source: clamav/trunk/libclamav/c++/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp@ 319

Last change on this file since 319 was 319, checked in by Yuri Dario, 14 years ago

clamav: update trunk to 0.97.

File size: 22.9 KB
Line 
1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "SDNodeDbgValue.h"
17#include "ScheduleDAGSDNodes.h"
18#include "InstrEmitter.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetRegisterInfo.h"
24#include "llvm/Target/TargetSubtarget.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(LoadsClustered, "Number of loads clustered together");
35
36ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
37 : ScheduleDAG(mf) {
38}
39
40/// Run - perform scheduling.
41///
42void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
43 MachineBasicBlock::iterator insertPos) {
44 DAG = dag;
45 ScheduleDAG::Run(bb, insertPos);
46}
47
48/// NewSUnit - Creates a new SUnit and return a ptr to it.
49///
50SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
51#ifndef NDEBUG
52 const SUnit *Addr = 0;
53 if (!SUnits.empty())
54 Addr = &SUnits[0];
55#endif
56 SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
57 assert((Addr == 0 || Addr == &SUnits[0]) &&
58 "SUnits std::vector reallocated on the fly!");
59 SUnits.back().OrigNode = &SUnits.back();
60 SUnit *SU = &SUnits.back();
61 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
62 if (!N ||
63 (N->isMachineOpcode() &&
64 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
65 SU->SchedulingPref = Sched::None;
66 else
67 SU->SchedulingPref = TLI.getSchedulingPreference(N);
68 return SU;
69}
70
71SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
72 SUnit *SU = NewSUnit(Old->getNode());
73 SU->OrigNode = Old->OrigNode;
74 SU->Latency = Old->Latency;
75 SU->isTwoAddress = Old->isTwoAddress;
76 SU->isCommutable = Old->isCommutable;
77 SU->hasPhysRegDefs = Old->hasPhysRegDefs;
78 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
79 SU->SchedulingPref = Old->SchedulingPref;
80 Old->isCloned = true;
81 return SU;
82}
83
84/// CheckForPhysRegDependency - Check if the dependency between def and use of
85/// a specified operand is a physical register dependency. If so, returns the
86/// register and the cost of copying the register.
87static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
88 const TargetRegisterInfo *TRI,
89 const TargetInstrInfo *TII,
90 unsigned &PhysReg, int &Cost) {
91 if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
92 return;
93
94 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
95 if (TargetRegisterInfo::isVirtualRegister(Reg))
96 return;
97
98 unsigned ResNo = User->getOperand(2).getResNo();
99 if (Def->isMachineOpcode()) {
100 const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
101 if (ResNo >= II.getNumDefs() &&
102 II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
103 PhysReg = Reg;
104 const TargetRegisterClass *RC =
105 TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
106 Cost = RC->getCopyCost();
107 }
108 }
109}
110
111static void AddFlags(SDNode *N, SDValue Flag, bool AddFlag,
112 SelectionDAG *DAG) {
113 SmallVector<EVT, 4> VTs;
114 SDNode *FlagDestNode = Flag.getNode();
115
116 // Don't add a flag from a node to itself.
117 if (FlagDestNode == N) return;
118
119 // Don't add a flag to something which already has a flag.
120 if (N->getValueType(N->getNumValues() - 1) == MVT::Flag) return;
121
122 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
123 VTs.push_back(N->getValueType(I));
124
125 if (AddFlag)
126 VTs.push_back(MVT::Flag);
127
128 SmallVector<SDValue, 4> Ops;
129 for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
130 Ops.push_back(N->getOperand(I));
131
132 if (FlagDestNode)
133 Ops.push_back(Flag);
134
135 SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
136 MachineSDNode::mmo_iterator Begin = 0, End = 0;
137 MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
138
139 // Store memory references.
140 if (MN) {
141 Begin = MN->memoperands_begin();
142 End = MN->memoperands_end();
143 }
144
145 DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
146
147 // Reset the memory references
148 if (MN)
149 MN->setMemRefs(Begin, End);
150}
151
152/// ClusterNeighboringLoads - Force nearby loads together by "flagging" them.
153/// This function finds loads of the same base and different offsets. If the
154/// offsets are not far apart (target specific), it add MVT::Flag inputs and
155/// outputs to ensure they are scheduled together and in order. This
156/// optimization may benefit some targets by improving cache locality.
