source: openssl/trunk/ssl/s3_cbc.c@ 808

Last change on this file since 808 was 808, checked in by dmik, 11 years ago

openssl: Merge version 1.0.0n from vendor to trunk.

File size: 25.5 KB
Line 
1/* ssl/s3_cbc.c */
2/* ====================================================================
3 * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
56#include "ssl_locl.h"
57
58#include <openssl/md5.h>
59#include <openssl/sha.h>
60
61/* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
62 * field. (SHA-384/512 have 128-bit length.) */
63#define MAX_HASH_BIT_COUNT_BYTES 16
64
65/* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
66 * Currently SHA-384/512 has a 128-byte block size and that's the largest
67 * supported by TLS.) */
68#define MAX_HASH_BLOCK_SIZE 128
69
70/* Some utility functions are needed:
71 *
72 * These macros return the given value with the MSB copied to all the other
73 * bits. They use the fact that arithmetic shift shifts-in the sign bit.
74 * However, this is not ensured by the C standard so you may need to replace
75 * them with something else on odd CPUs. */
76#define DUPLICATE_MSB_TO_ALL(x) ( (unsigned)( (int)(x) >> (sizeof(int)*8-1) ) )
77#define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
78
79/* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
80static unsigned constant_time_lt(unsigned a, unsigned b)
81 {
82 a -= b;
83 return DUPLICATE_MSB_TO_ALL(a);
84 }
85
86/* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
87static unsigned constant_time_ge(unsigned a, unsigned b)
88 {
89 a -= b;
90 return DUPLICATE_MSB_TO_ALL(~a);
91 }
92
93/* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
94static unsigned char constant_time_eq_8(unsigned a, unsigned b)
95 {
96 unsigned c = a ^ b;
97 c--;
98 return DUPLICATE_MSB_TO_ALL_8(c);
99 }
100
101/* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
102 * record in |rec| by updating |rec->length| in constant time.
103 *
104 * block_size: the block size of the cipher used to encrypt the record.
105 * returns:
106 * 0: (in non-constant time) if the record is publicly invalid.
107 * 1: if the padding was valid
108 * -1: otherwise. */
109int ssl3_cbc_remove_padding(const SSL* s,
110 SSL3_RECORD *rec,
111 unsigned block_size,
112 unsigned mac_size)
113 {
114 unsigned padding_length, good;
115 const unsigned overhead = 1 /* padding length byte */ + mac_size;
116
117 /* These lengths are all public so we can test them in non-constant
118 * time. */
119 if (overhead > rec->length)
120 return 0;
121
122 padding_length = rec->data[rec->length-1];
123 good = constant_time_ge(rec->length, padding_length+overhead);
124 /* SSLv3 requires that the padding is minimal. */
125 good &= constant_time_ge(block_size, padding_length+1);
126 padding_length = good & (padding_length+1);
127 rec->length -= padding_length;
128 rec->type |= padding_length<<8; /* kludge: pass padding length */
129 return (int)((good & 1) | (~good & -1));
130}
131
132/* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
133 * record in |rec| in constant time and returns 1 if the padding is valid and
134 * -1 otherwise. It also removes any explicit IV from the start of the record
135 * without leaking any timing about whether there was enough space after the
136 * padding was removed.
137 *
138 * block_size: the block size of the cipher used to encrypt the record.
139 * returns:
140 * 0: (in non-constant time) if the record is publicly invalid.
141 * 1: if the padding was valid
142 * -1: otherwise. */
143int tls1_cbc_remove_padding(const SSL* s,
144 SSL3_RECORD *rec,
145 unsigned block_size,
146 unsigned mac_size)
147 {
148 unsigned padding_length, good, to_check, i;
149 const unsigned overhead = 1 /* padding length byte */ + mac_size;
150 /* Check if version requires explicit IV */
151 if (s->version == DTLS1_VERSION || s->version == DTLS1_BAD_VER)
152 {
153 /* These lengths are all public so we can test them in
154 * non-constant time.
