source: clamav/trunk/libclamav/c++/llvm/lib/Target/X86/X86CodeEmitter.cpp@ 319

Last change on this file since 319 was 319, checked in by Yuri Dario, 14 years ago

clamav: update trunk to 0.97.

File size: 34.0 KB
Line 
1//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the X86 machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-emitter"
16#include "X86InstrInfo.h"
17#include "X86JITInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "X86Relocations.h"
21#include "X86.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/PassManager.h"
24#include "llvm/CodeGen/JITCodeEmitter.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/Passes.h"
29#include "llvm/Function.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/MC/MCCodeEmitter.h"
32#include "llvm/MC/MCExpr.h"
33#include "llvm/MC/MCInst.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Target/TargetOptions.h"
38using namespace llvm;
39
40STATISTIC(NumEmitted, "Number of machine instructions emitted");
41
42namespace {
43 template<class CodeEmitter>
44 class Emitter : public MachineFunctionPass {
45 const X86InstrInfo *II;
46 const TargetData *TD;
47 X86TargetMachine &TM;
48 CodeEmitter &MCE;
49 MachineModuleInfo *MMI;
50 intptr_t PICBaseOffset;
51 bool Is64BitMode;
52 bool IsPIC;
53 public:
54 static char ID;
55 explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
56 : MachineFunctionPass(ID), II(0), TD(0), TM(tm),
57 MCE(mce), PICBaseOffset(0), Is64BitMode(false),
58 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
59 Emitter(X86TargetMachine &tm, CodeEmitter &mce,
60 const X86InstrInfo &ii, const TargetData &td, bool is64)
61 : MachineFunctionPass(ID), II(&ii), TD(&td), TM(tm),
62 MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
63 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
64
65 bool runOnMachineFunction(MachineFunction &MF);
66
67 virtual const char *getPassName() const {
68 return "X86 Machine Code Emitter";
69 }
70
71 void emitInstruction(const MachineInstr &MI,
72 const TargetInstrDesc *Desc);
73
74 void getAnalysisUsage(AnalysisUsage &AU) const {
75 AU.setPreservesAll();
76 AU.addRequired<MachineModuleInfo>();
77 MachineFunctionPass::getAnalysisUsage(AU);
78 }
79
80 private:
81 void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
82 void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
83 intptr_t Disp = 0, intptr_t PCAdj = 0,
84 bool Indirect = false);
85 void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
86 void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
87 intptr_t PCAdj = 0);
88 void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
89 intptr_t PCAdj = 0);
90
91 void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
92 intptr_t Adj = 0, bool IsPCRel = true);
93
94 void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
95 void emitRegModRMByte(unsigned RegOpcodeField);
96 void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
97 void emitConstant(uint64_t Val, unsigned Size);
98
99 void emitMemModRMByte(const MachineInstr &MI,
100 unsigned Op, unsigned RegOpcodeField,
101 intptr_t PCAdj = 0);
102
103 unsigned getX86RegNum(unsigned RegNo) const;
104 };
105
106template<class CodeEmitter>
107 char Emitter<CodeEmitter>::ID = 0;
108} // end anonymous namespace.
109
110/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
111/// to the specified templated MachineCodeEmitter object.
112FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
113 JITCodeEmitter &JCE) {
114 return new Emitter<JITCodeEmitter>(TM, JCE);
115}
116
117template<class CodeEmitter>
118bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
119 MMI = &getAnalysis<MachineModuleInfo>();
120 MCE.setModuleInfo(MMI);
121
122 II = TM.getInstrInfo();
123 TD = TM.getTargetData();
124 Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
125 IsPIC = TM.getRelocationModel() == Reloc::PIC_;
126
127 do {
128 DEBUG(dbgs() << "JITTing function '"
129 << MF.getFunction()->getName() << "'\n");
130 MCE.startFunction(MF);
131 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
132 MBB != E; ++MBB) {
133 MCE.StartMachineBasicBlock(MBB);
134 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
135 I != E; ++I) {
136 const TargetInstrDesc &Desc = I->getDesc();
137 emitInstruction(*I, &Desc);
138 // MOVPC32r is basically a call plus a pop instruction.
