1 | /* ssl/s3_cbc.c */
|
---|
2 | /* ====================================================================
|
---|
3 | * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * 1. Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | *
|
---|
12 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in
|
---|
14 | * the documentation and/or other materials provided with the
|
---|
15 | * distribution.
|
---|
16 | *
|
---|
17 | * 3. All advertising materials mentioning features or use of this
|
---|
18 | * software must display the following acknowledgment:
|
---|
19 | * "This product includes software developed by the OpenSSL Project
|
---|
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
---|
21 | *
|
---|
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
---|
23 | * endorse or promote products derived from this software without
|
---|
24 | * prior written permission. For written permission, please contact
|
---|
25 | * openssl-core@openssl.org.
|
---|
26 | *
|
---|
27 | * 5. Products derived from this software may not be called "OpenSSL"
|
---|
28 | * nor may "OpenSSL" appear in their names without prior written
|
---|
29 | * permission of the OpenSSL Project.
|
---|
30 | *
|
---|
31 | * 6. Redistributions of any form whatsoever must retain the following
|
---|
32 | * acknowledgment:
|
---|
33 | * "This product includes software developed by the OpenSSL Project
|
---|
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
---|
35 | *
|
---|
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
---|
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
---|
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
---|
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
---|
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
---|
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
---|
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
---|
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
---|
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
---|
47 | * OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
48 | * ====================================================================
|
---|
49 | *
|
---|
50 | * This product includes cryptographic software written by Eric Young
|
---|
51 | * (eay@cryptsoft.com). This product includes software written by Tim
|
---|
52 | * Hudson (tjh@cryptsoft.com).
|
---|
53 | *
|
---|
54 | */
|
---|
55 |
|
---|
56 | #include "ssl_locl.h"
|
---|
57 |
|
---|
58 | #include <openssl/md5.h>
|
---|
59 | #include <openssl/sha.h>
|
---|
60 |
|
---|
61 | /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
|
---|
62 | * field. (SHA-384/512 have 128-bit length.) */
|
---|
63 | #define MAX_HASH_BIT_COUNT_BYTES 16
|
---|
64 |
|
---|
65 | /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
|
---|
66 | * Currently SHA-384/512 has a 128-byte block size and that's the largest
|
---|
67 | * supported by TLS.) */
|
---|
68 | #define MAX_HASH_BLOCK_SIZE 128
|
---|
69 |
|
---|
70 | /* Some utility functions are needed:
|
---|
71 | *
|
---|
72 | * These macros return the given value with the MSB copied to all the other
|
---|
73 | * bits. They use the fact that arithmetic shift shifts-in the sign bit.
|
---|
74 | * However, this is not ensured by the C standard so you may need to replace
|
---|
75 | * them with something else on odd CPUs. */
|
---|
76 | #define DUPLICATE_MSB_TO_ALL(x) ( (unsigned)( (int)(x) >> (sizeof(int)*8-1) ) )
|
---|
77 | #define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
|
---|
78 |
|
---|
79 | /* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
|
---|
80 | static unsigned constant_time_lt(unsigned a, unsigned b)
|
---|
81 | {
|
---|
82 | a -= b;
|
---|
83 | return DUPLICATE_MSB_TO_ALL(a);
|
---|
84 | }
|
---|
85 |
|
---|
86 | /* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
|
---|
87 | static unsigned constant_time_ge(unsigned a, unsigned b)
|
---|
88 | {
|
---|
89 | a -= b;
|
---|
90 | return DUPLICATE_MSB_TO_ALL(~a);
|
---|
91 | }
|
---|
92 |
|
---|
93 | /* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
|
---|
94 | static unsigned char constant_time_eq_8(unsigned a, unsigned b)
|
---|
95 | {
|
---|
96 | unsigned c = a ^ b;
|
---|
97 | c--;
|
---|
98 | return DUPLICATE_MSB_TO_ALL_8(c);
|
---|
99 | }
|
---|
100 |
|
---|
101 | /* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
|
---|
102 | * record in |rec| by updating |rec->length| in constant time.
|
---|
103 | *
|
---|
104 | * block_size: the block size of the cipher used to encrypt the record.
|
---|
105 | * returns:
|
---|
106 | * 0: (in non-constant time) if the record is publicly invalid.
