ^= 2; /* XOR c3 (= ..02) */
|
---|
126 | if (aes_128_encrypt_block(k, tmp1, ck))
|
---|
127 | return -1;
|
---|
128 | for (i = 0; i < 16; i++)
|
---|
129 | ck[i] ^= opc[i];
|
---|
130 | }
|
---|
131 |
|
---|
132 | /* f4 */
|
---|
133 | if (ik) {
|
---|
134 | /* rotate by r4 = 0x40 = 8 bytes */
|
---|
135 | for (i = 0; i < 16; i++)
|
---|
136 | tmp1[(i + 8) % 16] = tmp2[i] ^ opc[i];
|
---|
137 | tmp1[15] ^= 4; /* XOR c4 (= ..04) */
|
---|
138 | if (aes_128_encrypt_block(k, tmp1, ik))
|
---|
139 | return -1;
|
---|
140 | for (i = 0; i < 16; i++)
|
---|
141 | ik[i] ^= opc[i];
|
---|
142 | }
|
---|
143 |
|
---|
144 | /* f5* */
|
---|
145 | if (akstar) {
|
---|
146 | /* rotate by r5 = 0x60 = 12 bytes */
|
---|
147 | for (i = 0; i < 16; i++)
|
---|
148 | tmp1[(i + 4) % 16] = tmp2[i] ^ opc[i];
|
---|
149 | tmp1[15] ^= 8; /* XOR c5 (= ..08) */
|
---|
150 | if (aes_128_encrypt_block(k, tmp1, tmp1))
|
---|
151 | return -1;
|
---|
152 | for (i = 0; i < 6; i++)
|
---|
153 | akstar[i] = tmp1[i] ^ opc[i];
|
---|
154 | }
|
---|
155 |
|
---|
156 | return 0;
|
---|
157 | }
|
---|
158 |
|
---|
159 |
|
---|
160 | /**
|
---|
161 | * milenage_generate - Generate AKA AUTN,IK,CK,RES
|
---|
162 | * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
|
---|
163 | * @amf: AMF = 16-bit authentication management field
|
---|
164 | * @k: K = 128-bit subscriber key
|
---|
165 | * @sqn: SQN = 48-bit sequence number
|
---|
166 | * @_rand: RAND = 128-bit random challenge
|
---|
167 | * @autn: Buffer for AUTN = 128-bit authentication token
|
---|
168 | * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
|
---|
169 | * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
|
---|
170 | * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
|
---|
171 | * @res_len: Max length for res; set to used length or 0 on failure
|
---|
172 | */
|
---|
173 | void milenage_generate(const u8 *opc, const u8 *amf, const u8 *k,
|
---|
174 | const u8 *sqn, const u8 *_rand, u8 *autn, u8 *ik,
|
---|
175 | u8 *ck, u8 *res, size_t *res_len)
|
---|
176 | {
|
---|
177 | int i;
|
---|
178 | u8 mac_a[8], ak[6];
|
---|
179 |
|
---|
180 | if (*res_len < 8) {
|
---|
181 | *res_len = 0;
|
---|
182 | return;
|
---|
183 | }
|
---|
184 | if (milenage_f1(opc, k, _rand, sqn, amf, mac_a, NULL) ||
|
---|
185 | milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL)) {
|
---|
186 | *res_len = 0;
|
---|
187 | return;
|
---|
188 | }
|
---|
189 | *res_len = 8;
|
---|
190 |
|
---|
191 | /* AUTN = (SQN ^ AK) || AMF || MAC */
|
---|
192 | for (i = 0; i < 6; i++)
|
---|
193 | autn[i] = sqn[i] ^ ak[i];
|
---|
194 | os_memcpy(autn + 6, amf, 2);
|
---|
195 | os_memcpy(autn + 8, mac_a, 8);
|
---|
196 | }
|
---|
197 |
|
---|
198 |
|
---|
199 | /**
|
---|
200 | * milenage_auts - Milenage AUTS validation
|
---|
201 | * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
|
---|
202 | * @k: K = 128-bit subscriber key
|
---|
203 | * @_rand: RAND = 128-bit random challenge
|
---|
204 | * @auts: AUTS = 112-bit authentication token from client
|
---|
205 | * @sqn: Buffer for SQN = 48-bit sequence number
|
---|
206 | * Returns: 0 = success (sqn filled), -1 on failure
|
---|
207 | */
|
---|
208 | int milenage_auts(const u8 *opc, const u8 *k, const u8 *_rand, const u8 *auts,
|
---|
209 | u8 *sqn)
|
---|
210 | {
|
---|
211 | u8 amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
|
---|
212 | u8 ak[6], mac_s[8];
|
---|
213 | int i;
|
---|
214 |
|
---|
215 | if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))
|
---|
216 | return -1;
|
---|
217 | for (i = 0; i < 6; i++)
|
---|
218 | sqn[i] = auts[i] ^ ak[i];
|
---|
219 | if (milenage_f1(opc, k, _rand, sqn, amf, NULL, mac_s) ||
|
---|
220 | memcmp(mac_s, auts + 6, 8) != 0)
|
---|
221 | return -1;
|
---|
222 | return 0;
|
---|
223 | }
|
---|
224 |
|
---|
225 |
|
---|
226 | /**
|
---|
227 | * gsm_milenage - Generate GSM-Milenage (3GPP TS 55.205) authentication triplet
|
---|
228 | * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
|
---|
