source: clamav/trunk/libclamav/c++/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp@ 319

Last change on this file since 319 was 319, checked in by Yuri Dario, 14 years ago

clamav: update trunk to 0.97.

File size: 144.9 KB
Line 
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/Analysis/DebugInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalVariable.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/SmallPtrSet.h"
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44/// hacks on it until the target machine can handle it. This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing. For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
55class SelectionDAGLegalize {
56 const TargetMachine &TM;
57 const TargetLowering &TLI;
58 SelectionDAG &DAG;
59 CodeGenOpt::Level OptLevel;
60
61 // Libcall insertion helpers.
62
63 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
64 /// legalized. We use this to ensure that calls are properly serialized
65 /// against each other, including inserted libcalls.
66 SDValue LastCALLSEQ_END;
67
68 /// IsLegalizingCall - This member is used *only* for purposes of providing
69 /// helpful assertions that a libcall isn't created while another call is
70 /// being legalized (which could lead to non-serialized call sequences).
71 bool IsLegalizingCall;
72
73 enum LegalizeAction {
74 Legal, // The target natively supports this operation.
75 Promote, // This operation should be executed in a larger type.
76 Expand // Try to expand this to other ops, otherwise use a libcall.
77 };
78
79 /// ValueTypeActions - This is a bitvector that contains two bits for each
80 /// value type, where the two bits correspond to the LegalizeAction enum.
81 /// This can be queried with "getTypeAction(VT)".
82 TargetLowering::ValueTypeActionImpl ValueTypeActions;
83
84 /// LegalizedNodes - For nodes that are of legal width, and that have more
85 /// than one use, this map indicates what regularized operand to use. This
86 /// allows us to avoid legalizing the same thing more than once.
87 DenseMap<SDValue, SDValue> LegalizedNodes;
88
89 void AddLegalizedOperand(SDValue From, SDValue To) {
90 LegalizedNodes.insert(std::make_pair(From, To));
91 // If someone requests legalization of the new node, return itself.
92 if (From != To)
93 LegalizedNodes.insert(std::make_pair(To, To));
94 }
95
96public:
97 SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
98
99 /// getTypeAction - Return how we should legalize values of this type, either
100 /// it is already legal or we need to expand it into multiple registers of
101 /// smaller integer type, or we need to promote it to a larger type.
102 LegalizeAction getTypeAction(EVT VT) const {
103 return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
104 }
105
106 /// isTypeLegal - Return true if this type is legal on this target.
107 ///
108 bool isTypeLegal(EVT VT) const {
109 return getTypeAction(VT) == Legal;
110 }
111
112 void LegalizeDAG();
113
114private:
115 /// LegalizeOp - We know that the specified value has a legal type.
116 /// Recursively ensure that the operands have legal types, then return the
117 /// result.
118 SDValue LegalizeOp(SDValue O);
119
120 SDValue OptimizeFloatStore(StoreSDNode *ST);
121
122 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
123 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
124 /// is necessary to spill the vector being inserted into to memory, perform
125 /// the insert there, and then read the result back.
126 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
127 SDValue Idx, DebugLoc dl);
128 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
129 SDValue Idx, DebugLoc dl);
130
131 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
132 /// performs the same shuffe in terms of order or result bytes, but on a type
133 /// whose vector element type is narrower than the original shuffle type.
134 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
135 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
136 SDValue N1, SDValue N2,
137 SmallVectorImpl<int> &Mask) const;
138
139 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
140 SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
141
142 void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
143 DebugLoc dl);
144
145 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
146 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
147 SDNode *Node, bool isSigned);
148 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
149 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
150 RTLIB::Libcall Call_PPCF128);
151 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
152 RTLIB::Libcall Call_I8,
153 RTLIB::Libcall Call_I16,
154 RTLIB::Libcall Call_I32,
155 RTLIB::Libcall Call_I64,
156 RTLIB::Libcall Call_I128);
157
158 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
159 SDValue ExpandBUILD_VECTOR(SDNode *Node);
160 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
161 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
162 SmallVectorImpl<SDValue> &Results);
163 SDValue ExpandFCOPYSIGN(SDNode *Node);
164 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
165 DebugLoc dl);
166 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
167 DebugLoc dl);
168 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
169 DebugLoc dl);
170
171 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
172 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
173
174 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
175 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
176
177 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
178
179 void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
180 void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
181};
182}
183
184/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
185/// performs the same shuffe in terms of order or result bytes, but on a type
186/// whose vector element type is narrower than the original shuffle type.
187/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
188SDValue
189SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
190 SDValue N1, SDValue N2,
191 SmallVectorImpl<int> &Mask) const {
192 unsigned NumMaskElts = VT.getVectorNumElements();
193 unsigned NumDestElts = NVT.getVectorNumElements();
194 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
195
196 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
197
198 if (NumEltsGrowth == 1)
199 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
200
201 SmallVector<int, 8> NewMask;
202 for (unsigned i = 0; i != NumMaskElts; ++i) {
203 int Idx = Mask[i];
204 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
205 if (Idx < 0)
206 NewMask.push_back(-1);
207 else
208 NewMask.push_back(Idx * NumEltsGrowth + j);
209 }
210 }
211 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
212 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
213 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
214}
215
216SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
217 CodeGenOpt::Level ol)
218 : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
219 DAG(dag), OptLevel(ol),
220 ValueTypeActions(TLI.getValueTypeActions()) {
221 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
222 "Too many value types for ValueTypeActions to hold!");
223}
224
225void SelectionDAGLegalize::LegalizeDAG() {
226 LastCALLSEQ_END = DAG.getEntryNode();
227 IsLegalizingCall = false;
228
229 // The legalize process is inherently a bottom-up recursive process (users
230 // legalize their uses before themselves). Given infinite stack space, we
231 // could just start legalizing on the root and traverse the whole graph. In
232 // practice however, this causes us to run out of stack space on large basic
233 // blocks. To avoid this problem, compute an ordering of the nodes where each
234 // node is only legalized after all of its operands are legalized.
235 DAG.AssignTopologicalOrder();
236 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
237 E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
238 LegalizeOp(SDValue(I, 0));
239
240 // Finally, it's possible the root changed. Get the new root.
241 SDValue OldRoot = DAG.getRoot();
242 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
243 DAG.setRoot(LegalizedNodes[OldRoot]);
244
245 LegalizedNodes.clear();
246
247 // Remove dead nodes now.
248 DAG.RemoveDeadNodes();
249}
250
251
252/// FindCallEndFromCallStart - Given a chained node that is part of a call
253/// sequence, find the CALLSEQ_END node that terminates the call sequence.
254static SDNode *FindCallEndFromCallStart(SDNode *Node) {
255 if (Node->getOpcode() == ISD::CALLSEQ_END)
256 return Node;
257 if (Node->use_empty())
258 return 0; // No CallSeqEnd
259
260 // The chain is usually at the end.
261 SDValue TheChain(Node, Node->getNumValues()-1);
262 if (TheChain.getValueType() != MVT::Other) {
263 // Sometimes it's at the beginning.
264 TheChain = SDValue(Node, 0);
265 if (TheChain.getValueType() != MVT::Other) {
266 // Otherwise, hunt for it.
267 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
268 if (Node->getValueType(i) == MVT::Other) {
269 TheChain = SDValue(Node, i);
270 break;
271 }
272
273 // Otherwise, we walked into a node without a chain.
274 if (TheChain.getValueType() != MVT::Other)
275 return 0;
276 }
277 }
278
279 for (SDNode::use_iterator UI = Node->use_begin(),
280 E = Node->use_end(); UI != E; ++UI) {
281
282 // Make sure to only follow users of our token chain.
283 SDNode *User = *UI;
284 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
285 if (User->getOperand(i) == TheChain)
286 if (SDNode *Result = FindCallEndFromCallStart(User))
287 return Result;
288 }
289 return 0;
290}
291
292/// FindCallStartFromCallEnd - Given a chained node that is part of a call
293/// sequence, find the CALLSEQ_START node that initiates the call sequence.
294static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
295 assert(Node && "Didn't find callseq_start for a call??");
296 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
297
298 assert(Node->getOperand(0).getValueType() == MVT::Other &&
299 "Node doesn't have a token chain argument!");
300 return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
301}
302
303/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
304/// see if any uses can reach Dest. If no dest operands can get to dest,
305/// legalize them, legalize ourself, and return false, otherwise, return true.
306///
307/// Keep track of the nodes we fine that actually do lead to Dest in
308/// NodesLeadingTo. This avoids retraversing them exponential number of times.
309///
310bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
311 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
312 if (N == Dest) return true; // N certainly leads to Dest :)
313
314 // If we've already processed this node and it does lead to Dest, there is no
315 // need to reprocess it.
316 if (NodesLeadingTo.count(N)) return true;
317
318 // If the first result of this node has been already legalized, then it cannot
319 // reach N.
320 if (LegalizedNodes.count(SDValue(N, 0))) return false;
321
322 // Okay, this node has not already been legalized. Check and legalize all
323 // operands. If none lead to Dest, then we can legalize this node.
324 bool OperandsLeadToDest = false;
325 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
326 OperandsLeadToDest |= // If an operand leads to Dest, so do we.
327 LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest,
328 NodesLeadingTo);
329
330 if (OperandsLeadToDest) {
331 NodesLeadingTo.insert(N);
332 return true;
333 }
334
335 // Okay, this node looks safe, legalize it and return false.
336 LegalizeOp(SDValue(N, 0));
337 return false;
338}
339
340/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
341/// a load from the constant pool.
342static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
343 SelectionDAG &DAG, const TargetLowering &TLI) {
344 bool Extend = false;
345 DebugLoc dl = CFP->getDebugLoc();
346
347 // If a FP immediate is precise when represented as a float and if the
348 // target can do an extending load from float to double, we put it into
349 // the constant pool as a float, even if it's is statically typed as a
350 // double. This shrinks FP constants and canonicalizes them for targets where
351 // an FP extending load is the same cost as a normal load (such as on the x87
352 // fp stack or PPC FP unit).
353 EVT VT = CFP->getValueType(0);
354 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
355 if (!UseCP) {
356 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
357 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
358 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
359 }
360
361 EVT OrigVT = VT;
362 EVT SVT = VT;
363 while (SVT != MVT::f32) {
364 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
365 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
366 // Only do this if the target has a native EXTLOAD instruction from
367 // smaller type.
368 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
369 TLI.ShouldShrinkFPConstant(OrigVT)) {
370 const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
371 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
372 VT = SVT;
373 Extend = true;
374 }
375 }
376
377 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
378 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
379 if (Extend)
380 return DAG.getExtLoad(ISD::EXTLOAD, OrigVT, dl,
381 DAG.getEntryNode(),
382 CPIdx, PseudoSourceValue::getConstantPool(),
383 0, VT, false, false, Alignment);
384 return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
385 PseudoSourceValue::getConstantPool(), 0, false, false,
386 Alignment);
387}
388
389/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
390static
391SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
392 const TargetLowering &TLI) {
393 SDValue Chain = ST->getChain();
394 SDValue Ptr = ST->getBasePtr();
395 SDValue Val = ST->getValue();
396 EVT VT = Val.getValueType();
397 int Alignment = ST->getAlignment();
398 int SVOffset = ST->getSrcValueOffset();
399 DebugLoc dl = ST->getDebugLoc();
400 if (ST->getMemoryVT().isFloatingPoint() ||
401 ST->getMemoryVT().isVector()) {
402 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
403 if (TLI.isTypeLegal(intVT)) {
404 // Expand to a bitconvert of the value to the integer type of the
405 // same size, then a (misaligned) int store.
406 // FIXME: Does not handle truncating floating point stores!
407 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
408 return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
409 SVOffset, ST->isVolatile(), ST->isNonTemporal(),
410 Alignment);
411 } else {
412 // Do a (aligned) store to a stack slot, then copy from the stack slot
413 // to the final destination using (unaligned) integer loads and stores.
414 EVT StoredVT = ST->getMemoryVT();
415 EVT RegVT =
416 TLI.getRegisterType(*DAG.getContext(),
417 EVT::getIntegerVT(*DAG.getContext(),
418 StoredVT.getSizeInBits()));
419 unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
420 unsigned RegBytes = RegVT.getSizeInBits() / 8;
421 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
422
423 // Make sure the stack slot is also aligned for the register type.
424 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
425
426 // Perform the original store, only redirected to the stack slot.
427 SDValue Store = DAG.getTruncStore(Chain, dl,
428 Val, StackPtr, NULL, 0, StoredVT,
429 false, false, 0);
430 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
431 SmallVector<SDValue, 8> Stores;
432 unsigned Offset = 0;
433
434 // Do all but one copies using the full register width.
435 for (unsigned i = 1; i < NumRegs; i++) {
436 // Load one integer register's worth from the stack slot.
437 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0,
438 false, false, 0);
439 // Store it to the final location. Remember the store.
440 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
441 ST->getSrcValue(), SVOffset + Offset,
442 ST->isVolatile(), ST->isNonTemporal(),
443 MinAlign(ST->getAlignment(), Offset)));
444 // Increment the pointers.
445 Offset += RegBytes;
446 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
447 Increment);
448 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
449 }
450
451 // The last store may be partial. Do a truncating store. On big-endian
452 // machines this requires an extending load from the stack slot to ensure
453 // that the bits are in the right place.
454 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
455 8 * (StoredBytes - Offset));
456
457 // Load from the stack slot.
458 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Store, StackPtr,
459 NULL, 0, MemVT, false, false, 0);
460
461 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
462 ST->getSrcValue(), SVOffset + Offset,
463 MemVT, ST->isVolatile(),
464 ST->isNonTemporal(),
465 MinAlign(ST->getAlignment(), Offset)));
466 // The order of the stores doesn't matter - say it with a TokenFactor.