|
---|
107 | * 1: if the padding was valid
|
---|
108 | * -1: otherwise. */
|
---|
109 | int ssl3_cbc_remove_padding(const SSL* s,
|
---|
110 | SSL3_RECORD *rec,
|
---|
111 | unsigned block_size,
|
---|
112 | unsigned mac_size)
|
---|
113 | {
|
---|
114 | unsigned padding_length, good;
|
---|
115 | const unsigned overhead = 1 /* padding length byte */ + mac_size;
|
---|
116 |
|
---|
117 | /* These lengths are all public so we can test them in non-constant
|
---|
118 | * time. */
|
---|
119 | if (overhead > rec->length)
|
---|
120 | return 0;
|
---|
121 |
|
---|
122 | padding_length = rec->data[rec->length-1];
|
---|
123 | good = constant_time_ge(rec->length, padding_length+overhead);
|
---|
124 | /* SSLv3 requires that the padding is minimal. */
|
---|
125 | good &= constant_time_ge(block_size, padding_length+1);
|
---|
126 | padding_length = good & (padding_length+1);
|
---|
127 | rec->length -= padding_length;
|
---|
128 | rec->type |= padding_length<<8; /* kludge: pass padding length */
|
---|
129 | return (int)((good & 1) | (~good & -1));
|
---|
130 | }
|
---|
131 |
|
---|
132 | /* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
|
---|
133 | * record in |rec| in constant time and returns 1 if the padding is valid and
|
---|
134 | * -1 otherwise. It also removes any explicit IV from the start of the record
|
---|
135 | * without leaking any timing about whether there was enough space after the
|
---|
136 | * padding was removed.
|
---|
137 | *
|
---|
138 | * block_size: the block size of the cipher used to encrypt the record.
|
---|
139 | * returns:
|
---|
140 | * 0: (in non-constant time) if the record is publicly invalid.
|
---|
141 | * 1: if the padding was valid
|
---|
142 | * -1: otherwise. */
|
---|
143 | int tls1_cbc_remove_padding(const SSL* s,
|
---|
144 | SSL3_RECORD *rec,
|
---|
145 | unsigned block_size,
|
---|
146 | unsigned mac_size)
|
---|
147 | {
|
---|
148 | unsigned padding_length, good, to_check, i;
|
---|
149 | const unsigned overhead = 1 /* padding length byte */ + mac_size;
|
---|
150 | /* Check if version requires explicit IV */
|
---|
151 | if (s->version == DTLS1_VERSION || s->version == DTLS1_BAD_VER)
|
---|
152 | {
|
---|
153 | /* These lengths are all public so we can test them in
|
---|
154 | * non-constant time.
|
---|
155 | */
|
---|
156 | if (overhead + block_size > rec->length)
|
---|
157 | return 0;
|
---|
158 | /* We can now safely skip explicit IV */
|
---|
159 | rec->data += block_size;
|
---|
160 | rec->input += block_size;
|
---|
161 | rec->length -= block_size;
|
---|
162 | }
|
---|
163 | else if (overhead > rec->length)
|
---|
164 | return 0;
|
---|
165 |
|
---|
166 | padding_length = rec->data[rec->length-1];
|
---|
167 |
|
---|
168 | /* NB: if compression is in operation the first packet may not be of
|
---|
169 | * even length so the padding bug check cannot be performed. This bug
|
---|
170 | * workaround has been around since SSLeay so hopefully it is either
|
---|
171 | * fixed now or no buggy implementation supports compression [steve]
|
---|
172 | */
|
---|
173 | if ( (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand)
|
---|
174 | {
|
---|
175 | /* First packet is even in size, so check */
|
---|
176 | if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",8) == 0) &&
|
---|
177 | !(padding_length & 1))
|
---|
178 | {
|
---|
179 | s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG;
|
---|
180 | }
|
---|
181 | if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) &&
|
---|
182 | padding_length > 0)
|
---|
183 | {
|
---|
184 | padding_length--;
|
---|
185 | }
|
---|
186 | }
|
---|
187 |
|
---|
188 | good = constant_time_ge(rec->length, overhead+padding_length);
|
---|
189 | /* The padding consists of a length byte at the end of the record and
|
---|
190 | * then that many bytes of padding, all with the same value as the
|
---|
191 | * length byte. Thus, with the length byte included, there are i+1
|
---|
192 | * bytes of padding.