155 */
156 if (overhead + block_size > rec->length)
157 return 0;
158 /* We can now safely skip explicit IV */
159 rec->data += block_size;
160 rec->input += block_size;
161 rec->length -= block_size;
162 }
163 else if (overhead > rec->length)
164 return 0;
165
166 padding_length = rec->data[rec->length-1];
167
168 /* NB: if compression is in operation the first packet may not be of
169 * even length so the padding bug check cannot be performed. This bug
170 * workaround has been around since SSLeay so hopefully it is either
171 * fixed now or no buggy implementation supports compression [steve]
172 */
173 if ( (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand)
174 {
175 /* First packet is even in size, so check */
176 if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",8) == 0) &&
177 !(padding_length & 1))
178 {
179 s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG;
180 }
181 if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) &&
182 padding_length > 0)
183 {
184 padding_length--;
185 }
186 }
187
188 good = constant_time_ge(rec->length, overhead+padding_length);
189 /* The padding consists of a length byte at the end of the record and
190 * then that many bytes of padding, all with the same value as the
191 * length byte. Thus, with the length byte included, there are i+1
192 * bytes of padding.
193 *
194 * We can't check just |padding_length+1| bytes because that leaks
195 * decrypted information. Therefore we always have to check the maximum
196 * amount of padding possible. (Again, the length of the record is
197 * public information so we can use it.) */
198 to_check = 255; /* maximum amount of padding. */
199 if (to_check > rec->length-1)
200 to_check = rec->length-1;
201
202 for (i = 0; i < to_check; i++)
203 {
204 unsigned char mask = constant_time_ge(padding_length, i);
205 unsigned char b = rec->data[rec->length-1-i];
206 /* The final |padding_length+1| bytes should all have the value
207 * |padding_length|. Therefore the XOR should be zero. */
208 good &= ~(mask&(padding_length ^ b));
209 }
210
211 /* If any of the final |padding_length+1| bytes had the wrong value,
212 * one or more of the lower eight bits of |good| will be cleared. We
213 * AND the bottom 8 bits together and duplicate the result to all the
214 * bits. */
215 good &= good >> 4;
216 good &= good >> 2;
217 good &= good >> 1;
218 good <<= sizeof(good)*8-1;
219 good = DUPLICATE_MSB_TO_ALL(good);
220
221 padding_length = good & (padding_length+1);
222 rec->length -= padding_length;
223 rec->type |= padding_length<<8; /* kludge: pass padding length */
224
225 return (int)((good & 1) | (~good & -1));
226 }
227
228/* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
229 * constant time (independent of the concrete value of rec->length, which may
230 * vary within a 256-byte window).
231 *
232 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
233 * this function.
234 *
235 * On entry:
236 * rec->orig_len >= md_size
237 * md_size <= EVP_MAX_MD_SIZE
238 *
239 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
240 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
241 * a single or pair of cache-lines, then the variable memory accesses don't
242 * actually affect the timing. CPUs with smaller cache-lines [if any] are
243 * not multi-core and are not considered vulnerable to cache-timing attacks.
244 */
245#define CBC_MAC_ROTATE_IN_PLACE
246
247void ssl3_cbc_copy_mac(unsigned char* out,
248 const SSL3_RECORD *rec,
249 unsigned md_size,unsigned orig_len)
250 {
251#if defined(CBC_MAC_ROTATE_IN_PLACE)
252 unsigned char rotated_mac_buf[64+EVP_MAX_MD_SIZE];
253 unsigned char *rotated_mac;
254#else
255 unsigned char rotated_mac[EVP_MAX_MD_SIZE];
256#endif
257
258 /* mac_end is the index of |rec->data| just after the end of the MAC. */
259 unsigned mac_end = rec->length;
260 unsigned mac_start = mac_end - md_size;
261 /* scan_start contains the number of bytes that we can ignore because
262 * the MAC's position can only vary by 255 bytes. */
263 unsigned scan_start = 0;
264 unsigned i, j;
265 unsigned div_spoiler;
266 unsigned rotate_offset;
267
268 OPENSSL_assert(orig_len >= md_size);
269 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
270
271#if defined(CBC_MAC_ROTATE_IN_PLACE)
272 rotated_mac = rotated_mac_buf + ((0-(size_t)rotated_mac_buf)&63);
273#endif
274
275 /* This information is public so it's safe to branch based on it. */
276 if (orig_len > md_size + 255 + 1)
277 scan_start = orig_len - (md_size + 255 + 1);
278 /* div_spoiler contains a multiple of md_size that is used to cause the
279 * modulo operation to be constant time. Without this, the time varies
280 * based on the amount of padding when running on Intel chips at least.