467 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
468 Stores.size());
469 }
470 }
471 assert(ST->getMemoryVT().isInteger() &&
472 !ST->getMemoryVT().isVector() &&
473 "Unaligned store of unknown type.");
474 // Get the half-size VT
475 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
476 int NumBits = NewStoredVT.getSizeInBits();
477 int IncrementSize = NumBits / 8;
478
479 // Divide the stored value in two parts.
480 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
481 SDValue Lo = Val;
482 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
483
484 // Store the two parts
485 SDValue Store1, Store2;
486 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
487 ST->getSrcValue(), SVOffset, NewStoredVT,
488 ST->isVolatile(), ST->isNonTemporal(), Alignment);
489 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
490 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
491 Alignment = MinAlign(Alignment, IncrementSize);
492 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
493 ST->getSrcValue(), SVOffset + IncrementSize,
494 NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
495 Alignment);
496
497 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
498}
499
500/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
501static
502SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
503 const TargetLowering &TLI) {
504 int SVOffset = LD->getSrcValueOffset();
505 SDValue Chain = LD->getChain();
506 SDValue Ptr = LD->getBasePtr();
507 EVT VT = LD->getValueType(0);
508 EVT LoadedVT = LD->getMemoryVT();
509 DebugLoc dl = LD->getDebugLoc();
510 if (VT.isFloatingPoint() || VT.isVector()) {
511 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
512 if (TLI.isTypeLegal(intVT)) {
513 // Expand to a (misaligned) integer load of the same size,
514 // then bitconvert to floating point or vector.
515 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
516 SVOffset, LD->isVolatile(),
517 LD->isNonTemporal(), LD->getAlignment());
518 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
519 if (VT.isFloatingPoint() && LoadedVT != VT)
520 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
521
522 SDValue Ops[] = { Result, Chain };
523 return DAG.getMergeValues(Ops, 2, dl);
524 } else {
525 // Copy the value to a (aligned) stack slot using (unaligned) integer
526 // loads and stores, then do a (aligned) load from the stack slot.
527 EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
528 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
529 unsigned RegBytes = RegVT.getSizeInBits() / 8;
530 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
531
532 // Make sure the stack slot is also aligned for the register type.
533 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
534
535 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
536 SmallVector<SDValue, 8> Stores;
537 SDValue StackPtr = StackBase;
538 unsigned Offset = 0;
539
540 // Do all but one copies using the full register width.
541 for (unsigned i = 1; i < NumRegs; i++) {
542 // Load one integer register's worth from the original location.
543 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
544 SVOffset + Offset, LD->isVolatile(),
545 LD->isNonTemporal(),
546 MinAlign(LD->getAlignment(), Offset));
547 // Follow the load with a store to the stack slot. Remember the store.
548 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
549 NULL, 0, false, false, 0));
550 // Increment the pointers.
551 Offset += RegBytes;
552 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
553 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
554 Increment);
555 }
556
557 // The last copy may be partial. Do an extending load.
558 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
559 8 * (LoadedBytes - Offset));
560 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Chain, Ptr,
561 LD->getSrcValue(), SVOffset + Offset,
562 MemVT, LD->isVolatile(),
563 LD->isNonTemporal(),
564 MinAlign(LD->getAlignment(), Offset));
565 // Follow the load with a store to the stack slot. Remember the store.
566 // On big-endian machines this requires a truncating store to ensure
567 // that the bits end up in the right place.
568 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
569 NULL, 0, MemVT, false, false, 0));
570
571 // The order of the stores doesn't matter - say it with a TokenFactor.
572 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
573 Stores.size());
574
575 // Finally, perform the original load only redirected to the stack slot.
576 Load = DAG.getExtLoad(LD->getExtensionType(), VT, dl, TF, StackBase,
577 NULL, 0, LoadedVT, false, false, 0);
578
579 // Callers expect a MERGE_VALUES node.
580 SDValue Ops[] = { Load, TF };
581 return DAG.getMergeValues(Ops, 2, dl);
582 }
583 }
584 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
585 "Unaligned load of unsupported type.");
586
587 // Compute the new VT that is half the size of the old one. This is an
588 // integer MVT.
589 unsigned NumBits = LoadedVT.getSizeInBits();
590 EVT NewLoadedVT;
591 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
592 NumBits >>= 1;
593
594 unsigned Alignment = LD->getAlignment();
595 unsigned IncrementSize = NumBits / 8;
596 ISD::LoadExtType HiExtType = LD->getExtensionType();
597
598 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
599 if (HiExtType == ISD::NON_EXTLOAD)
600 HiExtType = ISD::ZEXTLOAD;
601
602 // Load the value in two parts
603 SDValue Lo, Hi;
604 if (TLI.isLittleEndian()) {
605 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr, LD->getSrcValue(),
606 SVOffset, NewLoadedVT, LD->isVolatile(),
607 LD->isNonTemporal(), Alignment);
608 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
609 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
610 Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr, LD->getSrcValue(),
611 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
612 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
613 } else {
614 Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr, LD->getSrcValue(),
615 SVOffset, NewLoadedVT, LD->isVolatile(),
616 LD->isNonTemporal(), Alignment);
617 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
618 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
619 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr, LD->getSrcValue(),
620 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
621 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
622 }
623
624 // aggregate the two parts
625 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
626 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
627 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
628
629 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
630 Hi.getValue(1));
631
632 SDValue Ops[] = { Result, TF };
633 return DAG.getMergeValues(Ops, 2, dl);
634}
635
636/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
637/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
638/// is necessary to spill the vector being inserted into to memory, perform
639/// the insert there, and then read the result back.
640SDValue SelectionDAGLegalize::
641PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
642 DebugLoc dl) {
643 SDValue Tmp1 = Vec;
644 SDValue Tmp2 = Val;
645 SDValue Tmp3 = Idx;
646
647 // If the target doesn't support this, we have to spill the input vector
648 // to a temporary stack slot, update the element, then reload it. This is
649 // badness. We could also load the value into a vector register (either
650 // with a "move to register" or "extload into register" instruction, then
651 // permute it into place, if the idx is a constant and if the idx is
652 // supported by the target.
653 EVT VT = Tmp1.getValueType();
654 EVT EltVT = VT.getVectorElementType();
655 EVT IdxVT = Tmp3.getValueType();
656 EVT PtrVT = TLI.getPointerTy();
657 SDValue StackPtr = DAG.CreateStackTemporary(VT);
658
659 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
660
661 // Store the vector.
662 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
663 PseudoSourceValue::getFixedStack(SPFI), 0,
664 false, false, 0);
665
666 // Truncate or zero extend offset to target pointer type.
667 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
668 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
669 // Add the offset to the index.
670 unsigned EltSize = EltVT.getSizeInBits()/8;
671 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
672 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
673 // Store the scalar value.
674 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
675 PseudoSourceValue::getFixedStack(SPFI), 0, EltVT,
676 false, false, 0);
677 // Load the updated vector.
678 return DAG.getLoad(VT, dl, Ch, StackPtr,
679 PseudoSourceValue::getFixedStack(SPFI), 0,
680 false, false, 0);
681}
682
683
684SDValue SelectionDAGLegalize::
685ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
686 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
687 // SCALAR_TO_VECTOR requires that the type of the value being inserted
688 // match the element type of the vector being created, except for
689 // integers in which case the inserted value can be over width.
690 EVT EltVT = Vec.getValueType().getVectorElementType();
691 if (Val.getValueType() == EltVT ||
692 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
693 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
694 Vec.getValueType(), Val);
695
696 unsigned NumElts = Vec.getValueType().getVectorNumElements();
697 // We generate a shuffle of InVec and ScVec, so the shuffle mask
698 // should be 0,1,2,3,4,5... with the appropriate element replaced with
699 // elt 0 of the RHS.
700 SmallVector<int, 8> ShufOps;
701 for (unsigned i = 0; i != NumElts; ++i)
702 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
703
704 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
705 &ShufOps[0]);
706 }
707 }
708 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
709}
710
711SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
712 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
713 // FIXME: We shouldn't do this for TargetConstantFP's.
714 // FIXME: move this to the DAG Combiner! Note that we can't regress due
715 // to phase ordering between legalized code and the dag combiner. This
716 // probably means that we need to integrate dag combiner and legalizer
717 // together.
718 // We generally can't do this one for long doubles.
719 SDValue Tmp1 = ST->getChain();
720 SDValue Tmp2 = ST->getBasePtr();
721 SDValue Tmp3;
722 int SVOffset = ST->getSrcValueOffset();
723 unsigned Alignment = ST->getAlignment();
724 bool isVolatile = ST->isVolatile();
725 bool isNonTemporal = ST->isNonTemporal();
726 DebugLoc dl = ST->getDebugLoc();
727 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
728 if (CFP->getValueType(0) == MVT::f32 &&
729 getTypeAction(MVT::i32) == Legal) {
730 Tmp3 = DAG.getConstant(CFP->getValueAPF().
731 bitcastToAPInt().zextOrTrunc(32),
732 MVT::i32);
733 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
734 SVOffset, isVolatile, isNonTemporal, Alignment);
735 } else if (CFP->getValueType(0) == MVT::f64) {
736 // If this target supports 64-bit registers, do a single 64-bit store.
737 if (getTypeAction(MVT::i64) == Legal) {
738 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
739 zextOrTrunc(64), MVT::i64);
740 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
741 SVOffset, isVolatile, isNonTemporal, Alignment);
742 } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
743 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
744 // stores. If the target supports neither 32- nor 64-bits, this
745 // xform is certainly not worth it.
746 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
747 SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
748 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
749 if (TLI.isBigEndian()) std::swap(Lo, Hi);
750
751 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
752 SVOffset, isVolatile, isNonTemporal, Alignment);
753 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
754 DAG.getIntPtrConstant(4));
755 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
756 isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
757
758 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
759 }
760 }
761 }
762 return SDValue();
763}
764
765/// LegalizeOp - We know that the specified value has a legal type, and
766/// that its operands are legal. Now ensure that the operation itself
767/// is legal, recursively ensuring that the operands' operations remain
768/// legal.
769SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
770 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
771 return Op;
772
773 SDNode *Node = Op.getNode();
774 DebugLoc dl = Node->getDebugLoc();
775
776 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
777 assert(getTypeAction(Node->getValueType(i)) == Legal &&
778 "Unexpected illegal type!");
779
780 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
781 assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
782 Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
783 "Unexpected illegal type!");
784
785 // Note that LegalizeOp may be reentered even from single-use nodes, which
786 // means that we always must cache transformed nodes.
787 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
788 if (I != LegalizedNodes.end()) return I->second;
789
790 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
791 SDValue Result = Op;
792 bool isCustom = false;
793
794 // Figure out the correct action; the way to query this varies by opcode
795 TargetLowering::LegalizeAction Action;
796 bool SimpleFinishLegalizing = true;
797 switch (Node->getOpcode()) {
798 case ISD::INTRINSIC_W_CHAIN:
799 case ISD::INTRINSIC_WO_CHAIN:
800 case ISD::INTRINSIC_VOID:
801 case ISD::VAARG:
802 case ISD::STACKSAVE:
803 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
804 break;
805 case ISD::SINT_TO_FP:
806 case ISD::UINT_TO_FP:
807 case ISD::EXTRACT_VECTOR_ELT:
808 Action = TLI.getOperationAction(Node->getOpcode(),
809 Node->getOperand(0).getValueType());
810 break;
811 case ISD::FP_ROUND_INREG:
812 case ISD::SIGN_EXTEND_INREG: {
813 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
814 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
815 break;
816 }
817 case ISD::SELECT_CC:
818 case ISD::SETCC:
819 case ISD::BR_CC: {
820 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
821 Node->getOpcode() == ISD::SETCC ? 2 : 1;
822 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
823 EVT OpVT = Node->getOperand(CompareOperand).getValueType();
824 ISD::CondCode CCCode =
825 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
826 Action = TLI.getCondCodeAction(CCCode, OpVT);
827 if (Action == TargetLowering::Legal) {
828 if (Node->getOpcode() == ISD::SELECT_CC)
829 Action = TLI.getOperationAction(Node->getOpcode(),
830 Node->getValueType(0));
831 else
832 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
833 }
834 break;
835 }
836 case ISD::LOAD:
837 case ISD::STORE:
838 // FIXME: Model these properly. LOAD and STORE are complicated, and
839 // STORE expects the unlegalized operand in some cases.
840 SimpleFinishLegalizing = false;
841 break;
842 case ISD::CALLSEQ_START:
843 case ISD::CALLSEQ_END:
844 // FIXME: This shouldn't be necessary. These nodes have special properties
845 // dealing with the recursive nature of legalization. Removing this
846 // special case should be done as part of making LegalizeDAG non-recursive.
847 SimpleFinishLegalizing = false;
848 break;
849 case ISD::EXTRACT_ELEMENT:
850 case ISD::FLT_ROUNDS_:
851 case ISD::SADDO:
852 case ISD::SSUBO:
853 case ISD::UADDO:
854 case ISD::USUBO:
855 case ISD::SMULO:
856 case ISD::UMULO:
857 case ISD::FPOWI:
858 case ISD::MERGE_VALUES:
859 case ISD::EH_RETURN:
860 case ISD::FRAME_TO_ARGS_OFFSET:
861 case ISD::EH_SJLJ_SETJMP:
862 case ISD::EH_SJLJ_LONGJMP:
863 // These operations lie about being legal: when they claim to be legal,
864 // they should actually be expanded.