|
---|
193 | *
|
---|
194 | * We can't check just |padding_length+1| bytes because that leaks
|
---|
195 | * decrypted information. Therefore we always have to check the maximum
|
---|
196 | * amount of padding possible. (Again, the length of the record is
|
---|
197 | * public information so we can use it.) */
|
---|
198 | to_check = 255; /* maximum amount of padding. */
|
---|
199 | if (to_check > rec->length-1)
|
---|
200 | to_check = rec->length-1;
|
---|
201 |
|
---|
202 | for (i = 0; i < to_check; i++)
|
---|
203 | {
|
---|
204 | unsigned char mask = constant_time_ge(padding_length, i);
|
---|
205 | unsigned char b = rec->data[rec->length-1-i];
|
---|
206 | /* The final |padding_length+1| bytes should all have the value
|
---|
207 | * |padding_length|. Therefore the XOR should be zero. */
|
---|
208 | good &= ~(mask&(padding_length ^ b));
|
---|
209 | }
|
---|
210 |
|
---|
211 | /* If any of the final |padding_length+1| bytes had the wrong value,
|
---|
212 | * one or more of the lower eight bits of |good| will be cleared. We
|
---|
213 | * AND the bottom 8 bits together and duplicate the result to all the
|
---|
214 | * bits. */
|
---|
215 | good &= good >> 4;
|
---|
216 | good &= good >> 2;
|
---|
217 | good &= good >> 1;
|
---|
218 | good <<= sizeof(good)*8-1;
|
---|
219 | good = DUPLICATE_MSB_TO_ALL(good);
|
---|
220 |
|
---|
221 | padding_length = good & (padding_length+1);
|
---|
222 | rec->length -= padding_length;
|
---|
223 | rec->type |= padding_length<<8; /* kludge: pass padding length */
|
---|
224 |
|
---|
225 | return (int)((good & 1) | (~good & -1));
|
---|
226 | }
|
---|
227 |
|
---|
228 | /* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
|
---|
229 | * constant time (independent of the concrete value of rec->length, which may
|
---|
230 | * vary within a 256-byte window).
|
---|
231 | *
|
---|
232 | * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
|
---|
233 | * this function.
|
---|
234 | *
|
---|
235 | * On entry:
|
---|
236 | * rec->orig_len >= md_size
|
---|
237 | * md_size <= EVP_MAX_MD_SIZE
|
---|
238 | *
|
---|
239 | * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
|
---|
240 | * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
|
---|
241 | * a single or pair of cache-lines, then the variable memory accesses don't
|
---|
242 | * actually affect the timing. CPUs with smaller cache-lines [if any] are
|
---|
243 | * not multi-core and are not considered vulnerable to cache-timing attacks.
|
---|
244 | */
|
---|
245 | #define CBC_MAC_ROTATE_IN_PLACE
|
---|
246 |
|
---|
247 | void ssl3_cbc_copy_mac(unsigned char* out,
|
---|
248 | const SSL3_RECORD *rec,
|
---|
249 | unsigned md_size,unsigned orig_len)
|
---|
250 | {
|
---|
251 | #if defined(CBC_MAC_ROTATE_IN_PLACE)
|
---|
252 | unsigned char rotated_mac_buf[64+EVP_MAX_MD_SIZE];
|
---|
253 | unsigned char *rotated_mac;
|
---|
254 | #else
|
---|
255 | unsigned char rotated_mac[EVP_MAX_MD_SIZE];
|
---|
256 | #endif
|
---|
257 |
|
---|
258 | /* mac_end is the index of |rec->data| just after the end of the MAC. */
|
---|
259 | unsigned mac_end = rec->length;
|
---|
260 | unsigned mac_start = mac_end - md_size;
|
---|
261 | /* scan_start contains the number of bytes that we can ignore because
|
---|
262 | * the MAC's position can only vary by 255 bytes. */
|
---|
263 | unsigned scan_start = 0;
|
---|
264 | unsigned i, j;
|
---|
265 | unsigned div_spoiler;
|
---|
266 | unsigned rotate_offset;
|
---|
267 |
|
---|
268 | OPENSSL_assert(orig_len >= md_size);
|
---|
269 | OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
|
---|
270 |
|
---|
271 | #if defined(CBC_MAC_ROTATE_IN_PLACE)
|
---|
272 | rotated_mac = rotated_mac_buf + ((0-(size_t)rotated_mac_buf)&63);
|
---|
273 | #endif
|
---|
274 |
|
---|
275 | /* This information is public so it's safe to branch based on it. */
|
---|
276 | if (orig_len > md_size + 255 + 1)
|
---|
277 | scan_start = orig_len - (md_size + 255 + 1);
|
---|
278 | /* div_spoiler contains a multiple of md_size that is used to cause the
|
---|
279 | * modulo operation to be constant time. Without this, the time varies
|
---|
280 | * based on the amount of padding when running on Intel chips at least.
