1 | //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
|
---|
2 | //
|
---|
3 | // The LLVM Compiler Infrastructure
|
---|
4 | //
|
---|
5 | // This file is distributed under the University of Illinois Open Source
|
---|
6 | // License. See LICENSE.TXT for details.
|
---|
7 | //
|
---|
8 | //===----------------------------------------------------------------------===//
|
---|
9 | //
|
---|
10 | // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
|
---|
11 | // register allocator for LLVM. This allocator works by constructing a PBQP
|
---|
12 | // problem representing the register allocation problem under consideration,
|
---|
13 | // solving this using a PBQP solver, and mapping the solution back to a
|
---|
14 | // register assignment. If any variables are selected for spilling then spill
|
---|
15 | // code is inserted and the process repeated.
|
---|
16 | //
|
---|
17 | // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
|
---|
18 | // for register allocation. For more information on PBQP for register
|
---|
19 | // allocation, see the following papers:
|
---|
20 | //
|
---|
21 | // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
|
---|
22 | // PBQP. In Proceedings of the 7th Joint Modular Languages Conference
|
---|
23 | // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
|
---|
24 | //
|
---|
25 | // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
|
---|
26 | // architectures. In Proceedings of the Joint Conference on Languages,
|
---|
27 | // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
|
---|
28 | // NY, USA, 139-148.
|
---|
29 | //
|
---|
30 | //===----------------------------------------------------------------------===//
|
---|
31 |
|
---|
32 | #define DEBUG_TYPE "regalloc"
|
---|
33 |
|
---|
34 | #include "PBQP/HeuristicSolver.h"
|
---|
35 | #include "PBQP/Graph.h"
|
---|
36 | #include "PBQP/Heuristics/Briggs.h"
|
---|
37 | #include "RenderMachineFunction.h"
|
---|
38 | #include "Splitter.h"
|
---|
39 | #include "VirtRegMap.h"
|
---|
40 | #include "VirtRegRewriter.h"
|
---|
41 | #include "llvm/CodeGen/CalcSpillWeights.h"
|
---|
42 | #include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
---|
43 | #include "llvm/CodeGen/LiveStackAnalysis.h"
|
---|
44 | #include "llvm/CodeGen/MachineFunctionPass.h"
|
---|
45 | #include "llvm/CodeGen/MachineLoopInfo.h"
|
---|
46 | #include "llvm/CodeGen/MachineRegisterInfo.h"
|
---|
47 | #include "llvm/CodeGen/RegAllocRegistry.h"
|
---|
48 | #include "llvm/CodeGen/RegisterCoalescer.h"
|
---|
49 | #include "llvm/Support/Debug.h"
|
---|
50 | #include "llvm/Support/raw_ostream.h"
|
---|
51 | #include "llvm/Target/TargetInstrInfo.h"
|
---|
52 | #include "llvm/Target/TargetMachine.h"
|
---|
53 | #include <limits>
|
---|
54 | #include <map>
|
---|
55 | #include <memory>
|
---|
56 | #include <set>
|
---|
57 | #include <vector>
|
---|
58 |
|
---|
59 | using namespace llvm;
|
---|
60 |
|
---|
61 | static RegisterRegAlloc
|
---|
62 | registerPBQPRepAlloc("pbqp", "PBQP register allocator",
|
---|
63 | llvm::createPBQPRegisterAllocator);
|
---|
64 |
|
---|
65 | static cl::opt<bool>
|
---|
66 | pbqpCoalescing("pbqp-coalescing",
|
---|
67 | cl::desc("Attempt coalescing during PBQP register allocation."),
|
---|
68 | cl::init(false), cl::Hidden);
|
---|
69 |
|
---|
70 | static cl::opt<bool>
|
---|
71 | pbqpPreSplitting("pbqp-pre-splitting",
|
---|
72 | cl::desc("Pre-splite before PBQP register allocation."),
|
---|
73 | cl::init(false), cl::Hidden);
|
---|
74 |
|
---|
75 | namespace {
|
---|
76 |
|
---|
77 | ///
|
---|
78 | /// PBQP based allocators solve the register allocation problem by mapping
|
---|
79 | /// register allocation problems to Partitioned Boolean Quadratic
|
---|
80 | /// Programming problems.