865 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
866 if (Action == TargetLowering::Legal)
867 Action = TargetLowering::Expand;
868 break;
869 case ISD::TRAMPOLINE:
870 case ISD::FRAMEADDR:
871 case ISD::RETURNADDR:
872 // These operations lie about being legal: when they claim to be legal,
873 // they should actually be custom-lowered.
874 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
875 if (Action == TargetLowering::Legal)
876 Action = TargetLowering::Custom;
877 break;
878 case ISD::BUILD_VECTOR:
879 // A weird case: legalization for BUILD_VECTOR never legalizes the
880 // operands!
881 // FIXME: This really sucks... changing it isn't semantically incorrect,
882 // but it massively pessimizes the code for floating-point BUILD_VECTORs
883 // because ConstantFP operands get legalized into constant pool loads
884 // before the BUILD_VECTOR code can see them. It doesn't usually bite,
885 // though, because BUILD_VECTORS usually get lowered into other nodes
886 // which get legalized properly.
887 SimpleFinishLegalizing = false;
888 break;
889 default:
890 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
891 Action = TargetLowering::Legal;
892 } else {
893 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
894 }
895 break;
896 }
897
898 if (SimpleFinishLegalizing) {
899 SmallVector<SDValue, 8> Ops, ResultVals;
900 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
901 Ops.push_back(LegalizeOp(Node->getOperand(i)));
902 switch (Node->getOpcode()) {
903 default: break;
904 case ISD::BR:
905 case ISD::BRIND:
906 case ISD::BR_JT:
907 case ISD::BR_CC:
908 case ISD::BRCOND:
909 // Branches tweak the chain to include LastCALLSEQ_END
910 Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
911 LastCALLSEQ_END);
912 Ops[0] = LegalizeOp(Ops[0]);
913 LastCALLSEQ_END = DAG.getEntryNode();
914 break;
915 case ISD::SHL:
916 case ISD::SRL:
917 case ISD::SRA:
918 case ISD::ROTL:
919 case ISD::ROTR:
920 // Legalizing shifts/rotates requires adjusting the shift amount
921 // to the appropriate width.
922 if (!Ops[1].getValueType().isVector())
923 Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
924 break;
925 case ISD::SRL_PARTS:
926 case ISD::SRA_PARTS:
927 case ISD::SHL_PARTS:
928 // Legalizing shifts/rotates requires adjusting the shift amount
929 // to the appropriate width.
930 if (!Ops[2].getValueType().isVector())
931 Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
932 break;
933 }
934
935 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
936 Ops.size()), 0);
937 switch (Action) {
938 case TargetLowering::Legal:
939 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
940 ResultVals.push_back(Result.getValue(i));
941 break;
942 case TargetLowering::Custom:
943 // FIXME: The handling for custom lowering with multiple results is
944 // a complete mess.
945 Tmp1 = TLI.LowerOperation(Result, DAG);
946 if (Tmp1.getNode()) {
947 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
948 if (e == 1)
949 ResultVals.push_back(Tmp1);
950 else
951 ResultVals.push_back(Tmp1.getValue(i));
952 }
953 break;
954 }
955
956 // FALL THROUGH
957 case TargetLowering::Expand:
958 ExpandNode(Result.getNode(), ResultVals);
959 break;
960 case TargetLowering::Promote:
961 PromoteNode(Result.getNode(), ResultVals);
962 break;
963 }
964 if (!ResultVals.empty()) {
965 for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
966 if (ResultVals[i] != SDValue(Node, i))
967 ResultVals[i] = LegalizeOp(ResultVals[i]);
968 AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
969 }
970 return ResultVals[Op.getResNo()];
971 }
972 }
973
974 switch (Node->getOpcode()) {
975 default:
976#ifndef NDEBUG
977 dbgs() << "NODE: ";
978 Node->dump( &DAG);
979 dbgs() << "\n";
980#endif
981 assert(0 && "Do not know how to legalize this operator!");
982
983 case ISD::BUILD_VECTOR:
984 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
985 default: assert(0 && "This action is not supported yet!");
986 case TargetLowering::Custom:
987 Tmp3 = TLI.LowerOperation(Result, DAG);
988 if (Tmp3.getNode()) {
989 Result = Tmp3;
990 break;
991 }
992 // FALLTHROUGH
993 case TargetLowering::Expand:
994 Result = ExpandBUILD_VECTOR(Result.getNode());
995 break;
996 }
997 break;
998 case ISD::CALLSEQ_START: {
999 SDNode *CallEnd = FindCallEndFromCallStart(Node);
1000
1001 // Recursively Legalize all of the inputs of the call end that do not lead
1002 // to this call start. This ensures that any libcalls that need be inserted
1003 // are inserted *before* the CALLSEQ_START.
1004 {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1005 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1006 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1007 NodesLeadingTo);
1008 }
1009
1010 // Now that we have legalized all of the inputs (which may have inserted
1011 // libcalls), create the new CALLSEQ_START node.
1012 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1013
1014 // Merge in the last call to ensure that this call starts after the last
1015 // call ended.
1016 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1017 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1018 Tmp1, LastCALLSEQ_END);
1019 Tmp1 = LegalizeOp(Tmp1);
1020 }
1021
1022 // Do not try to legalize the target-specific arguments (#1+).
1023 if (Tmp1 != Node->getOperand(0)) {
1024 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1025 Ops[0] = Tmp1;
1026 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0],
1027 Ops.size()), Result.getResNo());
1028 }
1029
1030 // Remember that the CALLSEQ_START is legalized.
1031 AddLegalizedOperand(Op.getValue(0), Result);
1032 if (Node->getNumValues() == 2) // If this has a flag result, remember it.
1033 AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1034
1035 // Now that the callseq_start and all of the non-call nodes above this call
1036 // sequence have been legalized, legalize the call itself. During this
1037 // process, no libcalls can/will be inserted, guaranteeing that no calls
1038 // can overlap.
1039 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1040 // Note that we are selecting this call!
1041 LastCALLSEQ_END = SDValue(CallEnd, 0);
1042 IsLegalizingCall = true;
1043
1044 // Legalize the call, starting from the CALLSEQ_END.
1045 LegalizeOp(LastCALLSEQ_END);
1046 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1047 return Result;
1048 }
1049 case ISD::CALLSEQ_END:
1050 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This
1051 // will cause this node to be legalized as well as handling libcalls right.
1052 if (LastCALLSEQ_END.getNode() != Node) {
1053 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1054 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1055 assert(I != LegalizedNodes.end() &&
1056 "Legalizing the call start should have legalized this node!");
1057 return I->second;
1058 }
1059
1060 // Otherwise, the call start has been legalized and everything is going
1061 // according to plan. Just legalize ourselves normally here.
1062 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1063 // Do not try to legalize the target-specific arguments (#1+), except for
1064 // an optional flag input.
1065 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1066 if (Tmp1 != Node->getOperand(0)) {
1067 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1068 Ops[0] = Tmp1;
1069 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1070 &Ops[0], Ops.size()),
1071 Result.getResNo());
1072 }
1073 } else {
1074 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1075 if (Tmp1 != Node->getOperand(0) ||
1076 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1077 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1078 Ops[0] = Tmp1;
1079 Ops.back() = Tmp2;
1080 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1081 &Ops[0], Ops.size()),
1082 Result.getResNo());
1083 }
1084 }
1085 assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1086 // This finishes up call legalization.
1087 IsLegalizingCall = false;
1088
1089 // If the CALLSEQ_END node has a flag, remember that we legalized it.
1090 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1091 if (Node->getNumValues() == 2)
1092 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1093 return Result.getValue(Op.getResNo());
1094 case ISD::LOAD: {
1095 LoadSDNode *LD = cast<LoadSDNode>(Node);
1096 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain.
1097 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1098
1099 ISD::LoadExtType ExtType = LD->getExtensionType();
1100 if (ExtType == ISD::NON_EXTLOAD) {
1101 EVT VT = Node->getValueType(0);
1102 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1103 Tmp1, Tmp2, LD->getOffset()),
1104 Result.getResNo());
1105 Tmp3 = Result.getValue(0);
1106 Tmp4 = Result.getValue(1);
1107
1108 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1109 default: assert(0 && "This action is not supported yet!");
1110 case TargetLowering::Legal:
1111 // If this is an unaligned load and the target doesn't support it,
1112 // expand it.
1113 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1114 const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1115 unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1116 if (LD->getAlignment() < ABIAlignment){
1117 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1118 DAG, TLI);
1119 Tmp3 = Result.getOperand(0);
1120 Tmp4 = Result.getOperand(1);
1121 Tmp3 = LegalizeOp(Tmp3);
1122 Tmp4 = LegalizeOp(Tmp4);
1123 }
1124 }
1125 break;
1126 case TargetLowering::Custom:
1127 Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1128 if (Tmp1.getNode()) {
1129 Tmp3 = LegalizeOp(Tmp1);
1130 Tmp4 = LegalizeOp(Tmp1.getValue(1));
1131 }
1132 break;
1133 case TargetLowering::Promote: {
1134 // Only promote a load of vector type to another.
1135 assert(VT.isVector() && "Cannot promote this load!");
1136 // Change base type to a different vector type.
1137 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1138
1139 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1140 LD->getSrcValueOffset(),
1141 LD->isVolatile(), LD->isNonTemporal(),
1142 LD->getAlignment());
1143 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1144 Tmp4 = LegalizeOp(Tmp1.getValue(1));
1145 break;
1146 }
1147 }
1148 // Since loads produce two values, make sure to remember that we
1149 // legalized both of them.
1150 AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1151 AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1152 return Op.getResNo() ? Tmp4 : Tmp3;
1153 } else {
1154 EVT SrcVT = LD->getMemoryVT();
1155 unsigned SrcWidth = SrcVT.getSizeInBits();
1156 int SVOffset = LD->getSrcValueOffset();
1157 unsigned Alignment = LD->getAlignment();
1158 bool isVolatile = LD->isVolatile();
1159 bool isNonTemporal = LD->isNonTemporal();
1160
1161 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1162 // Some targets pretend to have an i1 loading operation, and actually
1163 // load an i8. This trick is correct for ZEXTLOAD because the top 7
1164 // bits are guaranteed to be zero; it helps the optimizers understand
1165 // that these bits are zero. It is also useful for EXTLOAD, since it
1166 // tells the optimizers that those bits are undefined. It would be
1167 // nice to have an effective generic way of getting these benefits...
1168 // Until such a way is found, don't insist on promoting i1 here.
1169 (SrcVT != MVT::i1 ||
1170 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1171 // Promote to a byte-sized load if not loading an integral number of
1172 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1173 unsigned NewWidth = SrcVT.getStoreSizeInBits();
1174 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1175 SDValue Ch;
1176
1177 // The extra bits are guaranteed to be zero, since we stored them that
1178 // way. A zext load from NVT thus automatically gives zext from SrcVT.
1179
1180 ISD::LoadExtType NewExtType =
1181 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1182
1183 Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), dl,
1184 Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1185 NVT, isVolatile, isNonTemporal, Alignment);
1186
1187 Ch = Result.getValue(1); // The chain.
1188
1189 if (ExtType == ISD::SEXTLOAD)
1190 // Having the top bits zero doesn't help when sign extending.
1191 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1192 Result.getValueType(),
1193 Result, DAG.getValueType(SrcVT));
1194 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1195 // All the top bits are guaranteed to be zero - inform the optimizers.
1196 Result = DAG.getNode(ISD::AssertZext, dl,
1197 Result.getValueType(), Result,
1198 DAG.getValueType(SrcVT));
1199
1200 Tmp1 = LegalizeOp(Result);
1201 Tmp2 = LegalizeOp(Ch);
1202 } else if (SrcWidth & (SrcWidth - 1)) {
1203 // If not loading a power-of-2 number of bits, expand as two loads.
1204 assert(!SrcVT.isVector() && "Unsupported extload!");
1205 unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1206 assert(RoundWidth < SrcWidth);
1207 unsigned ExtraWidth = SrcWidth - RoundWidth;
1208 assert(ExtraWidth < RoundWidth);
1209 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1210 "Load size not an integral number of bytes!");
1211 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1212 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1213 SDValue Lo, Hi, Ch;
1214 unsigned IncrementSize;
1215
1216 if (TLI.isLittleEndian()) {
1217 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1218 // Load the bottom RoundWidth bits.
1219 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), dl,
1220 Tmp1, Tmp2,
1221 LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1222 isNonTemporal, Alignment);
1223
1224 // Load the remaining ExtraWidth bits.
1225 IncrementSize = RoundWidth / 8;
1226 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1227 DAG.getIntPtrConstant(IncrementSize));
1228 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1229 LD->getSrcValue(), SVOffset + IncrementSize,
1230 ExtraVT, isVolatile, isNonTemporal,
1231 MinAlign(Alignment, IncrementSize));
1232
1233 // Build a factor node to remember that this load is independent of
1234 // the other one.
1235 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1236 Hi.getValue(1));
1237
1238 // Move the top bits to the right place.
1239 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1240 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1241
1242 // Join the hi and lo parts.
1243 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1244 } else {
1245 // Big endian - avoid unaligned loads.
1246 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1247 // Load the top RoundWidth bits.
1248 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1249 LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1250 isNonTemporal, Alignment);
1251
1252 // Load the remaining ExtraWidth bits.
1253 IncrementSize = RoundWidth / 8;
1254 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1255 DAG.getIntPtrConstant(IncrementSize));
1256 Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1257 Node->getValueType(0), dl, Tmp1, Tmp2,
1258 LD->getSrcValue(), SVOffset + IncrementSize,
1259 ExtraVT, isVolatile, isNonTemporal,
1260 MinAlign(Alignment, IncrementSize));
1261
1262 // Build a factor node to remember that this load is independent of
1263 // the other one.