|
---|
281 | *
|
---|
282 | * The aim of right-shifting md_size is so that the compiler doesn't
|
---|
283 | * figure out that it can remove div_spoiler as that would require it
|
---|
284 | * to prove that md_size is always even, which I hope is beyond it. */
|
---|
285 | div_spoiler = md_size >> 1;
|
---|
286 | div_spoiler <<= (sizeof(div_spoiler)-1)*8;
|
---|
287 | rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
|
---|
288 |
|
---|
289 | memset(rotated_mac, 0, md_size);
|
---|
290 | for (i = scan_start, j = 0; i < orig_len; i++)
|
---|
291 | {
|
---|
292 | unsigned char mac_started = constant_time_ge(i, mac_start);
|
---|
293 | unsigned char mac_ended = constant_time_ge(i, mac_end);
|
---|
294 | unsigned char b = rec->data[i];
|
---|
295 | rotated_mac[j++] |= b & mac_started & ~mac_ended;
|
---|
296 | j &= constant_time_lt(j,md_size);
|
---|
297 | }
|
---|
298 |
|
---|
299 | /* Now rotate the MAC */
|
---|
300 | #if defined(CBC_MAC_ROTATE_IN_PLACE)
|
---|
301 | j = 0;
|
---|
302 | for (i = 0; i < md_size; i++)
|
---|
303 | {
|
---|
304 | /* in case cache-line is 32 bytes, touch second line */
|
---|
305 | ((volatile unsigned char *)rotated_mac)[rotate_offset^32];
|
---|
306 | out[j++] = rotated_mac[rotate_offset++];
|
---|
307 | rotate_offset &= constant_time_lt(rotate_offset,md_size);
|
---|
308 | }
|
---|
309 | #else
|
---|
310 | memset(out, 0, md_size);
|
---|
311 | rotate_offset = md_size - rotate_offset;
|
---|
312 | rotate_offset &= constant_time_lt(rotate_offset,md_size);
|
---|
313 | for (i = 0; i < md_size; i++)
|
---|
314 | {
|
---|
315 | for (j = 0; j < md_size; j++)
|
---|
316 | out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
|
---|
317 | rotate_offset++;
|
---|
318 | rotate_offset &= constant_time_lt(rotate_offset,md_size);
|
---|
319 | }
|
---|
320 | #endif
|
---|
321 | }
|
---|
322 |
|
---|
323 | /* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
|
---|
324 | * little-endian order. The value of p is advanced by four. */
|
---|
325 | #define u32toLE(n, p) \
|
---|
326 | (*((p)++)=(unsigned char)(n), \
|
---|
327 | *((p)++)=(unsigned char)(n>>8), \
|
---|
328 | *((p)++)=(unsigned char)(n>>16), \
|
---|
329 | *((p)++)=(unsigned char)(n>>24))
|
---|
330 |
|
---|
331 | /* These functions serialize the state of a hash and thus perform the standard
|
---|
332 | * "final" operation without adding the padding and length that such a function
|
---|
333 | * typically does. */
|
---|
334 | static void tls1_md5_final_raw(void* ctx, unsigned char *md_out)
|
---|
335 | {
|
---|
336 | MD5_CTX *md5 = ctx;
|
---|
337 | u32toLE(md5->A, md_out);
|
---|
338 | u32toLE(md5->B, md_out);
|
---|
339 | u32toLE(md5->C, md_out);
|
---|
340 | u32toLE(md5->D, md_out);
|
---|
341 | }
|
---|
342 |
|
---|
343 | static void tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
|
---|
344 | {
|
---|
345 | SHA_CTX *sha1 = ctx;
|
---|
346 | l2n(sha1->h0, md_out);
|
---|
347 | l2n(sha1->h1, md_out);
|
---|
348 | l2n(sha1->h2, md_out);
|
---|
349 | l2n(sha1->h3, md_out);
|
---|
350 | l2n(sha1->h4, md_out);
|
---|
351 | }
|
---|
352 | #define LARGEST_DIGEST_CTX SHA_CTX
|
---|
353 |
|
---|
354 | #ifndef OPENSSL_NO_SHA256
|
---|
355 | static void tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
|
---|
356 | {
|
---|
357 | SHA256_CTX *sha256 = ctx;
|
---|
358 | unsigned i;
|
---|
359 |
|
---|
360 | for (i = 0; i < 8; i++)
|
---|
361 | {
|
---|
362 | l2n(sha256->h[i], md_out);
|
---|
363 | }
|
---|
364 | }
|
---|
365 | #undef LARGEST_DIGEST_CTX
|
---|
366 | #define LARGEST_DIGEST_CTX SHA256_CTX
|
---|
367 | #endif
|
---|
368 |
|
---|
369 | #ifndef OPENSSL_NO_SHA512
|
---|
370 | static void tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
|
---|
371 | {
|
---|
372 | SHA512_CTX *sha512 = ctx;
|
---|
373 | unsigned i;
|
---|
374 |
|
---|
375 | for (i = 0; i < 8; i++)
|
---|
376 | {
|
---|
377 | l2n8(sha512->h[i], md_out);
|
---|
378 | }
|
---|
379 | }
|
---|
380 | #undef LARGEST_DIGEST_CTX
|
---|
381 | #define LARGEST_DIGEST_CTX SHA512_CTX
|
---|
382 | #endif
|
---|
383 |
|
---|
384 | /* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
|
---|
385 | * which ssl3_cbc_digest_record supports. */
|
---|
386 | char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
|
---|
387 | {
|
---|
388 | switch (ctx->digest->type)
|
---|
389 | {
|
---|
390 | case NID_md5:
|
---|
391 | case NID_sha1:
|
---|
392 | #ifndef OPENSSL_NO_SHA256
|
---|
393 | case NID_sha224:
|
---|
394 | case NID_sha256:
|
---|
395 | #endif
|
---|
396 | #ifndef OPENSSL_NO_SHA512
|
---|
397 | case NID_sha384:
|
---|
398 | case NID_sha512:
|
---|
399 | #endif
|
---|
400 | return 1;
|
---|
401 | default:
|
---|
402 | return 0;
|
---|
403 | }
|
---|
404 | }
|
---|
405 |
|
---|
406 | /* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
|
---|
407 | * record.