139 if (Desc.getOpcode() == X86::MOVPC32r)
140 emitInstruction(*I, &II->get(X86::POP32r));
141 ++NumEmitted; // Keep track of the # of mi's emitted
142 }
143 }
144 } while (MCE.finishFunction(MF));
145
146 return false;
147}
148
149/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
150/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
151/// size, and 3) use of X86-64 extended registers.
152static unsigned determineREX(const MachineInstr &MI) {
153 unsigned REX = 0;
154 const TargetInstrDesc &Desc = MI.getDesc();
155
156 // Pseudo instructions do not need REX prefix byte.
157 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
158 return 0;
159 if (Desc.TSFlags & X86II::REX_W)
160 REX |= 1 << 3;
161
162 unsigned NumOps = Desc.getNumOperands();
163 if (NumOps) {
164 bool isTwoAddr = NumOps > 1 &&
165 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
166
167 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
168 unsigned i = isTwoAddr ? 1 : 0;
169 for (unsigned e = NumOps; i != e; ++i) {
170 const MachineOperand& MO = MI.getOperand(i);
171 if (MO.isReg()) {
172 unsigned Reg = MO.getReg();
173 if (X86InstrInfo::isX86_64NonExtLowByteReg(Reg))
174 REX |= 0x40;
175 }
176 }
177
178 switch (Desc.TSFlags & X86II::FormMask) {
179 case X86II::MRMInitReg:
180 if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
181 REX |= (1 << 0) | (1 << 2);
182 break;
183 case X86II::MRMSrcReg: {
184 if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
185 REX |= 1 << 2;
186 i = isTwoAddr ? 2 : 1;
187 for (unsigned e = NumOps; i != e; ++i) {
188 const MachineOperand& MO = MI.getOperand(i);
189 if (X86InstrInfo::isX86_64ExtendedReg(MO))
190 REX |= 1 << 0;
191 }
192 break;
193 }
194 case X86II::MRMSrcMem: {
195 if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
196 REX |= 1 << 2;
197 unsigned Bit = 0;
198 i = isTwoAddr ? 2 : 1;
199 for (; i != NumOps; ++i) {
200 const MachineOperand& MO = MI.getOperand(i);
201 if (MO.isReg()) {
202 if (X86InstrInfo::isX86_64ExtendedReg(MO))
203 REX |= 1 << Bit;
204 Bit++;
205 }
206 }
207 break;
208 }
209 case X86II::MRM0m: case X86II::MRM1m:
210 case X86II::MRM2m: case X86II::MRM3m:
211 case X86II::MRM4m: case X86II::MRM5m:
212 case X86II::MRM6m: case X86II::MRM7m:
213 case X86II::MRMDestMem: {
214 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
215 i = isTwoAddr ? 1 : 0;
216 if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e)))
217 REX |= 1 << 2;
218 unsigned Bit = 0;
219 for (; i != e; ++i) {
220 const MachineOperand& MO = MI.getOperand(i);
221 if (MO.isReg()) {
222 if (X86InstrInfo::isX86_64ExtendedReg(MO))
223 REX |= 1 << Bit;
224 Bit++;
225 }
226 }
227 break;
228 }
229 default: {
230 if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
231 REX |= 1 << 0;
232 i = isTwoAddr ? 2 : 1;
233 for (unsigned e = NumOps; i != e; ++i) {
234 const MachineOperand& MO = MI.getOperand(i);
235 if (X86InstrInfo::isX86_64ExtendedReg(MO))
236 REX |= 1 << 2;
237 }
238 break;
239 }
240 }
241 }
242 return REX;
243}
244
245
246/// emitPCRelativeBlockAddress - This method keeps track of the information
247/// necessary to resolve the address of this block later and emits a dummy
248/// value.