1264 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1265 Hi.getValue(1));
1266
1267 // Move the top bits to the right place.
1268 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1269 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1270
1271 // Join the hi and lo parts.
1272 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1273 }
1274
1275 Tmp1 = LegalizeOp(Result);
1276 Tmp2 = LegalizeOp(Ch);
1277 } else {
1278 switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1279 default: assert(0 && "This action is not supported yet!");
1280 case TargetLowering::Custom:
1281 isCustom = true;
1282 // FALLTHROUGH
1283 case TargetLowering::Legal:
1284 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1285 Tmp1, Tmp2, LD->getOffset()),
1286 Result.getResNo());
1287 Tmp1 = Result.getValue(0);
1288 Tmp2 = Result.getValue(1);
1289
1290 if (isCustom) {
1291 Tmp3 = TLI.LowerOperation(Result, DAG);
1292 if (Tmp3.getNode()) {
1293 Tmp1 = LegalizeOp(Tmp3);
1294 Tmp2 = LegalizeOp(Tmp3.getValue(1));
1295 }
1296 } else {
1297 // If this is an unaligned load and the target doesn't support it,
1298 // expand it.
1299 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1300 const Type *Ty =
1301 LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1302 unsigned ABIAlignment =
1303 TLI.getTargetData()->getABITypeAlignment(Ty);
1304 if (LD->getAlignment() < ABIAlignment){
1305 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1306 DAG, TLI);
1307 Tmp1 = Result.getOperand(0);
1308 Tmp2 = Result.getOperand(1);
1309 Tmp1 = LegalizeOp(Tmp1);
1310 Tmp2 = LegalizeOp(Tmp2);
1311 }
1312 }
1313 }
1314 break;
1315 case TargetLowering::Expand:
1316 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && isTypeLegal(SrcVT)) {
1317 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1318 LD->getSrcValueOffset(),
1319 LD->isVolatile(), LD->isNonTemporal(),
1320 LD->getAlignment());
1321 unsigned ExtendOp;
1322 switch (ExtType) {
1323 case ISD::EXTLOAD:
1324 ExtendOp = (SrcVT.isFloatingPoint() ?
1325 ISD::FP_EXTEND : ISD::ANY_EXTEND);
1326 break;
1327 case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1328 case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1329 default: llvm_unreachable("Unexpected extend load type!");
1330 }
1331 Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1332 Tmp1 = LegalizeOp(Result); // Relegalize new nodes.
1333 Tmp2 = LegalizeOp(Load.getValue(1));
1334 break;
1335 }
1336 // FIXME: This does not work for vectors on most targets. Sign- and
1337 // zero-extend operations are currently folded into extending loads,
1338 // whether they are legal or not, and then we end up here without any
1339 // support for legalizing them.
1340 assert(ExtType != ISD::EXTLOAD &&
1341 "EXTLOAD should always be supported!");
1342 // Turn the unsupported load into an EXTLOAD followed by an explicit
1343 // zero/sign extend inreg.
1344 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), dl,
1345 Tmp1, Tmp2, LD->getSrcValue(),
1346 LD->getSrcValueOffset(), SrcVT,
1347 LD->isVolatile(), LD->isNonTemporal(),
1348 LD->getAlignment());
1349 SDValue ValRes;
1350 if (ExtType == ISD::SEXTLOAD)
1351 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1352 Result.getValueType(),
1353 Result, DAG.getValueType(SrcVT));
1354 else
1355 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1356 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes.
1357 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes.
1358 break;
1359 }
1360 }
1361
1362 // Since loads produce two values, make sure to remember that we legalized
1363 // both of them.
1364 AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1365 AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1366 return Op.getResNo() ? Tmp2 : Tmp1;
1367 }
1368 }
1369 case ISD::STORE: {
1370 StoreSDNode *ST = cast<StoreSDNode>(Node);
1371 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain.
1372 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer.
1373 int SVOffset = ST->getSrcValueOffset();
1374 unsigned Alignment = ST->getAlignment();
1375 bool isVolatile = ST->isVolatile();
1376 bool isNonTemporal = ST->isNonTemporal();
1377
1378 if (!ST->isTruncatingStore()) {
1379 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1380 Result = SDValue(OptStore, 0);
1381 break;
1382 }
1383
1384 {
1385 Tmp3 = LegalizeOp(ST->getValue());
1386 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1387 Tmp1, Tmp3, Tmp2,
1388 ST->getOffset()),
1389 Result.getResNo());
1390
1391 EVT VT = Tmp3.getValueType();
1392 switch (TLI.getOperationAction(ISD::STORE, VT)) {
1393 default: assert(0 && "This action is not supported yet!");
1394 case TargetLowering::Legal:
1395 // If this is an unaligned store and the target doesn't support it,
1396 // expand it.
1397 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1398 const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1399 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1400 if (ST->getAlignment() < ABIAlignment)
1401 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1402 DAG, TLI);
1403 }
1404 break;
1405 case TargetLowering::Custom:
1406 Tmp1 = TLI.LowerOperation(Result, DAG);
1407 if (Tmp1.getNode()) Result = Tmp1;
1408 break;
1409 case TargetLowering::Promote:
1410 assert(VT.isVector() && "Unknown legal promote case!");
1411 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1412 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1413 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1414 ST->getSrcValue(), SVOffset, isVolatile,
1415 isNonTemporal, Alignment);
1416 break;
1417 }
1418 break;
1419 }
1420 } else {
1421 Tmp3 = LegalizeOp(ST->getValue());
1422
1423 EVT StVT = ST->getMemoryVT();
1424 unsigned StWidth = StVT.getSizeInBits();
1425
1426 if (StWidth != StVT.getStoreSizeInBits()) {
1427 // Promote to a byte-sized store with upper bits zero if not
1428 // storing an integral number of bytes. For example, promote
1429 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1430 EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1431 StVT.getStoreSizeInBits());
1432 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1433 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1434 SVOffset, NVT, isVolatile, isNonTemporal,
1435 Alignment);
1436 } else if (StWidth & (StWidth - 1)) {
1437 // If not storing a power-of-2 number of bits, expand as two stores.
1438 assert(!StVT.isVector() && "Unsupported truncstore!");
1439 unsigned RoundWidth = 1 << Log2_32(StWidth);
1440 assert(RoundWidth < StWidth);
1441 unsigned ExtraWidth = StWidth - RoundWidth;
1442 assert(ExtraWidth < RoundWidth);
1443 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1444 "Store size not an integral number of bytes!");
1445 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1446 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1447 SDValue Lo, Hi;
1448 unsigned IncrementSize;
1449
1450 if (TLI.isLittleEndian()) {
1451 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1452 // Store the bottom RoundWidth bits.
1453 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1454 SVOffset, RoundVT,
1455 isVolatile, isNonTemporal, Alignment);
1456
1457 // Store the remaining ExtraWidth bits.
1458 IncrementSize = RoundWidth / 8;
1459 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1460 DAG.getIntPtrConstant(IncrementSize));
1461 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1462 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1463 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1464 SVOffset + IncrementSize, ExtraVT, isVolatile,
1465 isNonTemporal,
1466 MinAlign(Alignment, IncrementSize));
1467 } else {
1468 // Big endian - avoid unaligned stores.
1469 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1470 // Store the top RoundWidth bits.
1471 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1472 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1473 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1474 SVOffset, RoundVT, isVolatile, isNonTemporal,
1475 Alignment);
1476
1477 // Store the remaining ExtraWidth bits.
1478 IncrementSize = RoundWidth / 8;
1479 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1480 DAG.getIntPtrConstant(IncrementSize));
1481 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1482 SVOffset + IncrementSize, ExtraVT, isVolatile,
1483 isNonTemporal,
1484 MinAlign(Alignment, IncrementSize));
1485 }
1486
1487 // The order of the stores doesn't matter.
1488 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1489 } else {
1490 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1491 Tmp2 != ST->getBasePtr())
1492 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1493 Tmp1, Tmp3, Tmp2,
1494 ST->getOffset()),
1495 Result.getResNo());
1496
1497 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1498 default: assert(0 && "This action is not supported yet!");
1499 case TargetLowering::Legal:
1500 // If this is an unaligned store and the target doesn't support it,
1501 // expand it.
1502 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1503 const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1504 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1505 if (ST->getAlignment() < ABIAlignment)
1506 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1507 DAG, TLI);
1508 }
1509 break;
1510 case TargetLowering::Custom:
1511 Result = TLI.LowerOperation(Result, DAG);
1512 break;
1513 case Expand:
1514 // TRUNCSTORE:i16 i32 -> STORE i16
1515 assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1516 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1517 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1518 SVOffset, isVolatile, isNonTemporal,
1519 Alignment);
1520 break;
1521 }
1522 }
1523 }
1524 break;
1525 }
1526 }
1527 assert(Result.getValueType() == Op.getValueType() &&
1528 "Bad legalization!");
1529
1530 // Make sure that the generated code is itself legal.
1531 if (Result != Op)
1532 Result = LegalizeOp(Result);
1533
1534 // Note that LegalizeOp may be reentered even from single-use nodes, which
1535 // means that we always must cache transformed nodes.
1536 AddLegalizedOperand(Op, Result);
1537 return Result;
1538}
1539
1540SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1541 SDValue Vec = Op.getOperand(0);
1542 SDValue Idx = Op.getOperand(1);
1543 DebugLoc dl = Op.getDebugLoc();
1544 // Store the value to a temporary stack slot, then LOAD the returned part.
1545 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1546 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0,
1547 false, false, 0);
1548
1549 // Add the offset to the index.
1550 unsigned EltSize =
1551 Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1552 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1553 DAG.getConstant(EltSize, Idx.getValueType()));
1554
1555 if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1556 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1557 else
1558 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1559
1560 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1561
1562 if (Op.getValueType().isVector())
1563 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0,
1564 false, false, 0);
1565 else
1566 return DAG.getExtLoad(ISD::EXTLOAD, Op.getValueType(), dl, Ch, StackPtr,
1567 NULL, 0, Vec.getValueType().getVectorElementType(),
1568 false, false, 0);
1569}
1570
1571SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1572 // We can't handle this case efficiently. Allocate a sufficiently
1573 // aligned object on the stack, store each element into it, then load
1574 // the result as a vector.
1575 // Create the stack frame object.
1576 EVT VT = Node->getValueType(0);
1577 EVT EltVT = VT.getVectorElementType();
1578 DebugLoc dl = Node->getDebugLoc();
1579 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1580 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1581 const Value *SV = PseudoSourceValue::getFixedStack(FI);
1582
1583 // Emit a store of each element to the stack slot.
1584 SmallVector<SDValue, 8> Stores;
1585 unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1586 // Store (in the right endianness) the elements to memory.
1587 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1588 // Ignore undef elements.
1589 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1590
1591 unsigned Offset = TypeByteSize*i;
1592
1593 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1594 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1595
1596 // If the destination vector element type is narrower than the source
1597 // element type, only store the bits necessary.
1598 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1599 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1600 Node->getOperand(i), Idx, SV, Offset,
1601 EltVT, false, false, 0));
1602 } else
1603 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1604 Node->getOperand(i), Idx, SV, Offset,
1605 false, false, 0));
1606 }
1607
1608 SDValue StoreChain;
1609 if (!Stores.empty()) // Not all undef elements?
1610 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1611 &Stores[0], Stores.size());
1612 else
1613 StoreChain = DAG.getEntryNode();
1614
1615 // Result is a load from the stack slot.
1616 return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0, false, false, 0);
1617}
1618
1619SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1620 DebugLoc dl = Node->getDebugLoc();
1621 SDValue Tmp1 = Node->getOperand(0);
1622 SDValue Tmp2 = Node->getOperand(1);
1623
1624 // Get the sign bit of the RHS. First obtain a value that has the same
1625 // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1626 SDValue SignBit;
1627 EVT FloatVT = Tmp2.getValueType();
1628 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1629 if (isTypeLegal(IVT)) {
1630 // Convert to an integer with the same sign bit.
1631 SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1632 } else {
1633 // Store the float to memory, then load the sign part out as an integer.
1634 MVT LoadTy = TLI.getPointerTy();
1635 // First create a temporary that is aligned for both the load and store.
1636 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1637 // Then store the float to it.
1638 SDValue Ch =
1639 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, NULL, 0,
1640 false, false, 0);
1641 if (TLI.isBigEndian()) {
1642 assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1643 // Load out a legal integer with the same sign bit as the float.
1644 SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, NULL, 0, false, false, 0);
1645 } else { // Little endian
1646 SDValue LoadPtr = StackPtr;
1647 // The float may be wider than the integer we are going to load. Advance
1648 // the pointer so that the loaded integer will contain the sign bit.
1649 unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1650 unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1651 LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1652 LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1653 // Load a legal integer containing the sign bit.
1654 SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, NULL, 0, false, false, 0);
1655 // Move the sign bit to the top bit of the loaded integer.
1656 unsigned BitShift = LoadTy.getSizeInBits() -
1657 (FloatVT.getSizeInBits() - 8 * ByteOffset);
1658 assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1659 if (BitShift)
1660 SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1661 DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1662 }
1663 }
1664 // Now get the sign bit proper, by seeing whether the value is negative.
1665 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1666 SignBit, DAG.getConstant(0, SignBit.getValueType()),
1667 ISD::SETLT);
1668 // Get the absolute value of the result.
1669 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1670 // Select between the nabs and abs value based on the sign bit of
1671 // the input.