281 *
282 * The aim of right-shifting md_size is so that the compiler doesn't
283 * figure out that it can remove div_spoiler as that would require it
284 * to prove that md_size is always even, which I hope is beyond it. */
285 div_spoiler = md_size >> 1;
286 div_spoiler <<= (sizeof(div_spoiler)-1)*8;
287 rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
288
289 memset(rotated_mac, 0, md_size);
290 for (i = scan_start, j = 0; i < orig_len; i++)
291 {
292 unsigned char mac_started = constant_time_ge(i, mac_start);
293 unsigned char mac_ended = constant_time_ge(i, mac_end);
294 unsigned char b = rec->data[i];
295 rotated_mac[j++] |= b & mac_started & ~mac_ended;
296 j &= constant_time_lt(j,md_size);
297 }
298
299 /* Now rotate the MAC */
300#if defined(CBC_MAC_ROTATE_IN_PLACE)
301 j = 0;
302 for (i = 0; i < md_size; i++)
303 {
304 /* in case cache-line is 32 bytes, touch second line */
305 ((volatile unsigned char *)rotated_mac)[rotate_offset^32];
306 out[j++] = rotated_mac[rotate_offset++];
307 rotate_offset &= constant_time_lt(rotate_offset,md_size);
308 }
309#else
310 memset(out, 0, md_size);
311 rotate_offset = md_size - rotate_offset;
312 rotate_offset &= constant_time_lt(rotate_offset,md_size);
313 for (i = 0; i < md_size; i++)
314 {
315 for (j = 0; j < md_size; j++)
316 out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
317 rotate_offset++;
318 rotate_offset &= constant_time_lt(rotate_offset,md_size);
319 }
320#endif
321 }
322
323/* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
324 * little-endian order. The value of p is advanced by four. */
325#define u32toLE(n, p) \
326 (*((p)++)=(unsigned char)(n), \
327 *((p)++)=(unsigned char)(n>>8), \
328 *((p)++)=(unsigned char)(n>>16), \
329 *((p)++)=(unsigned char)(n>>24))
330
331/* These functions serialize the state of a hash and thus perform the standard
332 * "final" operation without adding the padding and length that such a function
333 * typically does. */
334static void tls1_md5_final_raw(void* ctx, unsigned char *md_out)
335 {
336 MD5_CTX *md5 = ctx;
337 u32toLE(md5->A, md_out);
338 u32toLE(md5->B, md_out);
339 u32toLE(md5->C, md_out);
340 u32toLE(md5->D, md_out);
341 }
342
343static void tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
344 {
345 SHA_CTX *sha1 = ctx;
346 l2n(sha1->h0, md_out);
347 l2n(sha1->h1, md_out);
348 l2n(sha1->h2, md_out);
349 l2n(sha1->h3, md_out);
350 l2n(sha1->h4, md_out);
351 }
352#define LARGEST_DIGEST_CTX SHA_CTX
353
354#ifndef OPENSSL_NO_SHA256
355static void tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
356 {
357 SHA256_CTX *sha256 = ctx;
358 unsigned i;
359
360 for (i = 0; i < 8; i++)
361 {
362 l2n(sha256->h[i], md_out);
363 }
364 }
365#undef LARGEST_DIGEST_CTX
366#define LARGEST_DIGEST_CTX SHA256_CTX
367#endif
368
369#ifndef OPENSSL_NO_SHA512
370static void tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
371 {
372 SHA512_CTX *sha512 = ctx;
373 unsigned i;
374
375 for (i = 0; i < 8; i++)
376 {
377 l2n8(sha512->h[i], md_out);
378 }
379 }
380#undef LARGEST_DIGEST_CTX
381#define LARGEST_DIGEST_CTX SHA512_CTX
382#endif
383
384/* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
385 * which ssl3_cbc_digest_record supports. */
386char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
387 {
388 switch (ctx->digest->type)
389 {
390 case NID_md5:
391 case NID_sha1:
392#ifndef OPENSSL_NO_SHA256
393 case NID_sha224:
394 case NID_sha256:
395#endif
396#ifndef OPENSSL_NO_SHA512
397 case NID_sha384:
398 case NID_sha512:
399#endif
400 return 1;
401 default:
402 return 0;
403 }
404 }
405
406/* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
407 * record.