|
---|
81 | class PBQPRegAlloc : public MachineFunctionPass {
|
---|
82 | public:
|
---|
83 |
|
---|
84 | static char ID;
|
---|
85 |
|
---|
86 | /// Construct a PBQP register allocator.
|
---|
87 | PBQPRegAlloc() : MachineFunctionPass(ID) {}
|
---|
88 |
|
---|
89 | /// Return the pass name.
|
---|
90 | virtual const char* getPassName() const {
|
---|
91 | return "PBQP Register Allocator";
|
---|
92 | }
|
---|
93 |
|
---|
94 | /// PBQP analysis usage.
|
---|
95 | virtual void getAnalysisUsage(AnalysisUsage &au) const {
|
---|
96 | au.addRequired<SlotIndexes>();
|
---|
97 | au.addPreserved<SlotIndexes>();
|
---|
98 | au.addRequired<LiveIntervals>();
|
---|
99 | //au.addRequiredID(SplitCriticalEdgesID);
|
---|
100 | au.addRequired<RegisterCoalescer>();
|
---|
101 | au.addRequired<CalculateSpillWeights>();
|
---|
102 | au.addRequired<LiveStacks>();
|
---|
103 | au.addPreserved<LiveStacks>();
|
---|
104 | au.addRequired<MachineLoopInfo>();
|
---|
105 | au.addPreserved<MachineLoopInfo>();
|
---|
106 | if (pbqpPreSplitting)
|
---|
107 | au.addRequired<LoopSplitter>();
|
---|
108 | au.addRequired<VirtRegMap>();
|
---|
109 | au.addRequired<RenderMachineFunction>();
|
---|
110 | MachineFunctionPass::getAnalysisUsage(au);
|
---|
111 | }
|
---|
112 |
|
---|
113 | /// Perform register allocation
|
---|
114 | virtual bool runOnMachineFunction(MachineFunction &MF);
|
---|
115 |
|
---|
116 | private:
|
---|
117 |
|
---|
118 | class LIOrdering {
|
---|
119 | public:
|
---|
120 | bool operator()(const LiveInterval *li1, const LiveInterval *li2) const {
|
---|
121 | return li1->reg < li2->reg;
|
---|
122 | }
|
---|
123 | };
|
---|
124 |
|
---|
125 | typedef std::map<const LiveInterval*, unsigned, LIOrdering> LI2NodeMap;
|
---|
126 | typedef std::vector<const LiveInterval*> Node2LIMap;
|
---|
127 | typedef std::vector<unsigned> AllowedSet;
|
---|
128 | typedef std::vector<AllowedSet> AllowedSetMap;
|
---|
129 | typedef std::set<unsigned> RegSet;
|
---|
130 | typedef std::pair<unsigned, unsigned> RegPair;
|
---|
131 | typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
|
---|
132 |
|
---|
133 | typedef std::set<LiveInterval*, LIOrdering> LiveIntervalSet;
|
---|
134 |
|
---|
135 | typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
|
---|
136 |
|
---|
137 | MachineFunction *mf;
|
---|
138 | const TargetMachine *tm;
|
---|
139 | const TargetRegisterInfo *tri;
|
---|
140 | const TargetInstrInfo *tii;
|
---|
141 | const MachineLoopInfo *loopInfo;
|
---|
142 | MachineRegisterInfo *mri;
|
---|
143 | RenderMachineFunction *rmf;
|
---|
144 |
|
---|
145 | LiveIntervals *lis;
|
---|
146 | LiveStacks *lss;
|
---|
147 | VirtRegMap *vrm;
|
---|
148 |
|
---|
149 | LI2NodeMap li2Node;
|
---|
150 | Node2LIMap node2LI;
|
---|
151 | AllowedSetMap allowedSets;
|
---|
152 | LiveIntervalSet vregIntervalsToAlloc,
|
---|
153 | emptyVRegIntervals;
|
---|
154 | NodeVector problemNodes;
|
---|
155 |
|
---|
156 |
|
---|
157 | /// Builds a PBQP cost vector.
|
---|
158 | template <typename RegContainer>
|
---|
159 | PBQP::Vector buildCostVector(unsigned vReg,
|
---|
160 | const RegContainer &allowed,
|
---|
161 | const CoalesceMap &cealesces,
|
---|
162 | PBQP::PBQPNum spillCost) const;
|
---|
163 |
|
---|
164 | /// \brief Builds a PBQP interference matrix.
