1 | /* Substring search in a NUL terminated string of UNIT elements,
|
---|
2 | using the Knuth-Morris-Pratt algorithm.
|
---|
3 | Copyright (C) 2005-2016 Free Software Foundation, Inc.
|
---|
4 | Written by Bruno Haible <bruno@clisp.org>, 2005.
|
---|
5 |
|
---|
6 | This program is free software; you can redistribute it and/or modify
|
---|
7 | it under the terms of the GNU General Public License as published by
|
---|
8 | the Free Software Foundation; either version 3, or (at your option)
|
---|
9 | any later version.
|
---|
10 |
|
---|
11 | This program is distributed in the hope that it will be useful,
|
---|
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | GNU General Public License for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU General Public License
|
---|
17 | along with this program; if not, see <http://www.gnu.org/licenses/>. */
|
---|
18 |
|
---|
19 | /* Before including this file, you need to define:
|
---|
20 | UNIT The element type of the needle and haystack.
|
---|
21 | CANON_ELEMENT(c) A macro that canonicalizes an element right after
|
---|
22 | it has been fetched from needle or haystack.
|
---|
23 | The argument is of type UNIT; the result must be
|
---|
24 | of type UNIT as well. */
|
---|
25 |
|
---|
26 | /* Knuth-Morris-Pratt algorithm.
|
---|
27 | See http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
|
---|
28 | HAYSTACK is the NUL terminated string in which to search for.
|
---|
29 | NEEDLE is the string to search for in HAYSTACK, consisting of NEEDLE_LEN
|
---|
30 | units.
|
---|
31 | Return a boolean indicating success:
|
---|
32 | Return true and set *RESULTP if the search was completed.
|
---|
33 | Return false if it was aborted because not enough memory was available. */
|
---|
34 | static bool
|
---|
35 | knuth_morris_pratt (const UNIT *haystack,
|
---|
36 | const UNIT *needle, size_t needle_len,
|
---|
37 | const UNIT **resultp)
|
---|
38 | {
|
---|
39 | size_t m = needle_len;
|
---|
40 |
|
---|
41 | /* Allocate the table. */
|
---|
42 | size_t *table = (size_t *) nmalloca (m, sizeof (size_t));
|
---|
43 | if (table == NULL)
|
---|
44 | return false;
|
---|
45 | /* Fill the table.
|
---|
46 | For 0 < i < m:
|
---|
47 | 0 < table[i] <= i is defined such that
|
---|
48 | forall 0 < x < table[i]: needle[x..i-1] != needle[0..i-1-x],
|
---|
49 | and table[i] is as large as possible with this property.
|
---|
50 | This implies:
|
---|
51 | 1) For 0 < i < m:
|
---|
52 | If table[i] < i,
|
---|
53 | needle[table[i]..i-1] = needle[0..i-1-table[i]].
|
---|
54 | 2) For 0 < i < m:
|
---|
55 | rhaystack[0..i-1] == needle[0..i-1]
|
---|
56 | and exists h, i <= h < m: rhaystack[h] != needle[h]
|
---|
57 | implies
|
---|
58 | forall 0 <= x < table[i]: rhaystack[x..x+m-1] != needle[0..m-1].
|
---|
59 | table[0] remains uninitialized. */
|
---|
60 | {
|
---|
61 | size_t i, j;
|
---|
62 |
|
---|
63 | /* i = 1: Nothing to verify for x = 0. */
|
---|
64 | table[1] = 1;
|
---|
65 | j = 0;
|
---|
66 |
|
---|
67 | for (i = 2; i < m; i++)
|
---|
68 | {
|
---|
69 | /* Here: j = i-1 - table[i-1].
|
---|
70 | The inequality needle[x..i-1] != needle[0..i-1-x] is known to hold
|
---|
71 | for x < table[i-1], by induction.
|
---|
72 | Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */
|
---|
73 | UNIT b = CANON_ELEMENT (needle[i - 1]);
|
---|
74 |
|
---|
75 | for (;;)
|
---|
76 | {
|
---|
77 | /* Invariants: The inequality needle[x..i-1] != needle[0..i-1-x]
|
---|
78 | is known to hold for x < i-1-j.
|
---|
79 | Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */
|
---|
80 | if (b == CANON_ELEMENT (needle[j]))
|
---|
81 | {
|
---|
82 | /* Set table[i] := i-1-j. */
|
---|
83 | table[i] = i - ++j;
|
---|
84 | break;
|
---|
85 | }
|
---|
86 | /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
|
---|
87 | for x = i-1-j, because
|
---|
88 | needle[i-1] != needle[j] = needle[i-1-x]. */
|
---|
89 | if (j == 0)
|
---|
90 | {
|
---|
91 | /* The inequality holds for all possible x. */
|
---|
92 | table[i] = i;
|
---|
93 | break;
|
---|
94 | }
|
---|
95 | /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
|
---|
96 | for i-1-j < x < i-1-j+table[j], because for these x:
|
---|
97 | needle[x..i-2]
|
---|
98 | = needle[x-(i-1-j)..j-1]
|
---|
99 | != needle[0..j-1-(x-(i-1-j))] (by definition of table[j])
|
---|
100 | = needle[0..i-2-x],
|
---|
101 | hence needle[x..i-1] != needle[0..i-1-x].
|
---|
102 | Furthermore
|
---|
103 | needle[i-1-j+table[j]..i-2]
|
---|
104 | = needle[table[j]..j-1]
|
---|
105 | = needle[0..j-1-table[j]] (by definition of table[j]). */
|
---|
106 | j = j - table[j];
|
---|
107 | }
|
---|
108 | /* Here: j = i - table[i]. */
|
---|
109 | }
|
---|
110 | }
|
---|
111 |
|
---|
112 | /* Search, using the table to accelerate the processing. */
|
---|
113 | {
|
---|
114 | size_t j;
|
---|
115 | const UNIT *rhaystack;
|
---|
116 | const UNIT *phaystack;
|
---|
117 |
|
---|
118 | *resultp = NULL;
|
---|
119 | j = 0;
|
---|
120 | rhaystack = haystack;
|
---|
121 | phaystack = haystack;
|
---|
122 | /* Invariant: phaystack = rhaystack + j. */
|
---|
123 | while (*phaystack != 0)
|
---|
124 | if (CANON_ELEMENT (needle[j]) == CANON_ELEMENT (*phaystack))
|
---|
125 | {
|
---|
126 | j++;
|
---|
127 | phaystack++;
|
---|
128 | if (j == m)
|
---|
129 | {
|
---|
130 | /* The entire needle has been found. */
|
---|
131 | *resultp = rhaystack;
|
---|
132 | break;
|
---|
133 | }
|
---|
134 | }
|
---|
135 | else if (j > 0)
|
---|
136 | {
|
---|
137 | /* Found a match of needle[0..j-1], mismatch at needle[j]. */
|
---|
138 | rhaystack += table[j];
|
---|
139 | j -= table[j];
|
---|
140 | }
|
---|
141 | else
|
---|
142 | {
|
---|
143 | /* Found a mismatch at needle[0] already. */
|
---|
144 | rhaystack++;
|
---|
145 | phaystack++;
|
---|
146 | }
|
---|
147 | }
|
---|
148 |
|
---|
149 | freea (table);
|
---|
150 | return true;
|
---|
151 | }
|
---|
152 |
|
---|
153 | #undef CANON_ELEMENT
|
---|