408 *
409 * ctx: the EVP_MD_CTX from which we take the hash function.
410 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
411 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
412 * md_out_size: if non-NULL, the number of output bytes is written here.
413 * header: the 13-byte, TLS record header.
414 * data: the record data itself, less any preceeding explicit IV.
415 * data_plus_mac_size: the secret, reported length of the data and MAC
416 * once the padding has been removed.
417 * data_plus_mac_plus_padding_size: the public length of the whole
418 * record, including padding.
419 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
420 *
421 * On entry: by virtue of having been through one of the remove_padding
422 * functions, above, we know that data_plus_mac_size is large enough to contain
423 * a padding byte and MAC. (If the padding was invalid, it might contain the
424 * padding too. ) */
425void ssl3_cbc_digest_record(
426 const EVP_MD_CTX *ctx,
427 unsigned char* md_out,
428 size_t* md_out_size,
429 const unsigned char header[13],
430 const unsigned char *data,
431 size_t data_plus_mac_size,
432 size_t data_plus_mac_plus_padding_size,
433 const unsigned char *mac_secret,
434 unsigned mac_secret_length,
435 char is_sslv3)
436 {
437 union { double align;
438 unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; } md_state;
439 void (*md_final_raw)(void *ctx, unsigned char *md_out);
440 void (*md_transform)(void *ctx, const unsigned char *block);
441 unsigned md_size, md_block_size = 64;
442 unsigned sslv3_pad_length = 40, header_length, variance_blocks,
443 len, max_mac_bytes, num_blocks,
444 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
445 unsigned int bits; /* at most 18 bits */
446 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
447 /* hmac_pad is the masked HMAC key. */
448 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
449 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
450 unsigned char mac_out[EVP_MAX_MD_SIZE];
451 unsigned i, j, md_out_size_u;
452 EVP_MD_CTX md_ctx;
453 /* mdLengthSize is the number of bytes in the length field that terminates
454 * the hash. */
455 unsigned md_length_size = 8;
456 char length_is_big_endian = 1;
457
458 /* This is a, hopefully redundant, check that allows us to forget about
459 * many possible overflows later in this function. */
460 OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
461
462 switch (ctx->digest->type)
463 {
464 case NID_md5:
465 MD5_Init((MD5_CTX*)md_state.c);
466 md_final_raw = tls1_md5_final_raw;
467 md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
468 md_size = 16;
469 sslv3_pad_length = 48;
470 length_is_big_endian = 0;
471 break;
472 case NID_sha1:
473 SHA1_Init((SHA_CTX*)md_state.c);
474 md_final_raw = tls1_sha1_final_raw;
475 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
476 md_size = 20;
477 break;
478#ifndef OPENSSL_NO_SHA256
479 case NID_sha224:
480 SHA224_Init((SHA256_CTX*)md_state.c);
481 md_final_raw = tls1_sha256_final_raw;
482 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
483 md_size = 224/8;
484 break;
485 case NID_sha256:
486 SHA256_Init((SHA256_CTX*)md_state.c);
487 md_final_raw = tls1_sha256_final_raw;
488 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
489 md_size = 32;
490 break;
491#endif
492#ifndef OPENSSL_NO_SHA512
493 case NID_sha384:
494 SHA384_Init((SHA512_CTX*)md_state.c);
495 md_final_raw = tls1_sha512_final_raw;
496 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
497 md_size = 384/8;
498 md_block_size = 128;
499 md_length_size = 16;
500 break;
501 case NID_sha512:
502 SHA512_Init((SHA512_CTX*)md_state.c);
503 md_final_raw = tls1_sha512_final_raw;
504 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
505 md_size = 64;
506 md_block_size = 128;
507 md_length_size = 16;
508 break;
509#endif
510 default:
511 /* ssl3_cbc_record_digest_supported should have been
512 * called first to check that the hash function is
513 * supported. */
514 OPENSSL_assert(0);
515 if (md_out_size)
516 *md_out_size = -1;
517 return;
518 }
519
520 OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
521 OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
522 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
523
524 header_length = 13;
525 if (is_sslv3)
526 {
527 header_length =
528 mac_secret_length +
529 sslv3_pad_length +
530 8 /* sequence number */ +
531 1 /* record type */ +
532 2 /* record length */;
533 }
534
535 /* variance_blocks is the number of blocks of the hash that we have to
536 * calculate in constant time because they could be altered by the
537 * padding value.