|
---|
165 | ///
|
---|
166 | /// @return Either a pointer to a non-zero PBQP matrix representing the
|
---|
167 | /// allocation option costs, or a null pointer for a zero matrix.
|
---|
168 | ///
|
---|
169 | /// Expects allowed sets for two interfering LiveIntervals. These allowed
|
---|
170 | /// sets should contain only allocable registers from the LiveInterval's
|
---|
171 | /// register class, with any interfering pre-colored registers removed.
|
---|
172 | template <typename RegContainer>
|
---|
173 | PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
|
---|
174 | const RegContainer &allowed2) const;
|
---|
175 |
|
---|
176 | ///
|
---|
177 | /// Expects allowed sets for two potentially coalescable LiveIntervals,
|
---|
178 | /// and an estimated benefit due to coalescing. The allowed sets should
|
---|
179 | /// contain only allocable registers from the LiveInterval's register
|
---|
180 | /// classes, with any interfering pre-colored registers removed.
|
---|
181 | template <typename RegContainer>
|
---|
182 | PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
|
---|
183 | const RegContainer &allowed2,
|
---|
184 | PBQP::PBQPNum cBenefit) const;
|
---|
185 |
|
---|
186 | /// \brief Finds coalescing opportunities and returns them as a map.
|
---|
187 | ///
|
---|
188 | /// Any entries in the map are guaranteed coalescable, even if their
|
---|
189 | /// corresponding live intervals overlap.
|
---|
190 | CoalesceMap findCoalesces();
|
---|
191 |
|
---|
192 | /// \brief Finds the initial set of vreg intervals to allocate.
|
---|
193 | void findVRegIntervalsToAlloc();
|
---|
194 |
|
---|
195 | /// \brief Constructs a PBQP problem representation of the register
|
---|
196 | /// allocation problem for this function.
|
---|
197 | ///
|
---|
198 | /// @return a PBQP solver object for the register allocation problem.
|
---|
199 | PBQP::Graph constructPBQPProblem();
|
---|
200 |
|
---|
201 | /// \brief Adds a stack interval if the given live interval has been
|
---|
202 | /// spilled. Used to support stack slot coloring.
|
---|
203 | void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
|
---|
204 |
|
---|
205 | /// \brief Given a solved PBQP problem maps this solution back to a register
|
---|
206 | /// assignment.
|
---|
207 | bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
|
---|
208 |
|
---|
209 | /// \brief Postprocessing before final spilling. Sets basic block "live in"
|
---|
210 | /// variables.
|
---|
211 | void finalizeAlloc() const;
|
---|
212 |
|
---|
213 | };
|
---|
214 |
|
---|
215 | char PBQPRegAlloc::ID = 0;
|
---|
216 | }
|
---|
217 |
|
---|
218 |
|
---|
219 | template <typename RegContainer>
|
---|
220 | PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
|
---|
221 | const RegContainer &allowed,
|
---|
222 | const CoalesceMap &coalesces,
|
---|
223 | PBQP::PBQPNum spillCost) const {
|
---|
224 |
|
---|
225 | typedef typename RegContainer::const_iterator AllowedItr;
|
---|
226 |
|
---|
227 | // Allocate vector. Additional element (0th) used for spill option
|
---|
228 | PBQP::Vector v(allowed.size() + 1, 0);
|
---|
229 |
|
---|
230 | v[0] = spillCost;
|
---|
231 |
|
---|
232 | // Iterate over the allowed registers inserting coalesce benefits if there
|
---|
233 | // are any.
|
---|
234 | unsigned ai = 0;
|
---|
235 | for (AllowedItr itr = allowed.begin(), end = allowed.end();
|
---|
236 | itr != end; ++itr, ++ai) {
|
---|
237 |
|
---|
238 | unsigned pReg = *itr;
|
---|
239 |
|
---|
240 | CoalesceMap::const_iterator cmItr =
|
---|
241 | coalesces.find(RegPair(vReg, pReg));
|
---|
242 |
|
---|
243 | // No coalesce - on to the next preg.