249///
250template<class CodeEmitter>
251void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
252 // Remember where this reference was and where it is to so we can
253 // deal with it later.
254 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
255 X86::reloc_pcrel_word, MBB));
256 MCE.emitWordLE(0);
257}
258
259/// emitGlobalAddress - Emit the specified address to the code stream assuming
260/// this is part of a "take the address of a global" instruction.
261///
262template<class CodeEmitter>
263void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV,
264 unsigned Reloc,
265 intptr_t Disp /* = 0 */,
266 intptr_t PCAdj /* = 0 */,
267 bool Indirect /* = false */) {
268 intptr_t RelocCST = Disp;
269 if (Reloc == X86::reloc_picrel_word)
270 RelocCST = PICBaseOffset;
271 else if (Reloc == X86::reloc_pcrel_word)
272 RelocCST = PCAdj;
273 MachineRelocation MR = Indirect
274 ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
275 const_cast<GlobalValue *>(GV),
276 RelocCST, false)
277 : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
278 const_cast<GlobalValue *>(GV), RelocCST, false);
279 MCE.addRelocation(MR);
280 // The relocated value will be added to the displacement
281 if (Reloc == X86::reloc_absolute_dword)
282 MCE.emitDWordLE(Disp);
283 else
284 MCE.emitWordLE((int32_t)Disp);
285}
286
287/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
288/// be emitted to the current location in the function, and allow it to be PC
289/// relative.
290template<class CodeEmitter>
291void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
292 unsigned Reloc) {
293 intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
294
295 // X86 never needs stubs because instruction selection will always pick
296 // an instruction sequence that is large enough to hold any address
297 // to a symbol.
298 // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall)
299 bool NeedStub = false;
300 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
301 Reloc, ES, RelocCST,
302 0, NeedStub));
303 if (Reloc == X86::reloc_absolute_dword)
304 MCE.emitDWordLE(0);
305 else
306 MCE.emitWordLE(0);
307}
308
309/// emitConstPoolAddress - Arrange for the address of an constant pool
310/// to be emitted to the current location in the function, and allow it to be PC
311/// relative.
312template<class CodeEmitter>
313void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
314 intptr_t Disp /* = 0 */,
315 intptr_t PCAdj /* = 0 */) {
316 intptr_t RelocCST = 0;
317 if (Reloc == X86::reloc_picrel_word)
318 RelocCST = PICBaseOffset;
319 else if (Reloc == X86::reloc_pcrel_word)
320 RelocCST = PCAdj;
321 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
322 Reloc, CPI, RelocCST));
323 // The relocated value will be added to the displacement
324 if (Reloc == X86::reloc_absolute_dword)
325 MCE.emitDWordLE(Disp);
326 else
327 MCE.emitWordLE((int32_t)Disp);
328}
329
330/// emitJumpTableAddress - Arrange for the address of a jump table to
331/// be emitted to the current location in the function, and allow it to be PC
332/// relative.
333template<class CodeEmitter>
334void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
335 intptr_t PCAdj /* = 0 */) {
336 intptr_t RelocCST = 0;
337 if (Reloc == X86::reloc_picrel_word)
338 RelocCST = PICBaseOffset;
339 else if (Reloc == X86::reloc_pcrel_word)
340 RelocCST = PCAdj;
341 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
342 Reloc, JTI, RelocCST));
343 // The relocated value will be added to the displacement
344 if (Reloc == X86::reloc_absolute_dword)
345 MCE.emitDWordLE(0);
346 else
347 MCE.emitWordLE(0);
348}
349
350template<class CodeEmitter>
351unsigned Emitter<CodeEmitter>::getX86RegNum(unsigned RegNo) const {
352 return X86RegisterInfo::getX86RegNum(RegNo);
353}
354
355inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
356 unsigned RM) {
357 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
358 return RM | (RegOpcode << 3) | (Mod << 6);
359}
360
361template<class CodeEmitter>
362void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
363 unsigned RegOpcodeFld){
364 MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
365}
366
367template<class CodeEmitter>
368void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
369 MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
370}
371
372template<class CodeEmitter>
373void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
374 unsigned Index,
375 unsigned Base) {
376 // SIB byte is in the same format as the ModRMByte...