229 | * @k: K = 128-bit subscriber key
|
---|
230 | * @_rand: RAND = 128-bit random challenge
|
---|
231 | * @sres: Buffer for SRES = 32-bit SRES
|
---|
232 | * @kc: Buffer for Kc = 64-bit Kc
|
---|
233 | * Returns: 0 on success, -1 on failure
|
---|
234 | */
|
---|
235 | int gsm_milenage(const u8 *opc, const u8 *k, const u8 *_rand, u8 *sres, u8 *kc)
|
---|
236 | {
|
---|
237 | u8 res[8], ck[16], ik[16];
|
---|
238 | int i;
|
---|
239 |
|
---|
240 | if (milenage_f2345(opc, k, _rand, res, ck, ik, NULL, NULL))
|
---|
241 | return -1;
|
---|
242 |
|
---|
243 | for (i = 0; i < 8; i++)
|
---|
244 | kc[i] = ck[i] ^ ck[i + 8] ^ ik[i] ^ ik[i + 8];
|
---|
245 |
|
---|
246 | #ifdef GSM_MILENAGE_ALT_SRES
|
---|
247 | os_memcpy(sres, res, 4);
|
---|
248 | #else /* GSM_MILENAGE_ALT_SRES */
|
---|
249 | for (i = 0; i < 4; i++)
|
---|
250 | sres[i] = res[i] ^ res[i + 4];
|
---|
251 | #endif /* GSM_MILENAGE_ALT_SRES */
|
---|
252 | return 0;
|
---|
253 | }
|
---|
254 |
|
---|
255 |
|
---|
256 | /**
|
---|
257 | * milenage_generate - Generate AKA AUTN,IK,CK,RES
|
---|
258 | * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
|
---|
259 | * @k: K = 128-bit subscriber key
|
---|
260 | * @sqn: SQN = 48-bit sequence number
|
---|
261 | * @_rand: RAND = 128-bit random challenge
|
---|
262 | * @autn: AUTN = 128-bit authentication token
|
---|
263 | * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
|
---|
264 | * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
|
---|
265 | * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
|
---|
266 | * @res_len: Variable that will be set to RES length
|
---|
267 | * @auts: 112-bit buffer for AUTS
|
---|
268 | * Returns: 0 on success, -1 on failure, or -2 on synchronization failure
|
---|
269 | */
|
---|
270 | int milenage_check(const u8 *opc, const u8 *k, const u8 *sqn, const u8 *_rand,
|
---|
271 | const u8 *autn, u8 *ik, u8 *ck, u8 *res, size_t *res_len,
|
---|
272 | u8 *auts)
|
---|
273 | {
|
---|
274 | int i;
|
---|
275 | u8 mac_a[8], ak[6], rx_sqn[6];
|
---|
276 | const u8 *amf;
|
---|
277 |
|
---|
278 | wpa_hexdump(MSG_DEBUG, "Milenage: AUTN", autn, 16);
|
---|
279 | wpa_hexdump(MSG_DEBUG, "Milenage: RAND", _rand, 16);
|
---|
280 |
|
---|
281 | if (milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL))
|
---|
282 | return -1;
|
---|
283 |
|
---|
284 | *res_len = 8;
|
---|
285 | wpa_hexdump_key(MSG_DEBUG, "Milenage: RES", res, *res_len);
|
---|
286 | wpa_hexdump_key(MSG_DEBUG, "Milenage: CK", ck, 16);
|
---|
287 | wpa_hexdump_key(MSG_DEBUG, "Milenage: IK", ik, 16);
|
---|
288 | wpa_hexdump_key(MSG_DEBUG, "Milenage: AK", ak, 6);
|
---|
289 |
|
---|
290 | /* AUTN = (SQN ^ AK) || AMF || MAC */
|
---|
291 | for (i = 0; i < 6; i++)
|
---|
292 | rx_sqn[i] = autn[i] ^ ak[i];
|
---|
293 | wpa_hexdump(MSG_DEBUG, "Milenage: SQN", rx_sqn, 6);
|
---|
294 |
|
---|
295 | if (os_memcmp(rx_sqn, sqn, 6) <= 0) {
|
---|
296 | u8 auts_amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
|
---|
297 | if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))
|
---|
298 | return -1;
|
---|
299 | wpa_hexdump_key(MSG_DEBUG, "Milenage: AK*", ak, 6);
|
---|
300 | for (i = 0; i < 6; i++)
|
---|
301 | auts[i] = sqn[i] ^ ak[i];
|
---|
302 | if (milenage_f1(opc, k, _rand, sqn, auts_amf, NULL, auts + 6))
|
---|
303 | return -1;
|
---|
304 | wpa_hexdump(MSG_DEBUG, "Milenage: AUTS", auts, 14);
|
---|
305 | return -2;
|
---|
306 | }
|
---|
307 |
|
---|
308 | amf = autn + 6;
|
---|
309 | wpa_hexdump(MSG_DEBUG, "Milenage: AMF", amf, 2);
|
---|
310 | if (milenage_f1(opc, k, _rand, rx_sqn, amf, mac_a, NULL))
|
---|
311 | return -1;
|
---|
312 |
|
---|
313 | wpa_hexdump(MSG_DEBUG, "Milenage: MAC_A", mac_a, 8);
|
---|
314 |
|
---|
315 | if (os_memcmp(mac_a, autn + 8, 8) != 0) {
|
---|
316 | wpa_printf(MSG_DEBUG, "Milenage: MAC mismatch");
|
---|
317 | wpa_hexdump(MSG_DEBUG, "Milenage: Received MAC_A",
|
---|
318 | autn + 8, 8);
|
---|
319 | return -1;
|
---|
320 | }
|
---|
321 |
|
---|
322 | return 0;
|
---|
323 | }
|
---|