157void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
158 SDNode *Chain = 0;
159 unsigned NumOps = Node->getNumOperands();
160 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
161 Chain = Node->getOperand(NumOps-1).getNode();
162 if (!Chain)
163 return;
164
165 // Look for other loads of the same chain. Find loads that are loading from
166 // the same base pointer and different offsets.
167 SmallPtrSet<SDNode*, 16> Visited;
168 SmallVector<int64_t, 4> Offsets;
169 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode.
170 bool Cluster = false;
171 SDNode *Base = Node;
172 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
173 I != E; ++I) {
174 SDNode *User = *I;
175 if (User == Node || !Visited.insert(User))
176 continue;
177 int64_t Offset1, Offset2;
178 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
179 Offset1 == Offset2)
180 // FIXME: Should be ok if they addresses are identical. But earlier
181 // optimizations really should have eliminated one of the loads.
182 continue;
183 if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
184 Offsets.push_back(Offset1);
185 O2SMap.insert(std::make_pair(Offset2, User));
186 Offsets.push_back(Offset2);
187 if (Offset2 < Offset1)
188 Base = User;
189 Cluster = true;
190 }
191
192 if (!Cluster)
193 return;
194
195 // Sort them in increasing order.
196 std::sort(Offsets.begin(), Offsets.end());
197
198 // Check if the loads are close enough.
199 SmallVector<SDNode*, 4> Loads;
200 unsigned NumLoads = 0;
201 int64_t BaseOff = Offsets[0];
202 SDNode *BaseLoad = O2SMap[BaseOff];
203 Loads.push_back(BaseLoad);
204 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
205 int64_t Offset = Offsets[i];
206 SDNode *Load = O2SMap[Offset];
207 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
208 break; // Stop right here. Ignore loads that are further away.
209 Loads.push_back(Load);
210 ++NumLoads;
211 }
212
213 if (NumLoads == 0)
214 return;
215
216 // Cluster loads by adding MVT::Flag outputs and inputs. This also
217 // ensure they are scheduled in order of increasing addresses.
218 SDNode *Lead = Loads[0];
219 AddFlags(Lead, SDValue(0, 0), true, DAG);
220
221 SDValue InFlag = SDValue(Lead, Lead->getNumValues() - 1);
222 for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
223 bool OutFlag = I < E - 1;
224 SDNode *Load = Loads[I];
225
226 AddFlags(Load, InFlag, OutFlag, DAG);
227
228 if (OutFlag)
229 InFlag = SDValue(Load, Load->getNumValues() - 1);
230
231 ++LoadsClustered;
232 }
233}
234
235/// ClusterNodes - Cluster certain nodes which should be scheduled together.
236///
237void ScheduleDAGSDNodes::ClusterNodes() {
238 for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
239 E = DAG->allnodes_end(); NI != E; ++NI) {
240 SDNode *Node = &*NI;
241 if (!Node || !Node->isMachineOpcode())
242 continue;
243
244 unsigned Opc = Node->getMachineOpcode();
245 const TargetInstrDesc &TID = TII->get(Opc);
246 if (TID.mayLoad())
247 // Cluster loads from "near" addresses into combined SUnits.
248 ClusterNeighboringLoads(Node);
249 }
250}
251
252void ScheduleDAGSDNodes::BuildSchedUnits() {
253 // During scheduling, the NodeId field of SDNode is used to map SDNodes
254 // to their associated SUnits by holding SUnits table indices. A value
255 // of -1 means the SDNode does not yet have an associated SUnit.
256 unsigned NumNodes = 0;
257 for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
258 E = DAG->allnodes_end(); NI != E; ++NI) {
259 NI->setNodeId(-1);
260 ++NumNodes;
261 }
262
263 // Reserve entries in the vector for each of the SUnits we are creating. This
264 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
265 // invalidated.
266 // FIXME: Multiply by 2 because we may clone nodes during scheduling.
267 // This is a temporary workaround.
268 SUnits.reserve(NumNodes * 2);
269
270 // Add all nodes in depth first order.
271 SmallVector<SDNode*, 64> Worklist;
272 SmallPtrSet<SDNode*, 64> Visited;
273 Worklist.push_back(DAG->getRoot().getNode());
274 Visited.insert(DAG->getRoot().getNode());
275
276 while (!Worklist.empty()) {
277 SDNode *NI = Worklist.pop_back_val();
278
279 // Add all operands to the worklist unless they've already been added.