377 MCE.emitByte(ModRMByte(SS, Index, Base));
378}
379
380template<class CodeEmitter>
381void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
382 // Output the constant in little endian byte order...
383 for (unsigned i = 0; i != Size; ++i) {
384 MCE.emitByte(Val & 255);
385 Val >>= 8;
386 }
387}
388
389/// isDisp8 - Return true if this signed displacement fits in a 8-bit
390/// sign-extended field.
391static bool isDisp8(int Value) {
392 return Value == (signed char)Value;
393}
394
395static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
396 const TargetMachine &TM) {
397 // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
398 // mechanism as 32-bit mode.
399 if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
400 !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
401 return false;
402
403 // Return true if this is a reference to a stub containing the address of the
404 // global, not the global itself.
405 return isGlobalStubReference(GVOp.getTargetFlags());
406}
407
408template<class CodeEmitter>
409void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
410 int DispVal,
411 intptr_t Adj /* = 0 */,
412 bool IsPCRel /* = true */) {
413 // If this is a simple integer displacement that doesn't require a relocation,
414 // emit it now.
415 if (!RelocOp) {
416 emitConstant(DispVal, 4);
417 return;
418 }
419
420 // Otherwise, this is something that requires a relocation. Emit it as such
421 // now.
422 unsigned RelocType = Is64BitMode ?
423 (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
424 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
425 if (RelocOp->isGlobal()) {
426 // In 64-bit static small code model, we could potentially emit absolute.
427 // But it's probably not beneficial. If the MCE supports using RIP directly
428 // do it, otherwise fallback to absolute (this is determined by IsPCRel).
429 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
430 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
431 bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
432 emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
433 Adj, Indirect);
434 } else if (RelocOp->isSymbol()) {
435 emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
436 } else if (RelocOp->isCPI()) {
437 emitConstPoolAddress(RelocOp->getIndex(), RelocType,
438 RelocOp->getOffset(), Adj);
439 } else {
440 assert(RelocOp->isJTI() && "Unexpected machine operand!");
441 emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
442 }
443}
444
445template<class CodeEmitter>
446void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
447 unsigned Op,unsigned RegOpcodeField,
448 intptr_t PCAdj) {
449 const MachineOperand &Op3 = MI.getOperand(Op+3);
450 int DispVal = 0;
451 const MachineOperand *DispForReloc = 0;
452
453 // Figure out what sort of displacement we have to handle here.
454 if (Op3.isGlobal()) {
455 DispForReloc = &Op3;
456 } else if (Op3.isSymbol()) {
457 DispForReloc = &Op3;
458 } else if (Op3.isCPI()) {
459 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
460 DispForReloc = &Op3;
461 } else {
462 DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
463 DispVal += Op3.getOffset();
464 }
465 } else if (Op3.isJTI()) {
466 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
467 DispForReloc = &Op3;
468 } else {
469 DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
470 }
471 } else {
472 DispVal = Op3.getImm();
473 }
474
475 const MachineOperand &Base = MI.getOperand(Op);
476 const MachineOperand &Scale = MI.getOperand(Op+1);
477 const MachineOperand &IndexReg = MI.getOperand(Op+2);
478
479 unsigned BaseReg = Base.getReg();
480
481 // Handle %rip relative addressing.
482 if (BaseReg == X86::RIP ||
483 (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
484 assert(IndexReg.getReg() == 0 && Is64BitMode &&
485 "Invalid rip-relative address");
486 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
487 emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
488 return;
489 }
490
491 // Indicate that the displacement will use an pcrel or absolute reference
492 // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
493 // while others, unless explicit asked to use RIP, use absolute references.
494 bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
495
496 // Is a SIB byte needed?
497 // If no BaseReg, issue a RIP relative instruction only if the MCE can
498 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
499 // 2-7) and absolute references.