|
---|
408 | *
|
---|
409 | * ctx: the EVP_MD_CTX from which we take the hash function.
|
---|
410 | * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
|
---|
411 | * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
|
---|
412 | * md_out_size: if non-NULL, the number of output bytes is written here.
|
---|
413 | * header: the 13-byte, TLS record header.
|
---|
414 | * data: the record data itself, less any preceeding explicit IV.
|
---|
415 | * data_plus_mac_size: the secret, reported length of the data and MAC
|
---|
416 | * once the padding has been removed.
|
---|
417 | * data_plus_mac_plus_padding_size: the public length of the whole
|
---|
418 | * record, including padding.
|
---|
419 | * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
|
---|
420 | *
|
---|
421 | * On entry: by virtue of having been through one of the remove_padding
|
---|
422 | * functions, above, we know that data_plus_mac_size is large enough to contain
|
---|
423 | * a padding byte and MAC. (If the padding was invalid, it might contain the
|
---|
424 | * padding too. ) */
|
---|
425 | void ssl3_cbc_digest_record(
|
---|
426 | const EVP_MD_CTX *ctx,
|
---|
427 | unsigned char* md_out,
|
---|
428 | size_t* md_out_size,
|
---|
429 | const unsigned char header[13],
|
---|
430 | const unsigned char *data,
|
---|
431 | size_t data_plus_mac_size,
|
---|
432 | size_t data_plus_mac_plus_padding_size,
|
---|
433 | const unsigned char *mac_secret,
|
---|
434 | unsigned mac_secret_length,
|
---|
435 | char is_sslv3)
|
---|
436 | {
|
---|
437 | union { double align;
|
---|
438 | unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; } md_state;
|
---|
439 | void (*md_final_raw)(void *ctx, unsigned char *md_out);
|
---|
440 | void (*md_transform)(void *ctx, const unsigned char *block);
|
---|
441 | unsigned md_size, md_block_size = 64;
|
---|
442 | unsigned sslv3_pad_length = 40, header_length, variance_blocks,
|
---|
443 | len, max_mac_bytes, num_blocks,
|
---|
444 | num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
|
---|
445 | unsigned int bits; /* at most 18 bits */
|
---|
446 | unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
|
---|
447 | /* hmac_pad is the masked HMAC key. */
|
---|
448 | unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
|
---|
449 | unsigned char first_block[MAX_HASH_BLOCK_SIZE];
|
---|
450 | unsigned char mac_out[EVP_MAX_MD_SIZE];
|
---|
451 | unsigned i, j, md_out_size_u;
|
---|
452 | EVP_MD_CTX md_ctx;
|
---|
453 | /* mdLengthSize is the number of bytes in the length field that terminates
|
---|
454 | * the hash. */
|
---|
455 | unsigned md_length_size = 8;
|
---|
456 | char length_is_big_endian = 1;
|
---|
457 |
|
---|
458 | /* This is a, hopefully redundant, check that allows us to forget about
|
---|
459 | * many possible overflows later in this function. */
|
---|
460 | OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
|
---|
461 |
|
---|
462 | switch (ctx->digest->type)
|
---|
463 | {
|
---|
464 | case NID_md5:
|
---|
465 | MD5_Init((MD5_CTX*)md_state.c);
|
---|
466 | md_final_raw = tls1_md5_final_raw;
|
---|
467 | md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
|
---|
468 | md_size = 16;
|
---|