|
---|
244 | if (cmItr == coalesces.end())
|
---|
245 | continue;
|
---|
246 |
|
---|
247 | // We have a coalesce - insert the benefit.
|
---|
248 | v[ai + 1] = -cmItr->second;
|
---|
249 | }
|
---|
250 |
|
---|
251 | return v;
|
---|
252 | }
|
---|
253 |
|
---|
254 | template <typename RegContainer>
|
---|
255 | PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
|
---|
256 | const RegContainer &allowed1, const RegContainer &allowed2) const {
|
---|
257 |
|
---|
258 | typedef typename RegContainer::const_iterator RegContainerIterator;
|
---|
259 |
|
---|
260 | // Construct a PBQP matrix representing the cost of allocation options. The
|
---|
261 | // rows and columns correspond to the allocation options for the two live
|
---|
262 | // intervals. Elements will be infinite where corresponding registers alias,
|
---|
263 | // since we cannot allocate aliasing registers to interfering live intervals.
|
---|
264 | // All other elements (non-aliasing combinations) will have zero cost. Note
|
---|
265 | // that the spill option (element 0,0) has zero cost, since we can allocate
|
---|
266 | // both intervals to memory safely (the cost for each individual allocation
|
---|
267 | // to memory is accounted for by the cost vectors for each live interval).
|
---|
268 | PBQP::Matrix *m =
|
---|
269 | new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
|
---|
270 |
|
---|
271 | // Assume this is a zero matrix until proven otherwise. Zero matrices occur
|
---|
272 | // between interfering live ranges with non-overlapping register sets (e.g.
|
---|
273 | // non-overlapping reg classes, or disjoint sets of allowed regs within the
|
---|
274 | // same class). The term "overlapping" is used advisedly: sets which do not
|
---|
275 | // intersect, but contain registers which alias, will have non-zero matrices.
|
---|
276 | // We optimize zero matrices away to improve solver speed.
|
---|
277 | bool isZeroMatrix = true;
|
---|
278 |
|
---|
279 |
|
---|
280 | // Row index. Starts at 1, since the 0th row is for the spill option, which
|
---|
281 | // is always zero.
|
---|
282 | unsigned ri = 1;
|
---|
283 |
|
---|
284 | // Iterate over allowed sets, insert infinities where required.
|
---|
285 | for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
|
---|
286 | a1Itr != a1End; ++a1Itr) {
|
---|
287 |
|
---|
288 | // Column index, starts at 1 as for row index.
|
---|
289 | unsigned ci = 1;
|
---|
290 | unsigned reg1 = *a1Itr;
|
---|
291 |
|
---|
292 | for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
|
---|
293 | a2Itr != a2End; ++a2Itr) {
|
---|
294 |
|
---|
295 | unsigned reg2 = *a2Itr;
|
---|
296 |
|
---|
297 | // If the row/column regs are identical or alias insert an infinity.
|
---|
298 | if (tri->regsOverlap(reg1, reg2)) {
|
---|
299 | (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
|
---|
300 | isZeroMatrix = false;
|
---|
301 | }
|
---|
302 |
|
---|
303 | ++ci;
|
---|
304 | }
|
---|
305 |
|
---|
306 | ++ri;
|
---|
307 | }
|
---|
308 |
|
---|
309 | // If this turns out to be a zero matrix...
|
---|
310 | if (isZeroMatrix) {
|
---|
311 | // free it and return null.
|
---|
312 | delete m;
|
---|
313 | return 0;
|
---|
314 | }
|
---|
315 |
|
---|
316 | // ...otherwise return the cost matrix.
|
---|
317 | return m;
|
---|
318 | }
|
---|
319 |
|
---|
320 | template <typename RegContainer>
|
---|
321 | PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
|
---|
322 | const RegContainer &allowed1, const RegContainer &allowed2,
|
---|
323 | PBQP::PBQPNum cBenefit) const {
|
---|
324 |
|
---|
325 | typedef typename RegContainer::const_iterator RegContainerIterator;
|
---|
326 |
|
---|
327 | // Construct a PBQP Matrix representing the benefits of coalescing. As with
|
---|
328 | // interference matrices the rows and columns represent allowed registers
|
---|
329 | // for the LiveIntervals which are (potentially) to be coalesced. The amount
|
---|
330 | // -cBenefit will be placed in any element representing the same register
|
---|
331 | // for both intervals.