500 unsigned BaseRegNo = -1U;
501 if (BaseReg != 0 && BaseReg != X86::RIP)
502 BaseRegNo = getX86RegNum(BaseReg);
503
504 if (// The SIB byte must be used if there is an index register.
505 IndexReg.getReg() == 0 &&
506 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
507 // encode to an R/M value of 4, which indicates that a SIB byte is
508 // present.
509 BaseRegNo != N86::ESP &&
510 // If there is no base register and we're in 64-bit mode, we need a SIB
511 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
512 (!Is64BitMode || BaseReg != 0)) {
513 if (BaseReg == 0 || // [disp32] in X86-32 mode
514 BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
515 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
516 emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
517 return;
518 }
519
520 // If the base is not EBP/ESP and there is no displacement, use simple
521 // indirect register encoding, this handles addresses like [EAX]. The
522 // encoding for [EBP] with no displacement means [disp32] so we handle it
523 // by emitting a displacement of 0 below.
524 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
525 MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
526 return;
527 }
528
529 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
530 if (!DispForReloc && isDisp8(DispVal)) {
531 MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
532 emitConstant(DispVal, 1);
533 return;
534 }
535
536 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
537 MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
538 emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
539 return;
540 }
541
542 // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
543 assert(IndexReg.getReg() != X86::ESP &&
544 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
545
546 bool ForceDisp32 = false;
547 bool ForceDisp8 = false;
548 if (BaseReg == 0) {
549 // If there is no base register, we emit the special case SIB byte with
550 // MOD=0, BASE=4, to JUST get the index, scale, and displacement.
551 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
552 ForceDisp32 = true;
553 } else if (DispForReloc) {
554 // Emit the normal disp32 encoding.
555 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
556 ForceDisp32 = true;
557 } else if (DispVal == 0 && BaseRegNo != N86::EBP) {
558 // Emit no displacement ModR/M byte
559 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
560 } else if (isDisp8(DispVal)) {
561 // Emit the disp8 encoding...
562 MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
563 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
564 } else {
565 // Emit the normal disp32 encoding...
566 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
567 }
568
569 // Calculate what the SS field value should be...
570 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
571 unsigned SS = SSTable[Scale.getImm()];
572
573 if (BaseReg == 0) {
574 // Handle the SIB byte for the case where there is no base, see Intel
575 // Manual 2A, table 2-7. The displacement has already been output.
576 unsigned IndexRegNo;
577 if (IndexReg.getReg())
578 IndexRegNo = getX86RegNum(IndexReg.getReg());
579 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
580 IndexRegNo = 4;
581 emitSIBByte(SS, IndexRegNo, 5);
582 } else {
583 unsigned BaseRegNo = getX86RegNum(BaseReg);
584 unsigned IndexRegNo;
585 if (IndexReg.getReg())
586 IndexRegNo = getX86RegNum(IndexReg.getReg());
587 else
588 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
589 emitSIBByte(SS, IndexRegNo, BaseRegNo);
590 }
591
592 // Do we need to output a displacement?
593 if (ForceDisp8) {
594 emitConstant(DispVal, 1);
595 } else if (DispVal != 0 || ForceDisp32) {
596 emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
597 }
598}
599
600template<class CodeEmitter>
601void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI,
602 const TargetInstrDesc *Desc) {
603 DEBUG(dbgs() << MI);
604
605 MCE.processDebugLoc(MI.getDebugLoc(), true);
606
607 unsigned Opcode = Desc->Opcode;
608
609 // Emit the lock opcode prefix as needed.
610 if (Desc->TSFlags & X86II::LOCK)
611 MCE.emitByte(0xF0);
612
613 // Emit segment override opcode prefix as needed.
614 switch (Desc->TSFlags & X86II::SegOvrMask) {
615 case X86II::FS:
616 MCE.emitByte(0x64);
617 break;
618 case X86II::GS:
619 MCE.emitByte(0x65);
620 break;
621 default: llvm_unreachable("Invalid segment!");
622 case 0: break; // No segment override!