1672 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1673 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1674 AbsVal);
1675}
1676
1677void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1678 SmallVectorImpl<SDValue> &Results) {
1679 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1680 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1681 " not tell us which reg is the stack pointer!");
1682 DebugLoc dl = Node->getDebugLoc();
1683 EVT VT = Node->getValueType(0);
1684 SDValue Tmp1 = SDValue(Node, 0);
1685 SDValue Tmp2 = SDValue(Node, 1);
1686 SDValue Tmp3 = Node->getOperand(2);
1687 SDValue Chain = Tmp1.getOperand(0);
1688
1689 // Chain the dynamic stack allocation so that it doesn't modify the stack
1690 // pointer when other instructions are using the stack.
1691 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1692
1693 SDValue Size = Tmp2.getOperand(1);
1694 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1695 Chain = SP.getValue(1);
1696 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1697 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
1698 if (Align > StackAlign)
1699 SP = DAG.getNode(ISD::AND, dl, VT, SP,
1700 DAG.getConstant(-(uint64_t)Align, VT));
1701 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1702 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1703
1704 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1705 DAG.getIntPtrConstant(0, true), SDValue());
1706
1707 Results.push_back(Tmp1);
1708 Results.push_back(Tmp2);
1709}
1710
1711/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1712/// condition code CC on the current target. This routine expands SETCC with
1713/// illegal condition code into AND / OR of multiple SETCC values.
1714void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1715 SDValue &LHS, SDValue &RHS,
1716 SDValue &CC,
1717 DebugLoc dl) {
1718 EVT OpVT = LHS.getValueType();
1719 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1720 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1721 default: assert(0 && "Unknown condition code action!");
1722 case TargetLowering::Legal:
1723 // Nothing to do.
1724 break;
1725 case TargetLowering::Expand: {
1726 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1727 unsigned Opc = 0;
1728 switch (CCCode) {
1729 default: assert(0 && "Don't know how to expand this condition!");
1730 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break;
1731 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break;
1732 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1733 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break;
1734 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1735 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1736 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1737 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1738 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1739 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1740 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1741 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1742 // FIXME: Implement more expansions.
1743 }
1744
1745 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1746 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1747 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1748 RHS = SDValue();
1749 CC = SDValue();
1750 break;
1751 }
1752 }
1753}
1754
1755/// EmitStackConvert - Emit a store/load combination to the stack. This stores
1756/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1757/// a load from the stack slot to DestVT, extending it if needed.
1758/// The resultant code need not be legal.
1759SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1760 EVT SlotVT,
1761 EVT DestVT,
1762 DebugLoc dl) {
1763 // Create the stack frame object.
1764 unsigned SrcAlign =
1765 TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1766 getTypeForEVT(*DAG.getContext()));
1767 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1768
1769 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1770 int SPFI = StackPtrFI->getIndex();
1771 const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1772
1773 unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1774 unsigned SlotSize = SlotVT.getSizeInBits();
1775 unsigned DestSize = DestVT.getSizeInBits();
1776 const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1777 unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1778
1779 // Emit a store to the stack slot. Use a truncstore if the input value is
1780 // later than DestVT.
1781 SDValue Store;
1782
1783 if (SrcSize > SlotSize)
1784 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1785 SV, 0, SlotVT, false, false, SrcAlign);
1786 else {
1787 assert(SrcSize == SlotSize && "Invalid store");
1788 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1789 SV, 0, false, false, SrcAlign);
1790 }
1791
1792 // Result is a load from the stack slot.
1793 if (SlotSize == DestSize)
1794 return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, false,
1795 DestAlign);
1796
1797 assert(SlotSize < DestSize && "Unknown extension!");
1798 return DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl, Store, FIPtr, SV, 0, SlotVT,
1799 false, false, DestAlign);
1800}
1801
1802SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1803 DebugLoc dl = Node->getDebugLoc();
1804 // Create a vector sized/aligned stack slot, store the value to element #0,
1805 // then load the whole vector back out.
1806 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1807
1808 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1809 int SPFI = StackPtrFI->getIndex();
1810
1811 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1812 StackPtr,
1813 PseudoSourceValue::getFixedStack(SPFI), 0,
1814 Node->getValueType(0).getVectorElementType(),
1815 false, false, 0);
1816 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1817 PseudoSourceValue::getFixedStack(SPFI), 0,
1818 false, false, 0);
1819}
1820
1821
1822/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1823/// support the operation, but do support the resultant vector type.
1824SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1825 unsigned NumElems = Node->getNumOperands();
1826 SDValue Value1, Value2;
1827 DebugLoc dl = Node->getDebugLoc();
1828 EVT VT = Node->getValueType(0);
1829 EVT OpVT = Node->getOperand(0).getValueType();
1830 EVT EltVT = VT.getVectorElementType();
1831
1832 // If the only non-undef value is the low element, turn this into a
1833 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1834 bool isOnlyLowElement = true;
1835 bool MoreThanTwoValues = false;
1836 bool isConstant = true;
1837 for (unsigned i = 0; i < NumElems; ++i) {
1838 SDValue V = Node->getOperand(i);
1839 if (V.getOpcode() == ISD::UNDEF)
1840 continue;
1841 if (i > 0)
1842 isOnlyLowElement = false;
1843 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1844 isConstant = false;
1845
1846 if (!Value1.getNode()) {
1847 Value1 = V;
1848 } else if (!Value2.getNode()) {
1849 if (V != Value1)
1850 Value2 = V;
1851 } else if (V != Value1 && V != Value2) {
1852 MoreThanTwoValues = true;
1853 }
1854 }
1855
1856 if (!Value1.getNode())
1857 return DAG.getUNDEF(VT);
1858
1859 if (isOnlyLowElement)
1860 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1861
1862 // If all elements are constants, create a load from the constant pool.
1863 if (isConstant) {
1864 std::vector<Constant*> CV;
1865 for (unsigned i = 0, e = NumElems; i != e; ++i) {
1866 if (ConstantFPSDNode *V =
1867 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1868 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1869 } else if (ConstantSDNode *V =
1870 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1871 if (OpVT==EltVT)
1872 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1873 else {
1874 // If OpVT and EltVT don't match, EltVT is not legal and the
1875 // element values have been promoted/truncated earlier. Undo this;
1876 // we don't want a v16i8 to become a v16i32 for example.
1877 const ConstantInt *CI = V->getConstantIntValue();
1878 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1879 CI->getZExtValue()));
1880 }
1881 } else {
1882 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1883 const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1884 CV.push_back(UndefValue::get(OpNTy));
1885 }
1886 }
1887 Constant *CP = ConstantVector::get(CV);
1888 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1889 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1890 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1891 PseudoSourceValue::getConstantPool(), 0,
1892 false, false, Alignment);
1893 }
1894
1895 if (!MoreThanTwoValues) {
1896 SmallVector<int, 8> ShuffleVec(NumElems, -1);
1897 for (unsigned i = 0; i < NumElems; ++i) {
1898 SDValue V = Node->getOperand(i);
1899 if (V.getOpcode() == ISD::UNDEF)
1900 continue;
1901 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1902 }
1903 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1904 // Get the splatted value into the low element of a vector register.
1905 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1906 SDValue Vec2;
1907 if (Value2.getNode())
1908 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1909 else
1910 Vec2 = DAG.getUNDEF(VT);
1911
1912 // Return shuffle(LowValVec, undef, <0,0,0,0>)
1913 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1914 }
1915 }
1916
1917 // Otherwise, we can't handle this case efficiently.
1918 return ExpandVectorBuildThroughStack(Node);
1919}
1920
1921// ExpandLibCall - Expand a node into a call to a libcall. If the result value
1922// does not fit into a register, return the lo part and set the hi part to the
1923// by-reg argument. If it does fit into a single register, return the result
1924// and leave the Hi part unset.
1925SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1926 bool isSigned) {
1927 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1928 // The input chain to this libcall is the entry node of the function.
1929 // Legalizing the call will automatically add the previous call to the
1930 // dependence.
1931 SDValue InChain = DAG.getEntryNode();
1932
1933 TargetLowering::ArgListTy Args;
1934 TargetLowering::ArgListEntry Entry;
1935 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1936 EVT ArgVT = Node->getOperand(i).getValueType();
1937 const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1938 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1939 Entry.isSExt = isSigned;
1940 Entry.isZExt = !isSigned;
1941 Args.push_back(Entry);
1942 }
1943 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1944 TLI.getPointerTy());
1945
1946 // Splice the libcall in wherever FindInputOutputChains tells us to.
1947 const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1948 std::pair<SDValue, SDValue> CallInfo =
1949 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1950 0, TLI.getLibcallCallingConv(LC), false,
1951 /*isReturnValueUsed=*/true,
1952 Callee, Args, DAG, Node->getDebugLoc());
1953
1954 // Legalize the call sequence, starting with the chain. This will advance
1955 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1956 // was added by LowerCallTo (guaranteeing proper serialization of calls).
1957 LegalizeOp(CallInfo.second);
1958 return CallInfo.first;
1959}
1960
1961// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1962// ExpandLibCall except that the first operand is the in-chain.
1963std::pair<SDValue, SDValue>
1964SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1965 SDNode *Node,
1966 bool isSigned) {
1967 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1968 SDValue InChain = Node->getOperand(0);
1969
1970 TargetLowering::ArgListTy Args;
1971 TargetLowering::ArgListEntry Entry;
1972 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1973 EVT ArgVT = Node->getOperand(i).getValueType();
1974 const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1975 Entry.Node = Node->getOperand(i);
1976 Entry.Ty = ArgTy;
1977 Entry.isSExt = isSigned;
1978 Entry.isZExt = !isSigned;
1979 Args.push_back(Entry);
1980 }
1981 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1982 TLI.getPointerTy());
1983
1984 // Splice the libcall in wherever FindInputOutputChains tells us to.
1985 const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1986 std::pair<SDValue, SDValue> CallInfo =
1987 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1988 0, TLI.getLibcallCallingConv(LC), false,
1989 /*isReturnValueUsed=*/true,
1990 Callee, Args, DAG, Node->getDebugLoc());
1991
1992 // Legalize the call sequence, starting with the chain. This will advance
1993 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1994 // was added by LowerCallTo (guaranteeing proper serialization of calls).
1995 LegalizeOp(CallInfo.second);
1996 return CallInfo;
1997}
1998
1999SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2000 RTLIB::Libcall Call_F32,
2001 RTLIB::Libcall Call_F64,
2002 RTLIB::Libcall Call_F80,
2003 RTLIB::Libcall Call_PPCF128) {
2004 RTLIB::Libcall LC;
2005 switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2006 default: assert(0 && "Unexpected request for libcall!");
2007 case MVT::f32: LC = Call_F32; break;
2008 case MVT::f64: LC = Call_F64; break;
2009 case MVT::f80: LC = Call_F80; break;
2010 case MVT::ppcf128: LC = Call_PPCF128; break;
2011 }
2012 return ExpandLibCall(LC, Node, false);
2013}
2014
2015SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2016 RTLIB::Libcall Call_I8,
2017 RTLIB::Libcall Call_I16,
2018 RTLIB::Libcall Call_I32,
2019 RTLIB::Libcall Call_I64,
2020 RTLIB::Libcall Call_I128) {
2021 RTLIB::Libcall LC;
2022 switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2023 default: assert(0 && "Unexpected request for libcall!");
2024 case MVT::i8: LC = Call_I8; break;
2025 case MVT::i16: LC = Call_I16; break;
2026 case MVT::i32: LC = Call_I32; break;
2027 case MVT::i64: LC = Call_I64; break;
2028 case MVT::i128: LC = Call_I128; break;
2029 }
2030 return ExpandLibCall(LC, Node, isSigned);
2031}
2032
2033/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2034/// INT_TO_FP operation of the specified operand when the target requests that
2035/// we expand it. At this point, we know that the result and operand types are
2036/// legal for the target.
2037SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2038 SDValue Op0,
2039 EVT DestVT,
2040 DebugLoc dl) {
2041 if (Op0.getValueType() == MVT::i32) {
2042 // simple 32-bit [signed|unsigned] integer to float/double expansion
2043
2044 // Get the stack frame index of a 8 byte buffer.
2045 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2046
2047 // word offset constant for Hi/Lo address computation
2048 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2049 // set up Hi and Lo (into buffer) address based on endian
2050 SDValue Hi = StackSlot;
2051 SDValue Lo = DAG.getNode(ISD::ADD, dl,
2052 TLI.getPointerTy(), StackSlot, WordOff);
2053 if (TLI.isLittleEndian())
2054 std::swap(Hi, Lo);
2055
2056 // if signed map to unsigned space
2057 SDValue Op0Mapped;
2058 if (isSigned) {
2059 // constant used to invert sign bit (signed to unsigned mapping)
2060 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2061 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2062 } else {
2063 Op0Mapped = Op0;
2064 }
2065 // store the lo of the constructed double - based on integer input
2066 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2067 Op0Mapped, Lo, NULL, 0,
2068 false, false, 0);
2069 // initial hi portion of constructed double
2070 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2071 // store the hi of the constructed double - biased exponent
2072 SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0,
2073 false, false, 0);
2074 // load the constructed double
2075 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0,
2076 false, false, 0);
2077 // FP constant to bias correct the final result
2078 SDValue Bias = DAG.getConstantFP(isSigned ?
2079 BitsToDouble(0x4330000080000000ULL) :
2080 BitsToDouble(0x4330000000000000ULL),
2081 MVT::f64);
2082 // subtract the bias
2083 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2084 // final result
2085 SDValue Result;
2086 // handle final rounding
2087 if (DestVT == MVT::f64) {
2088 // do nothing
2089 Result = Sub;
2090 } else if (DestVT.bitsLT(MVT::f64)) {
2091 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2092 DAG.getIntPtrConstant(0));
2093 } else if (DestVT.bitsGT(MVT::f64)) {
2094 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2095 }
2096 return Result;
2097 }
2098 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2099 // Code below here assumes !isSigned without checking again.