280 for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
281 if (Visited.insert(NI->getOperand(i).getNode()))
282 Worklist.push_back(NI->getOperand(i).getNode());
283
284 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
285 continue;
286
287 // If this node has already been processed, stop now.
288 if (NI->getNodeId() != -1) continue;
289
290 SUnit *NodeSUnit = NewSUnit(NI);
291
292 // See if anything is flagged to this node, if so, add them to flagged
293 // nodes. Nodes can have at most one flag input and one flag output. Flags
294 // are required to be the last operand and result of a node.
295
296 // Scan up to find flagged preds.
297 SDNode *N = NI;
298 while (N->getNumOperands() &&
299 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
300 N = N->getOperand(N->getNumOperands()-1).getNode();
301 assert(N->getNodeId() == -1 && "Node already inserted!");
302 N->setNodeId(NodeSUnit->NodeNum);
303 }
304
305 // Scan down to find any flagged succs.
306 N = NI;
307 while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
308 SDValue FlagVal(N, N->getNumValues()-1);
309
310 // There are either zero or one users of the Flag result.
311 bool HasFlagUse = false;
312 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
313 UI != E; ++UI)
314 if (FlagVal.isOperandOf(*UI)) {
315 HasFlagUse = true;
316 assert(N->getNodeId() == -1 && "Node already inserted!");
317 N->setNodeId(NodeSUnit->NodeNum);
318 N = *UI;
319 break;
320 }
321 if (!HasFlagUse) break;
322 }
323
324 // If there are flag operands involved, N is now the bottom-most node
325 // of the sequence of nodes that are flagged together.
326 // Update the SUnit.
327 NodeSUnit->setNode(N);
328 assert(N->getNodeId() == -1 && "Node already inserted!");
329 N->setNodeId(NodeSUnit->NodeNum);
330
331 // Assign the Latency field of NodeSUnit using target-provided information.
332 ComputeLatency(NodeSUnit);
333 }
334}
335
336void ScheduleDAGSDNodes::AddSchedEdges() {
337 const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
338
339 // Check to see if the scheduler cares about latencies.
340 bool UnitLatencies = ForceUnitLatencies();
341
342 // Pass 2: add the preds, succs, etc.
343 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
344 SUnit *SU = &SUnits[su];
345 SDNode *MainNode = SU->getNode();
346
347 if (MainNode->isMachineOpcode()) {
348 unsigned Opc = MainNode->getMachineOpcode();
349 const TargetInstrDesc &TID = TII->get(Opc);
350 for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
351 if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
352 SU->isTwoAddress = true;
353 break;
354 }
355 }
356 if (TID.isCommutable())
357 SU->isCommutable = true;
358 }
359
360 // Find all predecessors and successors of the group.
361 for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) {
362 if (N->isMachineOpcode() &&
363 TII->get(N->getMachineOpcode()).getImplicitDefs()) {
364 SU->hasPhysRegClobbers = true;
365 unsigned NumUsed = InstrEmitter::CountResults(N);
366 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
367 --NumUsed; // Skip over unused values at the end.
368 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
369 SU->hasPhysRegDefs = true;
370 }
371
372 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
373 SDNode *OpN = N->getOperand(i).getNode();
374 if (isPassiveNode(OpN)) continue; // Not scheduled.
375 SUnit *OpSU = &SUnits[OpN->getNodeId()];
376 assert(OpSU && "Node has no SUnit!");
377 if (OpSU == SU) continue; // In the same group.
378
379 EVT OpVT = N->getOperand(i).getValueType();
380 assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
381 bool isChain = OpVT == MVT::Other;
382
383 unsigned PhysReg = 0;
384 int Cost = 1;
385 // Determine if this is a physical register dependency.
386 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
387 assert((PhysReg == 0 || !isChain) &&
388 "Chain dependence via physreg data?");
389 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
390 // emits a copy from the physical register to a virtual register unless
391 // it requires a cross class copy (cost < 0). That means we are only
392 // treating "expensive to copy" register dependency as physical register
393 // dependency. This may change in the future though.
394 if (Cost >= 0)
395 PhysReg = 0;
396
397 // If this is a ctrl dep, latency is 1.