538 *
539 * In SSLv3, the padding must be minimal so the end of the plaintext
540 * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
541 * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
542 * termination (0x80 + 64-bit length) don't fit in the final block, we
543 * say that the final two blocks can vary based on the padding.
544 *
545 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
546 * required to be minimal. Therefore we say that the final six blocks
547 * can vary based on the padding.
548 *
549 * Later in the function, if the message is short and there obviously
550 * cannot be this many blocks then variance_blocks can be reduced. */
551 variance_blocks = is_sslv3 ? 2 : 6;
552 /* From now on we're dealing with the MAC, which conceptually has 13
553 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
554 * (SSLv3) */
555 len = data_plus_mac_plus_padding_size + header_length;
556 /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
557 * |header|, assuming that there's no padding. */
558 max_mac_bytes = len - md_size - 1;
559 /* num_blocks is the maximum number of hash blocks. */
560 num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
561 /* In order to calculate the MAC in constant time we have to handle
562 * the final blocks specially because the padding value could cause the
563 * end to appear somewhere in the final |variance_blocks| blocks and we
564 * can't leak where. However, |num_starting_blocks| worth of data can
565 * be hashed right away because no padding value can affect whether
566 * they are plaintext. */
567 num_starting_blocks = 0;
568 /* k is the starting byte offset into the conceptual header||data where
569 * we start processing. */
570 k = 0;
571 /* mac_end_offset is the index just past the end of the data to be
572 * MACed. */
573 mac_end_offset = data_plus_mac_size + header_length - md_size;
574 /* c is the index of the 0x80 byte in the final hash block that
575 * contains application data. */
576 c = mac_end_offset % md_block_size;
577 /* index_a is the hash block number that contains the 0x80 terminating
578 * value. */
579 index_a = mac_end_offset / md_block_size;
580 /* index_b is the hash block number that contains the 64-bit hash
581 * length, in bits. */
582 index_b = (mac_end_offset + md_length_size) / md_block_size;
583 /* bits is the hash-length in bits. It includes the additional hash
584 * block for the masked HMAC key, or whole of |header| in the case of
585 * SSLv3. */
586
587 /* For SSLv3, if we're going to have any starting blocks then we need
588 * at least two because the header is larger than a single block. */
589 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0))
590 {
591 num_starting_blocks = num_blocks - variance_blocks;
592 k = md_block_size*num_starting_blocks;
593 }
594
595 bits = 8*mac_end_offset;
596 if (!is_sslv3)
597 {
598 /* Compute the initial HMAC block. For SSLv3, the padding and
599 * secret bytes are included in |header| because they take more
600 * than a single block. */
601 bits += 8*md_block_size;
602 memset(hmac_pad, 0, md_block_size);
603 OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
604 memcpy(hmac_pad, mac_secret, mac_secret_length);
605 for (i = 0; i < md_block_size; i++)
606 hmac_pad[i] ^= 0x36;
607
608 md_transform(md_state.c, hmac_pad);
609 }
610
611 if (length_is_big_endian)
612 {
613 memset(length_bytes,0,md_length_size-4);
614 length_bytes[md_length_size-4] = (unsigned char)(bits>>24);
615 length_bytes[md_length_size-3] = (unsigned char)(bits>>16);
616 length_bytes[md_length_size-2] = (unsigned char)(bits>>8);
617 length_bytes[md_length_size-1] = (unsigned char)bits;
618 }
619 else
620 {
621 memset(length_bytes,0,md_length_size);
622 length_bytes[md_length_size-5] = (unsigned char)(bits>>24);
623 length_bytes[md_length_size-6] = (unsigned char)(bits>>16);
624 length_bytes[md_length_size-7] = (unsigned char)(bits>>8);
625 length_bytes[md_length_size-8] = (unsigned char)bits;
626 }
627
628 if (k > 0)
629 {
630 if (is_sslv3)
631 {
632 /* The SSLv3 header is larger than a single block.