|
---|
332 | PBQP::Matrix *m =
|
---|
333 | new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
|
---|
334 |
|
---|
335 | // Reset costs to zero.
|
---|
336 | m->reset(0);
|
---|
337 |
|
---|
338 | // Assume the matrix is zero till proven otherwise. Zero matrices will be
|
---|
339 | // optimized away as in the interference case.
|
---|
340 | bool isZeroMatrix = true;
|
---|
341 |
|
---|
342 | // Row index. Starts at 1, since the 0th row is for the spill option, which
|
---|
343 | // is always zero.
|
---|
344 | unsigned ri = 1;
|
---|
345 |
|
---|
346 | // Iterate over the allowed sets, insert coalescing benefits where
|
---|
347 | // appropriate.
|
---|
348 | for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
|
---|
349 | a1Itr != a1End; ++a1Itr) {
|
---|
350 |
|
---|
351 | // Column index, starts at 1 as for row index.
|
---|
352 | unsigned ci = 1;
|
---|
353 | unsigned reg1 = *a1Itr;
|
---|
354 |
|
---|
355 | for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
|
---|
356 | a2Itr != a2End; ++a2Itr) {
|
---|
357 |
|
---|
358 | // If the row and column represent the same register insert a beneficial
|
---|
359 | // cost to preference this allocation - it would allow us to eliminate a
|
---|
360 | // move instruction.
|
---|
361 | if (reg1 == *a2Itr) {
|
---|
362 | (*m)[ri][ci] = -cBenefit;
|
---|
363 | isZeroMatrix = false;
|
---|
364 | }
|
---|
365 |
|
---|
366 | ++ci;
|
---|
367 | }
|
---|
368 |
|
---|
369 | ++ri;
|
---|
370 | }
|
---|
371 |
|
---|
372 | // If this turns out to be a zero matrix...
|
---|
373 | if (isZeroMatrix) {
|
---|
374 | // ...free it and return null.
|
---|
375 | delete m;
|
---|
376 | return 0;
|
---|
377 | }
|
---|
378 |
|
---|
379 | return m;
|
---|
380 | }
|
---|
381 |
|
---|
382 | PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
|
---|
383 |
|
---|
384 | typedef MachineFunction::const_iterator MFIterator;
|
---|
385 | typedef MachineBasicBlock::const_iterator MBBIterator;
|
---|
386 | typedef LiveInterval::const_vni_iterator VNIIterator;
|
---|
387 |
|
---|
388 | CoalesceMap coalescesFound;
|
---|
389 |
|
---|
390 | // To find coalesces we need to iterate over the function looking for
|
---|
391 | // copy instructions.
|
---|
392 | for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
|
---|
393 | bbItr != bbEnd; ++bbItr) {
|
---|
394 |
|
---|
395 | const MachineBasicBlock *mbb = &*bbItr;
|
---|
396 |
|
---|
397 | for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
|
---|
398 | iItr != iEnd; ++iItr) {
|
---|
399 |
|
---|
400 | const MachineInstr *instr = &*iItr;
|
---|
401 |
|
---|
402 | // If this isn't a copy then continue to the next instruction.
|
---|
403 | if (!instr->isCopy())
|
---|
404 | continue;
|
---|
405 |
|
---|
406 | unsigned srcReg = instr->getOperand(1).getReg();
|
---|
407 | unsigned dstReg = instr->getOperand(0).getReg();
|
---|
408 |
|
---|
409 | // If the registers are already the same our job is nice and easy.
|
---|
410 | if (dstReg == srcReg)
|
---|
411 | continue;
|
---|
412 |
|
---|
413 | bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
|
---|
414 | dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
|
---|
415 |
|
---|
416 | // If both registers are physical then we can't coalesce.
|
---|
417 | if (srcRegIsPhysical && dstRegIsPhysical)
|
---|
418 | continue;
|
---|
419 |
|
---|
420 | // If it's a copy that includes two virtual register but the source and
|
---|
421 | // destination classes differ then we can't coalesce.