469 | sslv3_pad_length = 48;
|
---|
470 | length_is_big_endian = 0;
|
---|
471 | break;
|
---|
472 | case NID_sha1:
|
---|
473 | SHA1_Init((SHA_CTX*)md_state.c);
|
---|
474 | md_final_raw = tls1_sha1_final_raw;
|
---|
475 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
|
---|
476 | md_size = 20;
|
---|
477 | break;
|
---|
478 | #ifndef OPENSSL_NO_SHA256
|
---|
479 | case NID_sha224:
|
---|
480 | SHA224_Init((SHA256_CTX*)md_state.c);
|
---|
481 | md_final_raw = tls1_sha256_final_raw;
|
---|
482 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
|
---|
483 | md_size = 224/8;
|
---|
484 | break;
|
---|
485 | case NID_sha256:
|
---|
486 | SHA256_Init((SHA256_CTX*)md_state.c);
|
---|
487 | md_final_raw = tls1_sha256_final_raw;
|
---|
488 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
|
---|
489 | md_size = 32;
|
---|
490 | break;
|
---|
491 | #endif
|
---|
492 | #ifndef OPENSSL_NO_SHA512
|
---|
493 | case NID_sha384:
|
---|
494 | SHA384_Init((SHA512_CTX*)md_state.c);
|
---|
495 | md_final_raw = tls1_sha512_final_raw;
|
---|
496 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
|
---|
497 | md_size = 384/8;
|
---|
498 | md_block_size = 128;
|
---|
499 | md_length_size = 16;
|
---|
500 | break;
|
---|
501 | case NID_sha512:
|
---|
502 | SHA512_Init((SHA512_CTX*)md_state.c);
|
---|
503 | md_final_raw = tls1_sha512_final_raw;
|
---|
504 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
|
---|
505 | md_size = 64;
|
---|
506 | md_block_size = 128;
|
---|
507 | md_length_size = 16;
|
---|
508 | break;
|
---|
509 | #endif
|
---|
510 | default:
|
---|
511 | /* ssl3_cbc_record_digest_supported should have been
|
---|
512 | * called first to check that the hash function is
|
---|
513 | * supported. */
|
---|
514 | OPENSSL_assert(0);
|
---|
515 | if (md_out_size)
|
---|
516 | *md_out_size = -1;
|
---|
517 | return;
|
---|
518 | }
|
---|
519 |
|
---|
520 | OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
|
---|
521 | OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
|
---|
522 | OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
|
---|
523 |
|
---|
524 | header_length = 13;
|
---|
525 | if (is_sslv3)
|
---|
526 | {
|
---|
527 | header_length =
|
---|
528 | mac_secret_length +
|
---|
529 | sslv3_pad_length +
|
---|
530 | 8 /* sequence number */ +
|
---|
531 | 1 /* record type */ +
|
---|
532 | 2 /* record length */;
|
---|
533 | }
|
---|
534 |
|
---|
535 | /* variance_blocks is the number of blocks of the hash that we have to
|
---|
536 | * calculate in constant time because they could be altered by the
|
---|
537 | * padding value.
|
---|
538 | *
|
---|
539 | * In SSLv3, the padding must be minimal so the end of the plaintext
|
---|
540 | * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
|
---|
541 | * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
|
---|
542 | * termination (0x80 + 64-bit length) don't fit in the final block, we
|
---|
543 | * say that the final two blocks can vary based on the padding.
|
---|
544 | *
|
---|
545 | * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
|
---|
546 | * required to be minimal. Therefore we say that the final six blocks
|
---|
547 | * can vary based on the padding.