2100
2101 // Implementation of unsigned i64 to f64 following the algorithm in
2102 // __floatundidf in compiler_rt. This implementation has the advantage
2103 // of performing rounding correctly, both in the default rounding mode
2104 // and in all alternate rounding modes.
2105 // TODO: Generalize this for use with other types.
2106 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2107 SDValue TwoP52 =
2108 DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2109 SDValue TwoP84PlusTwoP52 =
2110 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2111 SDValue TwoP84 =
2112 DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2113
2114 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2115 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2116 DAG.getConstant(32, MVT::i64));
2117 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2118 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2119 SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2120 SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2121 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2122 TwoP84PlusTwoP52);
2123 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2124 }
2125
2126 // Implementation of unsigned i64 to f32. This implementation has the
2127 // advantage of performing rounding correctly.
2128 // TODO: Generalize this for use with other types.
2129 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2130 EVT SHVT = TLI.getShiftAmountTy();
2131
2132 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2133 DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2134 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2135 DAG.getConstant(UINT64_C(0x800), MVT::i64));
2136 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2137 DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2138 SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2139 And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2140 SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2141 SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2142 Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2143 ISD::SETUGE);
2144 SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2145
2146 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2147 DAG.getConstant(32, SHVT));
2148 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2149 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2150 SDValue TwoP32 =
2151 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2152 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2153 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2154 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2155 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2156 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2157 DAG.getIntPtrConstant(0));
2158
2159 }
2160
2161 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2162
2163 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2164 Op0, DAG.getConstant(0, Op0.getValueType()),
2165 ISD::SETLT);
2166 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2167 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2168 SignSet, Four, Zero);
2169
2170 // If the sign bit of the integer is set, the large number will be treated
2171 // as a negative number. To counteract this, the dynamic code adds an
2172 // offset depending on the data type.
2173 uint64_t FF;
2174 switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2175 default: assert(0 && "Unsupported integer type!");
2176 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2177 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2178 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2179 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2180 }
2181 if (TLI.isLittleEndian()) FF <<= 32;
2182 Constant *FudgeFactor = ConstantInt::get(
2183 Type::getInt64Ty(*DAG.getContext()), FF);
2184
2185 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2186 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2187 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2188 Alignment = std::min(Alignment, 4u);
2189 SDValue FudgeInReg;
2190 if (DestVT == MVT::f32)
2191 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2192 PseudoSourceValue::getConstantPool(), 0,
2193 false, false, Alignment);
2194 else {
2195 FudgeInReg =
2196 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl,
2197 DAG.getEntryNode(), CPIdx,
2198 PseudoSourceValue::getConstantPool(), 0,
2199 MVT::f32, false, false, Alignment));
2200 }
2201
2202 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2203}
2204
2205/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2206/// *INT_TO_FP operation of the specified operand when the target requests that
2207/// we promote it. At this point, we know that the result and operand types are
2208/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2209/// operation that takes a larger input.
2210SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2211 EVT DestVT,
2212 bool isSigned,
2213 DebugLoc dl) {
2214 // First step, figure out the appropriate *INT_TO_FP operation to use.
2215 EVT NewInTy = LegalOp.getValueType();
2216
2217 unsigned OpToUse = 0;
2218
2219 // Scan for the appropriate larger type to use.
2220 while (1) {
2221 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2222 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2223
2224 // If the target supports SINT_TO_FP of this type, use it.
2225 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2226 OpToUse = ISD::SINT_TO_FP;
2227 break;
2228 }
2229 if (isSigned) continue;
2230
2231 // If the target supports UINT_TO_FP of this type, use it.
2232 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2233 OpToUse = ISD::UINT_TO_FP;
2234 break;
2235 }
2236
2237 // Otherwise, try a larger type.
2238 }
2239
2240 // Okay, we found the operation and type to use. Zero extend our input to the
2241 // desired type then run the operation on it.
2242 return DAG.getNode(OpToUse, dl, DestVT,
2243 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2244 dl, NewInTy, LegalOp));
2245}
2246
2247/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2248/// FP_TO_*INT operation of the specified operand when the target requests that
2249/// we promote it. At this point, we know that the result and operand types are
2250/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2251/// operation that returns a larger result.
2252SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2253 EVT DestVT,
2254 bool isSigned,
2255 DebugLoc dl) {
2256 // First step, figure out the appropriate FP_TO*INT operation to use.
2257 EVT NewOutTy = DestVT;
2258
2259 unsigned OpToUse = 0;
2260
2261 // Scan for the appropriate larger type to use.
2262 while (1) {
2263 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2264 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2265
2266 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2267 OpToUse = ISD::FP_TO_SINT;
2268 break;
2269 }
2270
2271 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2272 OpToUse = ISD::FP_TO_UINT;
2273 break;
2274 }
2275
2276 // Otherwise, try a larger type.
2277 }
2278
2279
2280 // Okay, we found the operation and type to use.
2281 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2282
2283 // Truncate the result of the extended FP_TO_*INT operation to the desired
2284 // size.
2285 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2286}
2287
2288/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2289///
2290SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2291 EVT VT = Op.getValueType();
2292 EVT SHVT = TLI.getShiftAmountTy();
2293 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2294 switch (VT.getSimpleVT().SimpleTy) {
2295 default: assert(0 && "Unhandled Expand type in BSWAP!");
2296 case MVT::i16:
2297 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2298 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2299 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2300 case MVT::i32:
2301 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2302 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2303 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2304 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2305 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2306 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2307 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2308 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2309 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2310 case MVT::i64:
2311 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2312 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2313 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2314 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2315 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2316 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2317 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2318 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2319 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2320 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2321 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2322 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2323 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2324 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2325 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2326 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2327 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2328 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2329 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2330 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2331 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2332 }
2333}
2334
2335/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2336///
2337SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2338 DebugLoc dl) {
2339 switch (Opc) {
2340 default: assert(0 && "Cannot expand this yet!");
2341 case ISD::CTPOP: {
2342 static const uint64_t mask[6] = {
2343 0x5555555555555555ULL, 0x3333333333333333ULL,
2344 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2345 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2346 };
2347 EVT VT = Op.getValueType();
2348 EVT ShVT = TLI.getShiftAmountTy();
2349 unsigned len = VT.getSizeInBits();
2350 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2351 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2352 unsigned EltSize = VT.isVector() ?
2353 VT.getVectorElementType().getSizeInBits() : len;
2354 SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2355 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2356 Op = DAG.getNode(ISD::ADD, dl, VT,
2357 DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2358 DAG.getNode(ISD::AND, dl, VT,
2359 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2360 Tmp2));
2361 }
2362 return Op;
2363 }
2364 case ISD::CTLZ: {
2365 // for now, we do this:
2366 // x = x | (x >> 1);
2367 // x = x | (x >> 2);
2368 // ...
2369 // x = x | (x >>16);
2370 // x = x | (x >>32); // for 64-bit input
2371 // return popcount(~x);
2372 //
2373 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2374 EVT VT = Op.getValueType();
2375 EVT ShVT = TLI.getShiftAmountTy();
2376 unsigned len = VT.getSizeInBits();
2377 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2378 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2379 Op = DAG.getNode(ISD::OR, dl, VT, Op,
2380 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2381 }
2382 Op = DAG.getNOT(dl, Op, VT);
2383 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2384 }
2385 case ISD::CTTZ: {
2386 // for now, we use: { return popcount(~x & (x - 1)); }
2387 // unless the target has ctlz but not ctpop, in which case we use:
2388 // { return 32 - nlz(~x & (x-1)); }
2389 // see also http://www.hackersdelight.org/HDcode/ntz.cc
2390 EVT VT = Op.getValueType();
2391 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2392 DAG.getNOT(dl, Op, VT),
2393 DAG.getNode(ISD::SUB, dl, VT, Op,
2394 DAG.getConstant(1, VT)));
2395 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2396 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2397 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2398 return DAG.getNode(ISD::SUB, dl, VT,
2399 DAG.getConstant(VT.getSizeInBits(), VT),
2400 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2401 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2402 }
2403 }
2404}
2405
2406std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2407 unsigned Opc = Node->getOpcode();
2408 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2409 RTLIB::Libcall LC;
2410
2411 switch (Opc) {
2412 default:
2413 llvm_unreachable("Unhandled atomic intrinsic Expand!");
2414 break;
2415 case ISD::ATOMIC_SWAP:
2416 switch (VT.SimpleTy) {
2417 default: llvm_unreachable("Unexpected value type for atomic!");
2418 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2419 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2420 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2421 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2422 }
2423 break;
2424 case ISD::ATOMIC_CMP_SWAP:
2425 switch (VT.SimpleTy) {
2426 default: llvm_unreachable("Unexpected value type for atomic!");
2427 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2428 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2429 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2430 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2431 }
2432 break;
2433 case ISD::ATOMIC_LOAD_ADD:
2434 switch (VT.SimpleTy) {
2435 default: llvm_unreachable("Unexpected value type for atomic!");
2436 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2437 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2438 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2439 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2440 }
2441 break;
2442 case ISD::ATOMIC_LOAD_SUB:
2443 switch (VT.SimpleTy) {
2444 default: llvm_unreachable("Unexpected value type for atomic!");
2445 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2446 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2447 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2448 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2449 }
2450 break;
2451 case ISD::ATOMIC_LOAD_AND:
2452 switch (VT.SimpleTy) {
2453 default: llvm_unreachable("Unexpected value type for atomic!");
2454 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2455 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2456 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2457 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2458 }
2459 break;
2460 case ISD::ATOMIC_LOAD_OR:
2461 switch (VT.SimpleTy) {
2462 default: llvm_unreachable("Unexpected value type for atomic!");
2463 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2464 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2465 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2466 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2467 }
2468 break;
2469 case ISD::ATOMIC_LOAD_XOR:
2470 switch (VT.SimpleTy) {
2471 default: llvm_unreachable("Unexpected value type for atomic!");
2472 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2473 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2474 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2475 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2476 }
2477 break;
2478 case ISD::ATOMIC_LOAD_NAND:
2479 switch (VT.SimpleTy) {
2480 default: llvm_unreachable("Unexpected value type for atomic!");
2481 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2482 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2483 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2484 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2485 }
2486 break;
2487 }
2488
2489 return ExpandChainLibCall(LC, Node, false);
2490}
2491
2492void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2493 SmallVectorImpl<SDValue> &Results) {
2494 DebugLoc dl = Node->getDebugLoc();
2495 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2496 switch (Node->getOpcode()) {
2497 case ISD::CTPOP:
2498 case ISD::CTLZ:
2499 case ISD::CTTZ:
2500 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2501 Results.push_back(Tmp1);
2502 break;
2503 case ISD::BSWAP:
2504 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2505 break;
2506 case ISD::FRAMEADDR:
2507 case ISD::RETURNADDR:
2508 case ISD::FRAME_TO_ARGS_OFFSET:
2509 Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2510 break;
2511 case ISD::FLT_ROUNDS_:
2512 Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2513 break;
2514 case ISD::EH_RETURN:
2515 case ISD::EH_LABEL:
2516 case ISD::PREFETCH:
2517 case ISD::VAEND:
2518 case ISD::EH_SJLJ_LONGJMP:
2519 Results.push_back(Node->getOperand(0));
2520 break;
2521 case ISD::EH_SJLJ_SETJMP:
2522 Results.push_back(DAG.getConstant(0, MVT::i32));
2523 Results.push_back(Node->getOperand(0));
2524 break;
2525 case ISD::MEMBARRIER: {
2526 // If the target didn't lower this, lower it to '__sync_synchronize()' call
2527 TargetLowering::ArgListTy Args;
2528 std::pair<SDValue, SDValue> CallResult =
2529 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2530 false, false, false, false, 0, CallingConv::C, false,
2531 /*isReturnValueUsed=*/true,
2532 DAG.getExternalSymbol("__sync_synchronize",
2533 TLI.getPointerTy()),
2534 Args, DAG, dl);
2535 Results.push_back(CallResult.second);
2536 break;
2537 }
2538 // By default, atomic intrinsics are marked Legal and lowered. Targets
2539 // which don't support them directly, however, may want libcalls, in which
2540 // case they mark them Expand, and we get here.
2541 // FIXME: Unimplemented for now. Add libcalls.