|
---|
422 | if (!srcRegIsPhysical && !dstRegIsPhysical &&
|
---|
423 | mri->getRegClass(srcReg) != mri->getRegClass(dstReg))
|
---|
424 | continue;
|
---|
425 |
|
---|
426 | // If one is physical and one is virtual, check that the physical is
|
---|
427 | // allocatable in the class of the virtual.
|
---|
428 | if (srcRegIsPhysical && !dstRegIsPhysical) {
|
---|
429 | const TargetRegisterClass *dstRegClass = mri->getRegClass(dstReg);
|
---|
430 | if (std::find(dstRegClass->allocation_order_begin(*mf),
|
---|
431 | dstRegClass->allocation_order_end(*mf), srcReg) ==
|
---|
432 | dstRegClass->allocation_order_end(*mf))
|
---|
433 | continue;
|
---|
434 | }
|
---|
435 | if (!srcRegIsPhysical && dstRegIsPhysical) {
|
---|
436 | const TargetRegisterClass *srcRegClass = mri->getRegClass(srcReg);
|
---|
437 | if (std::find(srcRegClass->allocation_order_begin(*mf),
|
---|
438 | srcRegClass->allocation_order_end(*mf), dstReg) ==
|
---|
439 | srcRegClass->allocation_order_end(*mf))
|
---|
440 | continue;
|
---|
441 | }
|
---|
442 |
|
---|
443 | // If we've made it here we have a copy with compatible register classes.
|
---|
444 | // We can probably coalesce, but we need to consider overlap.
|
---|
445 | const LiveInterval *srcLI = &lis->getInterval(srcReg),
|
---|
446 | *dstLI = &lis->getInterval(dstReg);
|
---|
447 |
|
---|
448 | if (srcLI->overlaps(*dstLI)) {
|
---|
449 | // Even in the case of an overlap we might still be able to coalesce,
|
---|
450 | // but we need to make sure that no definition of either range occurs
|
---|
451 | // while the other range is live.
|
---|
452 |
|
---|
453 | // Otherwise start by assuming we're ok.
|
---|
454 | bool badDef = false;
|
---|
455 |
|
---|
456 | // Test all defs of the source range.
|
---|
457 | for (VNIIterator
|
---|
458 | vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
|
---|
459 | vniItr != vniEnd; ++vniItr) {
|
---|
460 |
|
---|
461 | // If we find a poorly defined def we err on the side of caution.
|
---|
462 | if (!(*vniItr)->def.isValid()) {
|
---|
463 | badDef = true;
|
---|
464 | break;
|
---|
465 | }
|
---|
466 |
|
---|
467 | // If we find a def that kills the coalescing opportunity then
|
---|
468 | // record it and break from the loop.
|
---|
469 | if (dstLI->liveAt((*vniItr)->def)) {
|
---|
470 | badDef = true;
|
---|
471 | break;
|
---|
472 | }
|
---|
473 | }
|
---|
474 |
|
---|
475 | // If we have a bad def give up, continue to the next instruction.
|
---|
476 | if (badDef)
|
---|
477 | continue;
|
---|
478 |
|
---|
479 | // Otherwise test definitions of the destination range.
|
---|
480 | for (VNIIterator
|
---|
481 | vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
|
---|
482 | vniItr != vniEnd; ++vniItr) {
|
---|
483 |
|
---|
484 | // We want to make sure we skip the copy instruction itself.
|
---|
485 | if ((*vniItr)->getCopy() == instr)
|
---|
486 | continue;
|
---|
487 |
|
---|
488 | if (!(*vniItr)->def.isValid()) {
|
---|
489 | badDef = true;
|
---|
490 | break;
|
---|
491 | }
|
---|
492 |
|
---|
493 | if (srcLI->liveAt((*vniItr)->def)) {
|
---|
494 | badDef = true;
|
---|
495 | break;
|
---|
496 | }
|
---|
497 | }
|
---|
498 |
|
---|
499 | // As before a bad def we give up and continue to the next instr.
|
---|
500 | if (badDef)
|
---|
501 | continue;
|
---|
502 | }
|
---|
503 |
|
---|
504 | // If we make it to here then either the ranges didn't overlap, or they
|
---|
505 | // did, but none of their definitions would prevent us from coalescing.
|
---|
506 | // We're good to go with the coalesce.