|
---|
548 | *
|
---|
549 | * Later in the function, if the message is short and there obviously
|
---|
550 | * cannot be this many blocks then variance_blocks can be reduced. */
|
---|
551 | variance_blocks = is_sslv3 ? 2 : 6;
|
---|
552 | /* From now on we're dealing with the MAC, which conceptually has 13
|
---|
553 | * bytes of `header' before the start of the data (TLS) or 71/75 bytes
|
---|
554 | * (SSLv3) */
|
---|
555 | len = data_plus_mac_plus_padding_size + header_length;
|
---|
556 | /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
|
---|
557 | * |header|, assuming that there's no padding. */
|
---|
558 | max_mac_bytes = len - md_size - 1;
|
---|
559 | /* num_blocks is the maximum number of hash blocks. */
|
---|
560 | num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
|
---|
561 | /* In order to calculate the MAC in constant time we have to handle
|
---|
562 | * the final blocks specially because the padding value could cause the
|
---|
563 | * end to appear somewhere in the final |variance_blocks| blocks and we
|
---|
564 | * can't leak where. However, |num_starting_blocks| worth of data can
|
---|
565 | * be hashed right away because no padding value can affect whether
|
---|
566 | * they are plaintext. */
|
---|
567 | num_starting_blocks = 0;
|
---|
568 | /* k is the starting byte offset into the conceptual header||data where
|
---|
569 | * we start processing. */
|
---|
570 | k = 0;
|
---|
571 | /* mac_end_offset is the index just past the end of the data to be
|
---|
572 | * MACed. */
|
---|
573 | mac_end_offset = data_plus_mac_size + header_length - md_size;
|
---|
574 | /* c is the index of the 0x80 byte in the final hash block that
|
---|
575 | * contains application data. */
|
---|
576 | c = mac_end_offset % md_block_size;
|
---|
577 | /* index_a is the hash block number that contains the 0x80 terminating
|
---|
578 | * value. */
|
---|
579 | index_a = mac_end_offset / md_block_size;
|
---|
580 | /* index_b is the hash block number that contains the 64-bit hash
|
---|
581 | * length, in bits. */
|
---|
582 | index_b = (mac_end_offset + md_length_size) / md_block_size;
|
---|
583 | /* bits is the hash-length in bits. It includes the additional hash
|
---|
584 | * block for the masked HMAC key, or whole of |header| in the case of
|
---|
585 | * SSLv3. */
|
---|
586 |
|
---|
587 | /* For SSLv3, if we're going to have any starting blocks then we need
|
---|
588 | * at least two because the header is larger than a single block. */
|
---|
589 | if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0))
|
---|
590 | {
|
---|
591 | num_starting_blocks = num_blocks - variance_blocks;
|
---|
592 | k = md_block_size*num_starting_blocks;
|
---|
593 | }
|
---|
594 |
|
---|
595 | bits = 8*mac_end_offset;
|
---|
596 | if (!is_sslv3)
|
---|
597 | {
|
---|
598 | /* Compute the initial HMAC block. For SSLv3, the padding and
|
---|
599 | * secret bytes are included in |header| because they take more
|
---|
600 | * than a single block. */
|
---|
601 | bits += 8*md_block_size;
|
---|
602 | memset(hmac_pad, 0, md_block_size);
|
---|
603 | OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
|
---|
604 | memcpy(hmac_pad, mac_secret, mac_secret_length);
|
---|
605 | for (i = 0; i < md_block_size; i++)
|
---|
606 | hmac_pad[i] ^= 0x36;
|
---|
607 |
|
---|
608 | md_transform(md_state.c, hmac_pad);
|
---|
609 | }
|
---|
610 |
|
---|
611 | if (length_is_big_endian)
|
---|
612 | {
|
---|
613 | memset(length_bytes,0,md_length_size-4);
|
---|
614 | length_bytes[md_length_size-4] = (unsigned char)(bits>>24);
|
---|
615 | length_bytes[md_length_size-3] = (unsigned char)(bits>>16);
|
---|
616 | length_bytes[md_length_size-2] = (unsigned char)(bits>>8);
|
---|
617 | length_bytes[md_length_size-1] = (unsigned char)bits;
|
---|
618 | }
|
---|
619 | else
|
---|
620 | {
|
---|
621 | memset(length_bytes,0,md_length_size);
|
---|
622 | length_bytes[md_length_size-5] = (unsigned char)(bits>>24);
|
---|
623 | length_bytes[md_length_size-6] = (unsigned char)(bits>>16);
|
---|
624 | length_bytes[md_length_size-7] = (unsigned char)(bits>>8);
|
---|
625 | length_bytes[md_length_size-8] = (unsigned char)bits;
|
---|
626 | }
|
---|
627 |
|
---|
628 | if (k > 0)
|
---|
629 | {
|
---|
630 | if (is_sslv3)
|
---|
631 | {
|
---|
632 | /* The SSLv3 header is larger than a single block.