2542 case ISD::ATOMIC_SWAP:
2543 case ISD::ATOMIC_LOAD_ADD:
2544 case ISD::ATOMIC_LOAD_SUB:
2545 case ISD::ATOMIC_LOAD_AND:
2546 case ISD::ATOMIC_LOAD_OR:
2547 case ISD::ATOMIC_LOAD_XOR:
2548 case ISD::ATOMIC_LOAD_NAND:
2549 case ISD::ATOMIC_LOAD_MIN:
2550 case ISD::ATOMIC_LOAD_MAX:
2551 case ISD::ATOMIC_LOAD_UMIN:
2552 case ISD::ATOMIC_LOAD_UMAX:
2553 case ISD::ATOMIC_CMP_SWAP: {
2554 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2555 Results.push_back(Tmp.first);
2556 Results.push_back(Tmp.second);
2557 break;
2558 }
2559 case ISD::DYNAMIC_STACKALLOC:
2560 ExpandDYNAMIC_STACKALLOC(Node, Results);
2561 break;
2562 case ISD::MERGE_VALUES:
2563 for (unsigned i = 0; i < Node->getNumValues(); i++)
2564 Results.push_back(Node->getOperand(i));
2565 break;
2566 case ISD::UNDEF: {
2567 EVT VT = Node->getValueType(0);
2568 if (VT.isInteger())
2569 Results.push_back(DAG.getConstant(0, VT));
2570 else {
2571 assert(VT.isFloatingPoint() && "Unknown value type!");
2572 Results.push_back(DAG.getConstantFP(0, VT));
2573 }
2574 break;
2575 }
2576 case ISD::TRAP: {
2577 // If this operation is not supported, lower it to 'abort()' call
2578 TargetLowering::ArgListTy Args;
2579 std::pair<SDValue, SDValue> CallResult =
2580 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2581 false, false, false, false, 0, CallingConv::C, false,
2582 /*isReturnValueUsed=*/true,
2583 DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2584 Args, DAG, dl);
2585 Results.push_back(CallResult.second);
2586 break;
2587 }
2588 case ISD::FP_ROUND:
2589 case ISD::BIT_CONVERT:
2590 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2591 Node->getValueType(0), dl);
2592 Results.push_back(Tmp1);
2593 break;
2594 case ISD::FP_EXTEND:
2595 Tmp1 = EmitStackConvert(Node->getOperand(0),
2596 Node->getOperand(0).getValueType(),
2597 Node->getValueType(0), dl);
2598 Results.push_back(Tmp1);
2599 break;
2600 case ISD::SIGN_EXTEND_INREG: {
2601 // NOTE: we could fall back on load/store here too for targets without
2602 // SAR. However, it is doubtful that any exist.
2603 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2604 EVT VT = Node->getValueType(0);
2605 EVT ShiftAmountTy = TLI.getShiftAmountTy();
2606 if (VT.isVector())
2607 ShiftAmountTy = VT;
2608 unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2609 ExtraVT.getScalarType().getSizeInBits();
2610 SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2611 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2612 Node->getOperand(0), ShiftCst);
2613 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2614 Results.push_back(Tmp1);
2615 break;
2616 }
2617 case ISD::FP_ROUND_INREG: {
2618 // The only way we can lower this is to turn it into a TRUNCSTORE,
2619 // EXTLOAD pair, targetting a temporary location (a stack slot).
2620
2621 // NOTE: there is a choice here between constantly creating new stack
2622 // slots and always reusing the same one. We currently always create
2623 // new ones, as reuse may inhibit scheduling.
2624 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2625 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2626 Node->getValueType(0), dl);
2627 Results.push_back(Tmp1);
2628 break;
2629 }
2630 case ISD::SINT_TO_FP:
2631 case ISD::UINT_TO_FP:
2632 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2633 Node->getOperand(0), Node->getValueType(0), dl);
2634 Results.push_back(Tmp1);
2635 break;
2636 case ISD::FP_TO_UINT: {
2637 SDValue True, False;
2638 EVT VT = Node->getOperand(0).getValueType();
2639 EVT NVT = Node->getValueType(0);
2640 const uint64_t zero[] = {0, 0};
2641 APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2642 APInt x = APInt::getSignBit(NVT.getSizeInBits());
2643 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2644 Tmp1 = DAG.getConstantFP(apf, VT);
2645 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2646 Node->getOperand(0),
2647 Tmp1, ISD::SETLT);
2648 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2649 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2650 DAG.getNode(ISD::FSUB, dl, VT,
2651 Node->getOperand(0), Tmp1));
2652 False = DAG.getNode(ISD::XOR, dl, NVT, False,
2653 DAG.getConstant(x, NVT));
2654 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2655 Results.push_back(Tmp1);
2656 break;
2657 }
2658 case ISD::VAARG: {
2659 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2660 EVT VT = Node->getValueType(0);
2661 Tmp1 = Node->getOperand(0);
2662 Tmp2 = Node->getOperand(1);
2663 unsigned Align = Node->getConstantOperandVal(3);
2664
2665 SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0,
2666 false, false, 0);
2667 SDValue VAList = VAListLoad;
2668
2669 if (Align > TLI.getMinStackArgumentAlignment()) {
2670 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2671
2672 VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2673 DAG.getConstant(Align - 1,
2674 TLI.getPointerTy()));
2675
2676 VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2677 DAG.getConstant(-Align,
2678 TLI.getPointerTy()));
2679 }
2680
2681 // Increment the pointer, VAList, to the next vaarg
2682 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2683 DAG.getConstant(TLI.getTargetData()->
2684 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2685 TLI.getPointerTy()));
2686 // Store the incremented VAList to the legalized pointer
2687 Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, V, 0,
2688 false, false, 0);
2689 // Load the actual argument out of the pointer VAList
2690 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0,
2691 false, false, 0));
2692 Results.push_back(Results[0].getValue(1));
2693 break;
2694 }
2695 case ISD::VACOPY: {
2696 // This defaults to loading a pointer from the input and storing it to the
2697 // output, returning the chain.
2698 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2699 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2700 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2701 Node->getOperand(2), VS, 0, false, false, 0);
2702 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0,
2703 false, false, 0);
2704 Results.push_back(Tmp1);
2705 break;
2706 }
2707 case ISD::EXTRACT_VECTOR_ELT:
2708 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2709 // This must be an access of the only element. Return it.
2710 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2711 Node->getOperand(0));
2712 else
2713 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2714 Results.push_back(Tmp1);
2715 break;
2716 case ISD::EXTRACT_SUBVECTOR:
2717 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2718 break;
2719 case ISD::CONCAT_VECTORS: {
2720 Results.push_back(ExpandVectorBuildThroughStack(Node));
2721 break;
2722 }
2723 case ISD::SCALAR_TO_VECTOR:
2724 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2725 break;
2726 case ISD::INSERT_VECTOR_ELT:
2727 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2728 Node->getOperand(1),
2729 Node->getOperand(2), dl));
2730 break;
2731 case ISD::VECTOR_SHUFFLE: {
2732 SmallVector<int, 8> Mask;
2733 cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2734
2735 EVT VT = Node->getValueType(0);
2736 EVT EltVT = VT.getVectorElementType();
2737 if (getTypeAction(EltVT) == Promote)
2738 EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2739 unsigned NumElems = VT.getVectorNumElements();
2740 SmallVector<SDValue, 8> Ops;
2741 for (unsigned i = 0; i != NumElems; ++i) {
2742 if (Mask[i] < 0) {
2743 Ops.push_back(DAG.getUNDEF(EltVT));
2744 continue;
2745 }
2746 unsigned Idx = Mask[i];
2747 if (Idx < NumElems)
2748 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2749 Node->getOperand(0),
2750 DAG.getIntPtrConstant(Idx)));
2751 else
2752 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2753 Node->getOperand(1),
2754 DAG.getIntPtrConstant(Idx - NumElems)));
2755 }
2756 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2757 Results.push_back(Tmp1);
2758 break;
2759 }
2760 case ISD::EXTRACT_ELEMENT: {
2761 EVT OpTy = Node->getOperand(0).getValueType();
2762 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2763 // 1 -> Hi
2764 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2765 DAG.getConstant(OpTy.getSizeInBits()/2,
2766 TLI.getShiftAmountTy()));
2767 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2768 } else {
2769 // 0 -> Lo
2770 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2771 Node->getOperand(0));
2772 }
2773 Results.push_back(Tmp1);
2774 break;
2775 }
2776 case ISD::STACKSAVE:
2777 // Expand to CopyFromReg if the target set
2778 // StackPointerRegisterToSaveRestore.
2779 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2780 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2781 Node->getValueType(0)));
2782 Results.push_back(Results[0].getValue(1));
2783 } else {
2784 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2785 Results.push_back(Node->getOperand(0));
2786 }
2787 break;
2788 case ISD::STACKRESTORE:
2789 // Expand to CopyToReg if the target set
2790 // StackPointerRegisterToSaveRestore.
2791 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2792 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2793 Node->getOperand(1)));
2794 } else {
2795 Results.push_back(Node->getOperand(0));
2796 }
2797 break;
2798 case ISD::FCOPYSIGN:
2799 Results.push_back(ExpandFCOPYSIGN(Node));
2800 break;
2801 case ISD::FNEG:
2802 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
2803 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2804 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2805 Node->getOperand(0));
2806 Results.push_back(Tmp1);
2807 break;
2808 case ISD::FABS: {
2809 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2810 EVT VT = Node->getValueType(0);
2811 Tmp1 = Node->getOperand(0);
2812 Tmp2 = DAG.getConstantFP(0.0, VT);
2813 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2814 Tmp1, Tmp2, ISD::SETUGT);
2815 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2816 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2817 Results.push_back(Tmp1);
2818 break;
2819 }
2820 case ISD::FSQRT:
2821 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2822 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2823 break;
2824 case ISD::FSIN:
2825 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2826 RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2827 break;
2828 case ISD::FCOS:
2829 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2830 RTLIB::COS_F80, RTLIB::COS_PPCF128));
2831 break;
2832 case ISD::FLOG:
2833 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2834 RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2835 break;
2836 case ISD::FLOG2:
2837 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2838 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2839 break;
2840 case ISD::FLOG10:
2841 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2842 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2843 break;
2844 case ISD::FEXP:
2845 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2846 RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2847 break;
2848 case ISD::FEXP2:
2849 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2850 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2851 break;
2852 case ISD::FTRUNC:
2853 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2854 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2855 break;
2856 case ISD::FFLOOR:
2857 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2858 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2859 break;
2860 case ISD::FCEIL:
2861 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2862 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2863 break;
2864 case ISD::FRINT:
2865 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2866 RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2867 break;
2868 case ISD::FNEARBYINT:
2869 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2870 RTLIB::NEARBYINT_F64,
2871 RTLIB::NEARBYINT_F80,
2872 RTLIB::NEARBYINT_PPCF128));
2873 break;
2874 case ISD::FPOWI:
2875 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2876 RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2877 break;
2878 case ISD::FPOW:
2879 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2880 RTLIB::POW_F80, RTLIB::POW_PPCF128));
2881 break;
2882 case ISD::FDIV:
2883 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2884 RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2885 break;
2886 case ISD::FREM:
2887 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2888 RTLIB::REM_F80, RTLIB::REM_PPCF128));
2889 break;
2890 case ISD::FP16_TO_FP32:
2891 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2892 break;
2893 case ISD::FP32_TO_FP16:
2894 Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2895 break;
2896 case ISD::ConstantFP: {
2897 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2898 // Check to see if this FP immediate is already legal.
2899 // If this is a legal constant, turn it into a TargetConstantFP node.
2900 if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2901 Results.push_back(SDValue(Node, 0));
2902 else
2903 Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2904 break;
2905 }
2906 case ISD::EHSELECTION: {
2907 unsigned Reg = TLI.getExceptionSelectorRegister();
2908 assert(Reg && "Can't expand to unknown register!");
2909 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2910 Node->getValueType(0)));
2911 Results.push_back(Results[0].getValue(1));
2912 break;
2913 }
2914 case ISD::EXCEPTIONADDR: {
2915 unsigned Reg = TLI.getExceptionAddressRegister();
2916 assert(Reg && "Can't expand to unknown register!");
2917 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2918 Node->getValueType(0)));
2919 Results.push_back(Results[0].getValue(1));
2920 break;
2921 }
2922 case ISD::SUB: {
2923 EVT VT = Node->getValueType(0);
2924 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2925 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2926 "Don't know how to expand this subtraction!");
2927 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2928 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2929 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2930 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2931 break;
2932 }
2933 case ISD::UREM:
2934 case ISD::SREM: {
2935 EVT VT = Node->getValueType(0);
2936 SDVTList VTs = DAG.getVTList(VT, VT);
2937 bool isSigned = Node->getOpcode() == ISD::SREM;
2938 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2939 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2940 Tmp2 = Node->getOperand(0);
2941 Tmp3 = Node->getOperand(1);
2942 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2943 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2944 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2945 // X % Y -> X-X/Y*Y
2946 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2947 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2948 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2949 } else if (isSigned) {
2950 Tmp1 = ExpandIntLibCall(Node, true,
2951 RTLIB::SREM_I8,
2952 RTLIB::SREM_I16, RTLIB::SREM_I32,
2953 RTLIB::SREM_I64, RTLIB::SREM_I128);
2954 } else {
2955 Tmp1 = ExpandIntLibCall(Node, false,
2956 RTLIB::UREM_I8,
2957 RTLIB::UREM_I16, RTLIB::UREM_I32,
2958 RTLIB::UREM_I64, RTLIB::UREM_I128);
2959 }
2960 Results.push_back(Tmp1);
2961 break;
2962 }
2963 case ISD::UDIV:
2964 case ISD::SDIV: {
2965 bool isSigned = Node->getOpcode() == ISD::SDIV;
2966 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2967 EVT VT = Node->getValueType(0);
2968 SDVTList VTs = DAG.getVTList(VT, VT);
2969 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2970 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2971 Node->getOperand(1));
2972 else if (isSigned)
2973 Tmp1 = ExpandIntLibCall(Node, true,
2974 RTLIB::SDIV_I8,
2975 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2976 RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2977 else
2978 Tmp1 = ExpandIntLibCall(Node, false,
2979 RTLIB::UDIV_I8,
2980 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2981 RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2982 Results.push_back(Tmp1);
2983 break;
2984 }
2985 case ISD::MULHU:
2986 case ISD::MULHS: {
2987 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2988 ISD::SMUL_LOHI;
2989 EVT VT = Node->getValueType(0);
2990 SDVTList VTs = DAG.getVTList(VT, VT);
2991 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2992 "If this wasn't legal, it shouldn't have been created!");
2993 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2994 Node->getOperand(1));
2995 Results.push_back(Tmp1.getValue(1));
2996 break;
2997 }
2998 case ISD::MUL: {
2999 EVT VT = Node->getValueType(0);
3000 SDVTList VTs = DAG.getVTList(VT, VT);
3001 // See if multiply or divide can be lowered using two-result operations.