|
---|
507 |
|
---|
508 | float cBenefit = std::pow(10.0f, (float)loopInfo->getLoopDepth(mbb)) / 5.0;
|
---|
509 |
|
---|
510 | coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
|
---|
511 | coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
|
---|
512 | }
|
---|
513 |
|
---|
514 | }
|
---|
515 |
|
---|
516 | return coalescesFound;
|
---|
517 | }
|
---|
518 |
|
---|
519 | void PBQPRegAlloc::findVRegIntervalsToAlloc() {
|
---|
520 |
|
---|
521 | // Iterate over all live ranges.
|
---|
522 | for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
|
---|
523 | itr != end; ++itr) {
|
---|
524 |
|
---|
525 | // Ignore physical ones.
|
---|
526 | if (TargetRegisterInfo::isPhysicalRegister(itr->first))
|
---|
527 | continue;
|
---|
528 |
|
---|
529 | LiveInterval *li = itr->second;
|
---|
530 |
|
---|
531 | // If this live interval is non-empty we will use pbqp to allocate it.
|
---|
532 | // Empty intervals we allocate in a simple post-processing stage in
|
---|
533 | // finalizeAlloc.
|
---|
534 | if (!li->empty()) {
|
---|
535 | vregIntervalsToAlloc.insert(li);
|
---|
536 | }
|
---|
537 | else {
|
---|
538 | emptyVRegIntervals.insert(li);
|
---|
539 | }
|
---|
540 | }
|
---|
541 | }
|
---|
542 |
|
---|
543 | PBQP::Graph PBQPRegAlloc::constructPBQPProblem() {
|
---|
544 |
|
---|
545 | typedef std::vector<const LiveInterval*> LIVector;
|
---|
546 | typedef std::vector<unsigned> RegVector;
|
---|
547 |
|
---|
548 | // This will store the physical intervals for easy reference.
|
---|
549 | LIVector physIntervals;
|
---|
550 |
|
---|
551 | // Start by clearing the old node <-> live interval mappings & allowed sets
|
---|
552 | li2Node.clear();
|
---|
553 | node2LI.clear();
|
---|
554 | allowedSets.clear();
|
---|
555 |
|
---|
556 | // Populate physIntervals, update preg use:
|
---|
557 | for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
|
---|
558 | itr != end; ++itr) {
|
---|
559 |
|
---|
560 | if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
|
---|
561 | physIntervals.push_back(itr->second);
|
---|
562 | mri->setPhysRegUsed(itr->second->reg);
|
---|
563 | }
|
---|
564 | }
|
---|
565 |
|
---|
566 | // Iterate over vreg intervals, construct live interval <-> node number
|
---|
567 | // mappings.
|
---|
568 | for (LiveIntervalSet::const_iterator
|
---|
569 | itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
|
---|
570 | itr != end; ++itr) {
|
---|
571 | const LiveInterval *li = *itr;
|
---|
572 |
|
---|
573 | li2Node[li] = node2LI.size();
|
---|
574 | node2LI.push_back(li);
|
---|
575 | }
|
---|
576 |
|
---|
577 | // Get the set of potential coalesces.
|
---|
578 | CoalesceMap coalesces;
|
---|
579 |
|
---|
580 | if (pbqpCoalescing) {
|
---|
581 | coalesces = findCoalesces();
|
---|
582 | }
|
---|
583 |
|
---|
584 | // Construct a PBQP solver for this problem
|
---|
585 | PBQP::Graph problem;
|
---|
586 | problemNodes.resize(vregIntervalsToAlloc.size());
|
---|
587 |
|
---|
588 | // Resize allowedSets container appropriately.
|
---|
589 | allowedSets.resize(vregIntervalsToAlloc.size());
|
---|
590 |
|
---|
591 | BitVector ReservedRegs = tri->getReservedRegs(*mf);
|
---|
592 |
|
---|
593 | // Iterate over virtual register intervals to compute allowed sets...
|
---|
594 | for (unsigned node = 0; node < node2LI.size(); ++node) {
|
---|
595 |
|
---|
596 | // Grab pointers to the interval and its register class.
|
---|
597 | const LiveInterval *li = node2LI[node];
|
---|
598 | const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
|
---|
599 |
|
---|
600 | // Start by assuming all allocable registers in the class are allowed...