623 }
624
625 // Emit the repeat opcode prefix as needed.
626 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP)
627 MCE.emitByte(0xF3);
628
629 // Emit the operand size opcode prefix as needed.
630 if (Desc->TSFlags & X86II::OpSize)
631 MCE.emitByte(0x66);
632
633 // Emit the address size opcode prefix as needed.
634 if (Desc->TSFlags & X86II::AdSize)
635 MCE.emitByte(0x67);
636
637 bool Need0FPrefix = false;
638 switch (Desc->TSFlags & X86II::Op0Mask) {
639 case X86II::TB: // Two-byte opcode prefix
640 case X86II::T8: // 0F 38
641 case X86II::TA: // 0F 3A
642 Need0FPrefix = true;
643 break;
644 case X86II::TF: // F2 0F 38
645 MCE.emitByte(0xF2);
646 Need0FPrefix = true;
647 break;
648 case X86II::REP: break; // already handled.
649 case X86II::XS: // F3 0F
650 MCE.emitByte(0xF3);
651 Need0FPrefix = true;
652 break;
653 case X86II::XD: // F2 0F
654 MCE.emitByte(0xF2);
655 Need0FPrefix = true;
656 break;
657 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
658 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
659 MCE.emitByte(0xD8+
660 (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
661 >> X86II::Op0Shift));
662 break; // Two-byte opcode prefix
663 default: llvm_unreachable("Invalid prefix!");
664 case 0: break; // No prefix!
665 }
666
667 // Handle REX prefix.
668 if (Is64BitMode) {
669 if (unsigned REX = determineREX(MI))
670 MCE.emitByte(0x40 | REX);
671 }
672
673 // 0x0F escape code must be emitted just before the opcode.
674 if (Need0FPrefix)
675 MCE.emitByte(0x0F);
676
677 switch (Desc->TSFlags & X86II::Op0Mask) {
678 case X86II::TF: // F2 0F 38
679 case X86II::T8: // 0F 38
680 MCE.emitByte(0x38);
681 break;
682 case X86II::TA: // 0F 3A
683 MCE.emitByte(0x3A);
684 break;
685 }
686
687 // If this is a two-address instruction, skip one of the register operands.
688 unsigned NumOps = Desc->getNumOperands();
689 unsigned CurOp = 0;
690 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
691 ++CurOp;
692 else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
693 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
694 --NumOps;
695
696 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags);
697 switch (Desc->TSFlags & X86II::FormMask) {
698 default:
699 llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
700 case X86II::Pseudo:
701 // Remember the current PC offset, this is the PIC relocation
702 // base address.
703 switch (Opcode) {
704 default:
705 llvm_unreachable("pseudo instructions should be removed before code"
706 " emission");
707 break;
708 // Do nothing for Int_MemBarrier - it's just a comment. Add a debug
709 // to make it slightly easier to see.
710 case X86::Int_MemBarrier:
711 DEBUG(dbgs() << "#MEMBARRIER\n");
712 break;
713
714 case TargetOpcode::INLINEASM:
715 // We allow inline assembler nodes with empty bodies - they can
716 // implicitly define registers, which is ok for JIT.
717 if (MI.getOperand(0).getSymbolName()[0])
718 report_fatal_error("JIT does not support inline asm!");
719 break;
720 case TargetOpcode::PROLOG_LABEL:
721 case TargetOpcode::GC_LABEL:
722 case TargetOpcode::EH_LABEL:
723 MCE.emitLabel(MI.getOperand(0).getMCSymbol());
724 break;
725
726 case TargetOpcode::IMPLICIT_DEF:
727 case TargetOpcode::KILL:
728 break;
729 case X86::MOVPC32r: {
730 // This emits the "call" portion of this pseudo instruction.
731 MCE.emitByte(BaseOpcode);
732 emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags));
733 // Remember PIC base.