|
---|
633 | * overhang is the number of bytes beyond a single
|
---|
634 | * block that the header consumes: either 7 bytes
|
---|
635 | * (SHA1) or 11 bytes (MD5). */
|
---|
636 | unsigned overhang = header_length-md_block_size;
|
---|
637 | md_transform(md_state.c, header);
|
---|
638 | memcpy(first_block, header + md_block_size, overhang);
|
---|
639 | memcpy(first_block + overhang, data, md_block_size-overhang);
|
---|
640 | md_transform(md_state.c, first_block);
|
---|
641 | for (i = 1; i < k/md_block_size - 1; i++)
|
---|
642 | md_transform(md_state.c, data + md_block_size*i - overhang);
|
---|
643 | }
|
---|
644 | else
|
---|
645 | {
|
---|
646 | /* k is a multiple of md_block_size. */
|
---|
647 | memcpy(first_block, header, 13);
|
---|
648 | memcpy(first_block+13, data, md_block_size-13);
|
---|
649 | md_transform(md_state.c, first_block);
|
---|
650 | for (i = 1; i < k/md_block_size; i++)
|
---|
651 | md_transform(md_state.c, data + md_block_size*i - 13);
|
---|
652 | }
|
---|
653 | }
|
---|
654 |
|
---|
655 | memset(mac_out, 0, sizeof(mac_out));
|
---|
656 |
|
---|
657 | /* We now process the final hash blocks. For each block, we construct
|
---|
658 | * it in constant time. If the |i==index_a| then we'll include the 0x80
|
---|
659 | * bytes and zero pad etc. For each block we selectively copy it, in
|
---|
660 | * constant time, to |mac_out|. */
|
---|
661 | for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks; i++)
|
---|
662 | {
|
---|
663 | unsigned char block[MAX_HASH_BLOCK_SIZE];
|
---|
664 | unsigned char is_block_a = constant_time_eq_8(i, index_a);
|
---|
665 | unsigned char is_block_b = constant_time_eq_8(i, index_b);
|
---|
666 | for (j = 0; j < md_block_size; j++)
|
---|
667 | {
|
---|
668 | unsigned char b = 0, is_past_c, is_past_cp1;
|
---|
669 | if (k < header_length)
|
---|
670 | b = header[k];
|
---|
671 | else if (k < data_plus_mac_plus_padding_size + header_length)
|
---|
672 | b = data[k-header_length];
|
---|
673 | k++;
|
---|
674 |
|
---|
675 | is_past_c = is_block_a & constant_time_ge(j, c);
|
---|
676 | is_past_cp1 = is_block_a & constant_time_ge(j, c+1);
|
---|
677 | /* If this is the block containing the end of the
|
---|
678 | * application data, and we are at the offset for the
|
---|
679 | * 0x80 value, then overwrite b with 0x80. */
|
---|
680 | b = (b&~is_past_c) | (0x80&is_past_c);
|
---|
681 | /* If this the the block containing the end of the
|
---|
682 | * application data and we're past the 0x80 value then
|
---|
683 | * just write zero. */
|
---|
684 | b = b&~is_past_cp1;
|
---|
685 | /* If this is index_b (the final block), but not
|
---|
686 | * index_a (the end of the data), then the 64-bit
|
---|
687 | * length didn't fit into index_a and we're having to
|
---|
688 | * add an extra block of zeros. */
|
---|
689 | b &= ~is_block_b | is_block_a;
|
---|
690 |
|
---|
691 | /* The final bytes of one of the blocks contains the
|
---|
692 | * length. */
|
---|
693 | if (j >= md_block_size - md_length_size)
|
---|
694 | {
|
---|
695 | /* If this is index_b, write a length byte. */
|
---|
696 | b = (b&~is_block_b) | (is_block_b&length_bytes[j-(md_block_size-md_length_size)]);
|
---|
697 | }
|
---|
698 | block[j] = b;
|
---|
699 | }
|
---|
700 |
|
---|
701 | md_transform(md_state.c, block);
|
---|
702 | md_final_raw(md_state.c, block);
|
---|
703 | /* If this is index_b, copy the hash value to |mac_out|. */
|
---|
704 | for (j = 0; j < md_size; j++)
|
---|
705 | mac_out[j] |= block[j]&is_block_b;
|
---|
706 | }
|
---|
707 |
|
---|
708 | EVP_MD_CTX_init(&md_ctx);
|
---|
709 | EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */);
|
---|
710 | if (is_sslv3)
|
---|
711 | {
|
---|
712 | /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
|
---|
713 | memset(hmac_pad, 0x5c, sslv3_pad_length);
|
---|
714 |
|
---|
715 | EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
|
---|
716 | EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
|
---|
717 | EVP_DigestUpdate(&md_ctx, mac_out, md_size);
|
---|
718 | }
|
---|
719 | else
|
---|
720 | {
|
---|
721 | /* Complete the HMAC in the standard manner. */
|
---|
722 | for (i = 0; i < md_block_size; i++)
|
---|
723 | hmac_pad[i] ^= 0x6a;
|
---|
724 |
|
---|
725 | EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
|
---|
726 | EVP_DigestUpdate(&md_ctx, mac_out, md_size);
|
---|
727 | }
|
---|
728 | EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
|
---|
729 | if (md_out_size)
|
---|
730 | *md_out_size = md_out_size_u;
|
---|
731 | EVP_MD_CTX_cleanup(&md_ctx);
|
---|
732 | }
|
---|