398 unsigned OpLatency = isChain ? 1 : OpSU->Latency;
399 const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
400 OpLatency, PhysReg);
401 if (!isChain && !UnitLatencies) {
402 ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
403 ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
404 }
405
406 SU->addPred(dep);
407 }
408 }
409 }
410}
411
412/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
413/// are input. This SUnit graph is similar to the SelectionDAG, but
414/// excludes nodes that aren't interesting to scheduling, and represents
415/// flagged together nodes with a single SUnit.
416void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
417 // Cluster certain nodes which should be scheduled together.
418 ClusterNodes();
419 // Populate the SUnits array.
420 BuildSchedUnits();
421 // Compute all the scheduling dependencies between nodes.
422 AddSchedEdges();
423}
424
425void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
426 // Check to see if the scheduler cares about latencies.
427 if (ForceUnitLatencies()) {
428 SU->Latency = 1;
429 return;
430 }
431
432 const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
433 if (InstrItins.isEmpty()) {
434 SU->Latency = 1;
435 return;
436 }
437
438 // Compute the latency for the node. We use the sum of the latencies for
439 // all nodes flagged together into this SUnit.
440 SU->Latency = 0;
441 for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode())
442 if (N->isMachineOpcode()) {
443 SU->Latency += InstrItins.
444 getStageLatency(TII->get(N->getMachineOpcode()).getSchedClass());
445 }
446}
447
448void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
449 unsigned OpIdx, SDep& dep) const{
450 // Check to see if the scheduler cares about latencies.
451 if (ForceUnitLatencies())
452 return;
453
454 const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
455 if (InstrItins.isEmpty())
456 return;
457
458 if (dep.getKind() != SDep::Data)
459 return;
460
461 unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
462 if (Def->isMachineOpcode()) {
463 const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
464 if (DefIdx >= II.getNumDefs())
465 return;
466 int DefCycle = InstrItins.getOperandCycle(II.getSchedClass(), DefIdx);
467 if (DefCycle < 0)
468 return;
469 int UseCycle = 1;
470 if (Use->isMachineOpcode()) {
471 const unsigned UseClass = TII->get(Use->getMachineOpcode()).getSchedClass();
472 UseCycle = InstrItins.getOperandCycle(UseClass, OpIdx);
473 }
474 if (UseCycle >= 0) {
475 int Latency = DefCycle - UseCycle + 1;
476 if (Latency >= 0)
477 dep.setLatency(Latency);
478 }
479 }
480}
481
482void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
483 if (!SU->getNode()) {
484 dbgs() << "PHYS REG COPY\n";
485 return;
486 }
487
488 SU->getNode()->dump(DAG);
489 dbgs() << "\n";
490 SmallVector<SDNode *, 4> FlaggedNodes;
491 for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode())
492 FlaggedNodes.push_back(N);
493 while (!FlaggedNodes.empty()) {
494 dbgs() << " ";
495 FlaggedNodes.back()->dump(DAG);
496 dbgs() << "\n";
497 FlaggedNodes.pop_back();
498 }
499}
500
501namespace {
502 struct OrderSorter {
503 bool operator()(const std::pair<unsigned, MachineInstr*> &A,
504 const std::pair<unsigned, MachineInstr*> &B) {
505 return A.first < B.first;
506 }
507 };
508}
509
510// ProcessSourceNode - Process nodes with source order numbers. These are added
511// to a vector which EmitSchedule uses to determine how to insert dbg_value
512// instructions in the right order.
513static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
514 InstrEmitter &Emitter,
515 DenseMap<SDValue, unsigned> &VRBaseMap,
516 SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
517 SmallSet<unsigned, 8> &Seen) {
518 unsigned Order = DAG->GetOrdering(N);
519 if (!Order || !Seen.insert(Order))
520 return;
521
522 MachineBasicBlock *BB = Emitter.getBlock();
523 if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
524 // Did not insert any instruction.
525 Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
526 return;
527 }
528
529 Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
530 if (!N->getHasDebugValue())
531 return;
532 // Opportunistically insert immediate dbg_value uses, i.e. those with source
533 // order number right after the N.