734 PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
735 X86JITInfo *JTI = TM.getJITInfo();
736 JTI->setPICBase(MCE.getCurrentPCValue());
737 break;
738 }
739 }
740 CurOp = NumOps;
741 break;
742 case X86II::RawFrm: {
743 MCE.emitByte(BaseOpcode);
744
745 if (CurOp == NumOps)
746 break;
747
748 const MachineOperand &MO = MI.getOperand(CurOp++);
749
750 DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
751 DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n");
752 DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n");
753 DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n");
754 DEBUG(dbgs() << "isImm " << MO.isImm() << "\n");
755
756 if (MO.isMBB()) {
757 emitPCRelativeBlockAddress(MO.getMBB());
758 break;
759 }
760
761 if (MO.isGlobal()) {
762 emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
763 MO.getOffset(), 0);
764 break;
765 }
766
767 if (MO.isSymbol()) {
768 emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
769 break;
770 }
771
772 // FIXME: Only used by hackish MCCodeEmitter, remove when dead.
773 if (MO.isJTI()) {
774 emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
775 break;
776 }
777
778 assert(MO.isImm() && "Unknown RawFrm operand!");
779 if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32 ||
780 Opcode == X86::WINCALL64pcrel32) {
781 // Fix up immediate operand for pc relative calls.
782 intptr_t Imm = (intptr_t)MO.getImm();
783 Imm = Imm - MCE.getCurrentPCValue() - 4;
784 emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags));
785 } else
786 emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
787 break;
788 }
789
790 case X86II::AddRegFrm: {
791 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
792
793 if (CurOp == NumOps)
794 break;
795
796 const MachineOperand &MO1 = MI.getOperand(CurOp++);
797 unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
798 if (MO1.isImm()) {
799 emitConstant(MO1.getImm(), Size);
800 break;
801 }
802
803 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
804 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
805 if (Opcode == X86::MOV64ri64i32)
806 rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
807 // This should not occur on Darwin for relocatable objects.
808 if (Opcode == X86::MOV64ri)
809 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
810 if (MO1.isGlobal()) {
811 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
812 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
813 Indirect);
814 } else if (MO1.isSymbol())
815 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
816 else if (MO1.isCPI())
817 emitConstPoolAddress(MO1.getIndex(), rt);
818 else if (MO1.isJTI())
819 emitJumpTableAddress(MO1.getIndex(), rt);
820 break;
821 }
822
823 case X86II::MRMDestReg: {
824 MCE.emitByte(BaseOpcode);
825 emitRegModRMByte(MI.getOperand(CurOp).getReg(),
826 getX86RegNum(MI.getOperand(CurOp+1).getReg()));
827 CurOp += 2;
828 if (CurOp != NumOps)
829 emitConstant(MI.getOperand(CurOp++).getImm(),
830 X86II::getSizeOfImm(Desc->TSFlags));
831 break;
832 }
833 case X86II::MRMDestMem: {
834 MCE.emitByte(BaseOpcode);
835 emitMemModRMByte(MI, CurOp,
836 getX86RegNum(MI.getOperand(CurOp + X86::AddrNumOperands)
837 .getReg()));
838 CurOp += X86::AddrNumOperands + 1;
839 if (CurOp != NumOps)
840 emitConstant(MI.getOperand(CurOp++).getImm(),
841 X86II::getSizeOfImm(Desc->TSFlags));
842 break;
843 }
844
845 case X86II::MRMSrcReg:
846 MCE.emitByte(BaseOpcode);
847 emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
848 getX86RegNum(MI.getOperand(CurOp).getReg()));
849 CurOp += 2;
850 if (CurOp != NumOps)
851 emitConstant(MI.getOperand(CurOp++).getImm(),
852 X86II::getSizeOfImm(Desc->TSFlags));
853 break;
854
855 case X86II::MRMSrcMem: {
856 int AddrOperands = X86::AddrNumOperands;
857
858 intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