3002 // We just need the low half of the multiply; try both the signed
3003 // and unsigned forms. If the target supports both SMUL_LOHI and
3004 // UMUL_LOHI, form a preference by checking which forms of plain
3005 // MULH it supports.
3006 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3007 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3008 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3009 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3010 unsigned OpToUse = 0;
3011 if (HasSMUL_LOHI && !HasMULHS) {
3012 OpToUse = ISD::SMUL_LOHI;
3013 } else if (HasUMUL_LOHI && !HasMULHU) {
3014 OpToUse = ISD::UMUL_LOHI;
3015 } else if (HasSMUL_LOHI) {
3016 OpToUse = ISD::SMUL_LOHI;
3017 } else if (HasUMUL_LOHI) {
3018 OpToUse = ISD::UMUL_LOHI;
3019 }
3020 if (OpToUse) {
3021 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3022 Node->getOperand(1)));
3023 break;
3024 }
3025 Tmp1 = ExpandIntLibCall(Node, false,
3026 RTLIB::MUL_I8,
3027 RTLIB::MUL_I16, RTLIB::MUL_I32,
3028 RTLIB::MUL_I64, RTLIB::MUL_I128);
3029 Results.push_back(Tmp1);
3030 break;
3031 }
3032 case ISD::SADDO:
3033 case ISD::SSUBO: {
3034 SDValue LHS = Node->getOperand(0);
3035 SDValue RHS = Node->getOperand(1);
3036 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3037 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3038 LHS, RHS);
3039 Results.push_back(Sum);
3040 EVT OType = Node->getValueType(1);
3041
3042 SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3043
3044 // LHSSign -> LHS >= 0
3045 // RHSSign -> RHS >= 0
3046 // SumSign -> Sum >= 0
3047 //
3048 // Add:
3049 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3050 // Sub:
3051 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3052 //
3053 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3054 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3055 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3056 Node->getOpcode() == ISD::SADDO ?
3057 ISD::SETEQ : ISD::SETNE);
3058
3059 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3060 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3061
3062 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3063 Results.push_back(Cmp);
3064 break;
3065 }
3066 case ISD::UADDO:
3067 case ISD::USUBO: {
3068 SDValue LHS = Node->getOperand(0);
3069 SDValue RHS = Node->getOperand(1);
3070 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3071 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3072 LHS, RHS);
3073 Results.push_back(Sum);
3074 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3075 Node->getOpcode () == ISD::UADDO ?
3076 ISD::SETULT : ISD::SETUGT));
3077 break;
3078 }
3079 case ISD::UMULO:
3080 case ISD::SMULO: {
3081 EVT VT = Node->getValueType(0);
3082 SDValue LHS = Node->getOperand(0);
3083 SDValue RHS = Node->getOperand(1);
3084 SDValue BottomHalf;
3085 SDValue TopHalf;
3086 static const unsigned Ops[2][3] =
3087 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3088 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3089 bool isSigned = Node->getOpcode() == ISD::SMULO;
3090 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3091 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3092 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3093 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3094 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3095 RHS);
3096 TopHalf = BottomHalf.getValue(1);
3097 } else {
3098 // FIXME: We should be able to fall back to a libcall with an illegal
3099 // type in some cases.
3100 // Also, we can fall back to a division in some cases, but that's a big
3101 // performance hit in the general case.
3102 assert(TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3103 VT.getSizeInBits() * 2)) &&
3104 "Don't know how to expand this operation yet!");
3105 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3106 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3107 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3108 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3109 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3110 DAG.getIntPtrConstant(0));
3111 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3112 DAG.getIntPtrConstant(1));
3113 }
3114 if (isSigned) {
3115 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
3116 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3117 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3118 ISD::SETNE);
3119 } else {
3120 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3121 DAG.getConstant(0, VT), ISD::SETNE);
3122 }
3123 Results.push_back(BottomHalf);
3124 Results.push_back(TopHalf);
3125 break;
3126 }
3127 case ISD::BUILD_PAIR: {
3128 EVT PairTy = Node->getValueType(0);
3129 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3130 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3131 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3132 DAG.getConstant(PairTy.getSizeInBits()/2,
3133 TLI.getShiftAmountTy()));
3134 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3135 break;
3136 }
3137 case ISD::SELECT:
3138 Tmp1 = Node->getOperand(0);
3139 Tmp2 = Node->getOperand(1);
3140 Tmp3 = Node->getOperand(2);
3141 if (Tmp1.getOpcode() == ISD::SETCC) {
3142 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3143 Tmp2, Tmp3,
3144 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3145 } else {
3146 Tmp1 = DAG.getSelectCC(dl, Tmp1,
3147 DAG.getConstant(0, Tmp1.getValueType()),
3148 Tmp2, Tmp3, ISD::SETNE);
3149 }
3150 Results.push_back(Tmp1);
3151 break;
3152 case ISD::BR_JT: {
3153 SDValue Chain = Node->getOperand(0);
3154 SDValue Table = Node->getOperand(1);
3155 SDValue Index = Node->getOperand(2);
3156
3157 EVT PTy = TLI.getPointerTy();
3158
3159 const TargetData &TD = *TLI.getTargetData();
3160 unsigned EntrySize =
3161 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3162
3163 Index = DAG.getNode(ISD::MUL, dl, PTy,
3164 Index, DAG.getConstant(EntrySize, PTy));
3165 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3166
3167 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3168 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, PTy, dl, Chain, Addr,
3169 PseudoSourceValue::getJumpTable(), 0, MemVT,
3170 false, false, 0);
3171 Addr = LD;
3172 if (TM.getRelocationModel() == Reloc::PIC_) {
3173 // For PIC, the sequence is:
3174 // BRIND(load(Jumptable + index) + RelocBase)
3175 // RelocBase can be JumpTable, GOT or some sort of global base.
3176 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3177 TLI.getPICJumpTableRelocBase(Table, DAG));
3178 }
3179 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3180 Results.push_back(Tmp1);
3181 break;
3182 }
3183 case ISD::BRCOND:
3184 // Expand brcond's setcc into its constituent parts and create a BR_CC
3185 // Node.
3186 Tmp1 = Node->getOperand(0);
3187 Tmp2 = Node->getOperand(1);
3188 if (Tmp2.getOpcode() == ISD::SETCC) {
3189 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3190 Tmp1, Tmp2.getOperand(2),
3191 Tmp2.getOperand(0), Tmp2.getOperand(1),
3192 Node->getOperand(2));
3193 } else {
3194 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3195 DAG.getCondCode(ISD::SETNE), Tmp2,
3196 DAG.getConstant(0, Tmp2.getValueType()),
3197 Node->getOperand(2));
3198 }
3199 Results.push_back(Tmp1);
3200 break;
3201 case ISD::SETCC: {
3202 Tmp1 = Node->getOperand(0);
3203 Tmp2 = Node->getOperand(1);
3204 Tmp3 = Node->getOperand(2);
3205 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3206
3207 // If we expanded the SETCC into an AND/OR, return the new node
3208 if (Tmp2.getNode() == 0) {
3209 Results.push_back(Tmp1);
3210 break;
3211 }
3212
3213 // Otherwise, SETCC for the given comparison type must be completely
3214 // illegal; expand it into a SELECT_CC.
3215 EVT VT = Node->getValueType(0);
3216 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3217 DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3218 Results.push_back(Tmp1);
3219 break;
3220 }
3221 case ISD::SELECT_CC: {
3222 Tmp1 = Node->getOperand(0); // LHS
3223 Tmp2 = Node->getOperand(1); // RHS
3224 Tmp3 = Node->getOperand(2); // True
3225 Tmp4 = Node->getOperand(3); // False
3226 SDValue CC = Node->getOperand(4);
3227
3228 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3229 Tmp1, Tmp2, CC, dl);
3230
3231 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3232 Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3233 CC = DAG.getCondCode(ISD::SETNE);
3234 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3235 Tmp3, Tmp4, CC);
3236 Results.push_back(Tmp1);
3237 break;
3238 }
3239 case ISD::BR_CC: {
3240 Tmp1 = Node->getOperand(0); // Chain
3241 Tmp2 = Node->getOperand(2); // LHS
3242 Tmp3 = Node->getOperand(3); // RHS
3243 Tmp4 = Node->getOperand(1); // CC
3244
3245 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3246 Tmp2, Tmp3, Tmp4, dl);
3247 LastCALLSEQ_END = DAG.getEntryNode();
3248
3249 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3250 Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3251 Tmp4 = DAG.getCondCode(ISD::SETNE);
3252 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3253 Tmp3, Node->getOperand(4));
3254 Results.push_back(Tmp1);
3255 break;
3256 }
3257 case ISD::GLOBAL_OFFSET_TABLE:
3258 case ISD::GlobalAddress:
3259 case ISD::GlobalTLSAddress:
3260 case ISD::ExternalSymbol:
3261 case ISD::ConstantPool:
3262 case ISD::JumpTable:
3263 case ISD::INTRINSIC_W_CHAIN:
3264 case ISD::INTRINSIC_WO_CHAIN:
3265 case ISD::INTRINSIC_VOID:
3266 // FIXME: Custom lowering for these operations shouldn't return null!
3267 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3268 Results.push_back(SDValue(Node, i));
3269 break;
3270 }
3271}
3272void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3273 SmallVectorImpl<SDValue> &Results) {
3274 EVT OVT = Node->getValueType(0);
3275 if (Node->getOpcode() == ISD::UINT_TO_FP ||
3276 Node->getOpcode() == ISD::SINT_TO_FP ||
3277 Node->getOpcode() == ISD::SETCC) {
3278 OVT = Node->getOperand(0).getValueType();
3279 }
3280 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3281 DebugLoc dl = Node->getDebugLoc();
3282 SDValue Tmp1, Tmp2, Tmp3;
3283 switch (Node->getOpcode()) {
3284 case ISD::CTTZ:
3285 case ISD::CTLZ:
3286 case ISD::CTPOP:
3287 // Zero extend the argument.
3288 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3289 // Perform the larger operation.
3290 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3291 if (Node->getOpcode() == ISD::CTTZ) {
3292 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3293 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3294 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3295 ISD::SETEQ);
3296 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3297 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3298 } else if (Node->getOpcode() == ISD::CTLZ) {
3299 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3300 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3301 DAG.getConstant(NVT.getSizeInBits() -
3302 OVT.getSizeInBits(), NVT));
3303 }
3304 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3305 break;
3306 case ISD::BSWAP: {
3307 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3308 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3309 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3310 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3311 DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3312 Results.push_back(Tmp1);
3313 break;
3314 }
3315 case ISD::FP_TO_UINT:
3316 case ISD::FP_TO_SINT:
3317 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3318 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3319 Results.push_back(Tmp1);
3320 break;
3321 case ISD::UINT_TO_FP:
3322 case ISD::SINT_TO_FP:
3323 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3324 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3325 Results.push_back(Tmp1);
3326 break;
3327 case ISD::AND:
3328 case ISD::OR:
3329 case ISD::XOR: {
3330 unsigned ExtOp, TruncOp;
3331 if (OVT.isVector()) {
3332 ExtOp = ISD::BIT_CONVERT;
3333 TruncOp = ISD::BIT_CONVERT;
3334 } else {
3335 assert(OVT.isInteger() && "Cannot promote logic operation");
3336 ExtOp = ISD::ANY_EXTEND;
3337 TruncOp = ISD::TRUNCATE;
3338 }
3339 // Promote each of the values to the new type.
3340 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3341 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3342 // Perform the larger operation, then convert back
3343 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3344 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3345 break;
3346 }
3347 case ISD::SELECT: {
3348 unsigned ExtOp, TruncOp;
3349 if (Node->getValueType(0).isVector()) {
3350 ExtOp = ISD::BIT_CONVERT;
3351 TruncOp = ISD::BIT_CONVERT;
3352 } else if (Node->getValueType(0).isInteger()) {
3353 ExtOp = ISD::ANY_EXTEND;
3354 TruncOp = ISD::TRUNCATE;
3355 } else {
3356 ExtOp = ISD::FP_EXTEND;
3357 TruncOp = ISD::FP_ROUND;
3358 }
3359 Tmp1 = Node->getOperand(0);
3360 // Promote each of the values to the new type.
3361 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3362 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3363 // Perform the larger operation, then round down.
3364 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3365 if (TruncOp != ISD::FP_ROUND)
3366 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3367 else
3368 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3369 DAG.getIntPtrConstant(0));
3370 Results.push_back(Tmp1);
3371 break;
3372 }
3373 case ISD::VECTOR_SHUFFLE: {
3374 SmallVector<int, 8> Mask;
3375 cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3376
3377 // Cast the two input vectors.
3378 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3379 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3380
3381 // Convert the shuffle mask to the right # elements.
3382 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3383 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3384 Results.push_back(Tmp1);
3385 break;
3386 }
3387 case ISD::SETCC: {
3388 unsigned ExtOp = ISD::FP_EXTEND;
3389 if (NVT.isInteger()) {
3390 ISD::CondCode CCCode =
3391 cast<CondCodeSDNode>(Node->getOperand(2))->get();
3392 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3393 }
3394 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3395 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3396 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3397 Tmp1, Tmp2, Node->getOperand(2)));
3398 break;
3399 }
3400 }
3401}
3402
3403// SelectionDAG::Legalize - This is the entry point for the file.
3404//
3405void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3406 /// run - This is the main entry point to this class.
3407 ///
3408 SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3409}
3410
Note: See TracBrowser for help on using the repository browser.