534 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
535 SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N);
536 for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
537 if (DVs[i]->isInvalidated())
538 continue;
539 unsigned DVOrder = DVs[i]->getOrder();
540 if (DVOrder == ++Order) {
541 MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
542 if (DbgMI) {
543 Orders.push_back(std::make_pair(DVOrder, DbgMI));
544 BB->insert(InsertPos, DbgMI);
545 }
546 DVs[i]->setIsInvalidated();
547 }
548 }
549}
550
551
552/// EmitSchedule - Emit the machine code in scheduled order.
553MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
554 InstrEmitter Emitter(BB, InsertPos);
555 DenseMap<SDValue, unsigned> VRBaseMap;
556 DenseMap<SUnit*, unsigned> CopyVRBaseMap;
557 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
558 SmallSet<unsigned, 8> Seen;
559 bool HasDbg = DAG->hasDebugValues();
560
561 // If this is the first BB, emit byval parameter dbg_value's.
562 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
563 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
564 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
565 for (; PDI != PDE; ++PDI) {
566 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
567 if (DbgMI)
568 BB->insert(InsertPos, DbgMI);
569 }
570 }
571
572 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
573 SUnit *SU = Sequence[i];
574 if (!SU) {
575 // Null SUnit* is a noop.
576 EmitNoop();
577 continue;
578 }
579
580 // For pre-regalloc scheduling, create instructions corresponding to the
581 // SDNode and any flagged SDNodes and append them to the block.
582 if (!SU->getNode()) {
583 // Emit a copy.
584 EmitPhysRegCopy(SU, CopyVRBaseMap);
585 continue;
586 }
587
588 SmallVector<SDNode *, 4> FlaggedNodes;
589 for (SDNode *N = SU->getNode()->getFlaggedNode(); N;
590 N = N->getFlaggedNode())
591 FlaggedNodes.push_back(N);
592 while (!FlaggedNodes.empty()) {
593 SDNode *N = FlaggedNodes.back();
594 Emitter.EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, SU->isCloned,
595 VRBaseMap);
596 // Remember the source order of the inserted instruction.
597 if (HasDbg)
598 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
599 FlaggedNodes.pop_back();
600 }
601 Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
602 VRBaseMap);
603 // Remember the source order of the inserted instruction.
604 if (HasDbg)
605 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
606 Seen);
607 }
608
609 // Insert all the dbg_values which have not already been inserted in source
610 // order sequence.
611 if (HasDbg) {
612 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
613
614 // Sort the source order instructions and use the order to insert debug
615 // values.
616 std::sort(Orders.begin(), Orders.end(), OrderSorter());
617
618 SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
619 SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
620 // Now emit the rest according to source order.
621 unsigned LastOrder = 0;
622 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
623 unsigned Order = Orders[i].first;
624 MachineInstr *MI = Orders[i].second;
625 // Insert all SDDbgValue's whose order(s) are before "Order".
626 if (!MI)
627 continue;
628#ifndef NDEBUG
629 unsigned LastDIOrder = 0;
630#endif
631 for (; DI != DE &&
632 (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
633#ifndef NDEBUG
634 assert((*DI)->getOrder() >= LastDIOrder &&
635 "SDDbgValue nodes must be in source order!");
636 LastDIOrder = (*DI)->getOrder();
637#endif
638 if ((*DI)->isInvalidated())
639 continue;
640 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
641 if (DbgMI) {
642 if (!LastOrder)
643 // Insert to start of the BB (after PHIs).
644 BB->insert(BBBegin, DbgMI);
645 else {
646 // Insert at the instruction, which may be in a different
647 // block, if the block was split by a custom inserter.
648 MachineBasicBlock::iterator Pos = MI;
649 MI->getParent()->insert(llvm::next(Pos), DbgMI);
650 }
651 }
652 }
653 LastOrder = Order;
654 }
655 // Add trailing DbgValue's before the terminator. FIXME: May want to add
656 // some of them before one or more conditional branches?
657 while (DI != DE) {
658 MachineBasicBlock *InsertBB = Emitter.getBlock();
659 MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
660 if (!(*DI)->isInvalidated()) {
661 MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
662 if (DbgMI)
663 InsertBB->insert(Pos, DbgMI);
664 }
665 ++DI;
666 }
667 }
668
669 BB = Emitter.getBlock();
670 InsertPos = Emitter.getInsertPos();
671 return BB;
672}
Note: See TracBrowser for help on using the repository browser.