859 X86II::getSizeOfImm(Desc->TSFlags) : 0;
860
861 MCE.emitByte(BaseOpcode);
862 emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()),
863 PCAdj);
864 CurOp += AddrOperands + 1;
865 if (CurOp != NumOps)
866 emitConstant(MI.getOperand(CurOp++).getImm(),
867 X86II::getSizeOfImm(Desc->TSFlags));
868 break;
869 }
870
871 case X86II::MRM0r: case X86II::MRM1r:
872 case X86II::MRM2r: case X86II::MRM3r:
873 case X86II::MRM4r: case X86II::MRM5r:
874 case X86II::MRM6r: case X86II::MRM7r: {
875 MCE.emitByte(BaseOpcode);
876 emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
877 (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
878
879 if (CurOp == NumOps)
880 break;
881
882 const MachineOperand &MO1 = MI.getOperand(CurOp++);
883 unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
884 if (MO1.isImm()) {
885 emitConstant(MO1.getImm(), Size);
886 break;
887 }
888
889 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
890 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
891 if (Opcode == X86::MOV64ri32)
892 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
893 if (MO1.isGlobal()) {
894 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
895 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
896 Indirect);
897 } else if (MO1.isSymbol())
898 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
899 else if (MO1.isCPI())
900 emitConstPoolAddress(MO1.getIndex(), rt);
901 else if (MO1.isJTI())
902 emitJumpTableAddress(MO1.getIndex(), rt);
903 break;
904 }
905
906 case X86II::MRM0m: case X86II::MRM1m:
907 case X86II::MRM2m: case X86II::MRM3m:
908 case X86II::MRM4m: case X86II::MRM5m:
909 case X86II::MRM6m: case X86II::MRM7m: {
910 intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
911 (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
912 X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;
913
914 MCE.emitByte(BaseOpcode);
915 emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
916 PCAdj);
917 CurOp += X86::AddrNumOperands;
918
919 if (CurOp == NumOps)
920 break;
921
922 const MachineOperand &MO = MI.getOperand(CurOp++);
923 unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
924 if (MO.isImm()) {
925 emitConstant(MO.getImm(), Size);
926 break;
927 }
928
929 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
930 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
931 if (Opcode == X86::MOV64mi32)
932 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
933 if (MO.isGlobal()) {
934 bool Indirect = gvNeedsNonLazyPtr(MO, TM);
935 emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
936 Indirect);
937 } else if (MO.isSymbol())
938 emitExternalSymbolAddress(MO.getSymbolName(), rt);
939 else if (MO.isCPI())
940 emitConstPoolAddress(MO.getIndex(), rt);
941 else if (MO.isJTI())
942 emitJumpTableAddress(MO.getIndex(), rt);
943 break;
944 }
945
946 case X86II::MRMInitReg:
947 MCE.emitByte(BaseOpcode);
948 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
949 emitRegModRMByte(MI.getOperand(CurOp).getReg(),
950 getX86RegNum(MI.getOperand(CurOp).getReg()));
951 ++CurOp;
952 break;
953
954 case X86II::MRM_C1:
955 MCE.emitByte(BaseOpcode);
956 MCE.emitByte(0xC1);
957 break;
958 case X86II::MRM_C8:
959 MCE.emitByte(BaseOpcode);
960 MCE.emitByte(0xC8);
961 break;
962 case X86II::MRM_C9:
963 MCE.emitByte(BaseOpcode);
964 MCE.emitByte(0xC9);
965 break;
966 case X86II::MRM_E8:
967 MCE.emitByte(BaseOpcode);
968 MCE.emitByte(0xE8);
969 break;
970 case X86II::MRM_F0:
971 MCE.emitByte(BaseOpcode);
972 MCE.emitByte(0xF0);
973 break;
974 }
975
976 if (!Desc->isVariadic() && CurOp != NumOps) {
977#ifndef NDEBUG
978 dbgs() << "Cannot encode all operands of: " << MI << "\n";
979#endif
980 llvm_unreachable(0);
981 }
982
983 MCE.processDebugLoc(MI.getDebugLoc(), false);
984}
Note: See TracBrowser for help on using the repository browser.