633 * overhang is the number of bytes beyond a single
634 * block that the header consumes: either 7 bytes
635 * (SHA1) or 11 bytes (MD5). */
636 unsigned overhang = header_length-md_block_size;
637 md_transform(md_state.c, header);
638 memcpy(first_block, header + md_block_size, overhang);
639 memcpy(first_block + overhang, data, md_block_size-overhang);
640 md_transform(md_state.c, first_block);
641 for (i = 1; i < k/md_block_size - 1; i++)
642 md_transform(md_state.c, data + md_block_size*i - overhang);
643 }
644 else
645 {
646 /* k is a multiple of md_block_size. */
647 memcpy(first_block, header, 13);
648 memcpy(first_block+13, data, md_block_size-13);
649 md_transform(md_state.c, first_block);
650 for (i = 1; i < k/md_block_size; i++)
651 md_transform(md_state.c, data + md_block_size*i - 13);
652 }
653 }
654
655 memset(mac_out, 0, sizeof(mac_out));
656
657 /* We now process the final hash blocks. For each block, we construct
658 * it in constant time. If the |i==index_a| then we'll include the 0x80
659 * bytes and zero pad etc. For each block we selectively copy it, in
660 * constant time, to |mac_out|. */
661 for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks; i++)
662 {
663 unsigned char block[MAX_HASH_BLOCK_SIZE];
664 unsigned char is_block_a = constant_time_eq_8(i, index_a);
665 unsigned char is_block_b = constant_time_eq_8(i, index_b);
666 for (j = 0; j < md_block_size; j++)
667 {
668 unsigned char b = 0, is_past_c, is_past_cp1;
669 if (k < header_length)
670 b = header[k];
671 else if (k < data_plus_mac_plus_padding_size + header_length)
672 b = data[k-header_length];
673 k++;
674
675 is_past_c = is_block_a & constant_time_ge(j, c);
676 is_past_cp1 = is_block_a & constant_time_ge(j, c+1);
677 /* If this is the block containing the end of the
678 * application data, and we are at the offset for the
679 * 0x80 value, then overwrite b with 0x80. */
680 b = (b&~is_past_c) | (0x80&is_past_c);
681 /* If this the the block containing the end of the
682 * application data and we're past the 0x80 value then
683 * just write zero. */
684 b = b&~is_past_cp1;
685 /* If this is index_b (the final block), but not
686 * index_a (the end of the data), then the 64-bit
687 * length didn't fit into index_a and we're having to
688 * add an extra block of zeros. */
689 b &= ~is_block_b | is_block_a;
690
691 /* The final bytes of one of the blocks contains the
692 * length. */
693 if (j >= md_block_size - md_length_size)
694 {
695 /* If this is index_b, write a length byte. */
696 b = (b&~is_block_b) | (is_block_b&length_bytes[j-(md_block_size-md_length_size)]);
697 }
698 block[j] = b;
699 }
700
701 md_transform(md_state.c, block);
702 md_final_raw(md_state.c, block);
703 /* If this is index_b, copy the hash value to |mac_out|. */
704 for (j = 0; j < md_size; j++)
705 mac_out[j] |= block[j]&is_block_b;
706 }
707
708 EVP_MD_CTX_init(&md_ctx);
709 EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */);
710 if (is_sslv3)
711 {
712 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
713 memset(hmac_pad, 0x5c, sslv3_pad_length);
714
715 EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
716 EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
717 EVP_DigestUpdate(&md_ctx, mac_out, md_size);
718 }
719 else
720 {
721 /* Complete the HMAC in the standard manner. */
722 for (i = 0; i < md_block_size; i++)
723 hmac_pad[i] ^= 0x6a;
724
725 EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
726 EVP_DigestUpdate(&md_ctx, mac_out, md_size);
727 }
728 EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
729 if (md_out_size)
730 *md_out_size = md_out_size_u;
731 EVP_MD_CTX_cleanup(&md_ctx);
732 }
Note: See TracBrowser for help on using the repository browser.