|
---|
601 | RegVector liAllowed;
|
---|
602 | TargetRegisterClass::iterator aob = liRC->allocation_order_begin(*mf);
|
---|
603 | TargetRegisterClass::iterator aoe = liRC->allocation_order_end(*mf);
|
---|
604 | for (TargetRegisterClass::iterator it = aob; it != aoe; ++it)
|
---|
605 | if (!ReservedRegs.test(*it))
|
---|
606 | liAllowed.push_back(*it);
|
---|
607 |
|
---|
608 | // Eliminate the physical registers which overlap with this range, along
|
---|
609 | // with all their aliases.
|
---|
610 | for (LIVector::iterator pItr = physIntervals.begin(),
|
---|
611 | pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
|
---|
612 |
|
---|
613 | if (!li->overlaps(**pItr))
|
---|
614 | continue;
|
---|
615 |
|
---|
616 | unsigned pReg = (*pItr)->reg;
|
---|
617 |
|
---|
618 | // If we get here then the live intervals overlap, but we're still ok
|
---|
619 | // if they're coalescable.
|
---|
620 | if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
|
---|
621 | continue;
|
---|
622 |
|
---|
623 | // If we get here then we have a genuine exclusion.
|
---|
624 |
|
---|
625 | // Remove the overlapping reg...
|
---|
626 | RegVector::iterator eraseItr =
|
---|
627 | std::find(liAllowed.begin(), liAllowed.end(), pReg);
|
---|
628 |
|
---|
629 | if (eraseItr != liAllowed.end())
|
---|
630 | liAllowed.erase(eraseItr);
|
---|
631 |
|
---|
632 | const unsigned *aliasItr = tri->getAliasSet(pReg);
|
---|
633 |
|
---|
634 | if (aliasItr != 0) {
|
---|
635 | // ...and its aliases.
|
---|
636 | for (; *aliasItr != 0; ++aliasItr) {
|
---|
637 | RegVector::iterator eraseItr =
|
---|
638 | std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
|
---|
639 |
|
---|
640 | if (eraseItr != liAllowed.end()) {
|
---|
641 | liAllowed.erase(eraseItr);
|
---|
642 | }
|
---|
643 | }
|
---|
644 | }
|
---|
645 | }
|
---|
646 |
|
---|
647 | // Copy the allowed set into a member vector for use when constructing cost
|
---|
648 | // vectors & matrices, and mapping PBQP solutions back to assignments.
|
---|
649 | allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
|
---|
650 |
|
---|
651 | // Set the spill cost to the interval weight, or epsilon if the
|
---|
652 | // interval weight is zero
|
---|
653 | PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
|
---|
654 | li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
|
---|
655 |
|
---|
656 | // Build a cost vector for this interval.
|
---|
657 | problemNodes[node] =
|
---|
658 | problem.addNode(
|
---|
659 | buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
|
---|
660 |
|
---|
661 | }
|
---|
662 |
|
---|
663 |
|
---|
664 | // Now add the cost matrices...
|
---|
665 | for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
|
---|
666 | const LiveInterval *li = node2LI[node1];
|
---|
667 |
|
---|
668 | // Test for live range overlaps and insert interference matrices.
|
---|
669 | for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
|
---|
670 | const LiveInterval *li2 = node2LI[node2];
|
---|
671 |
|
---|
672 | CoalesceMap::const_iterator cmItr =
|
---|
673 | coalesces.find(RegPair(li->reg, li2->reg));
|
---|
674 |
|
---|
675 | PBQP::Matrix *m = 0;
|
---|
676 |
|
---|
677 | if (cmItr != coalesces.end()) {
|
---|
678 | m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
|
---|
679 | cmItr->second);
|
---|
680 | }
|
---|
681 | else if (li->overlaps(*li2)) {
|
---|
682 | m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
|
---|
683 | }
|
---|
684 |
|
---|
685 | if (m != 0) {
|
---|
686 | problem.addEdge(problemNodes[node1],
|
---|
687 | problemNodes[node2],
|
---|
688 | *m);
|
---|
689 |
|
---|
690 | delete m;
|
---|
691 | }
|
---|
692 | }
|
---|
693 | }
|
---|
694 |
|
---|
695 | assert(problem.getNumNodes() == allowedSets.size());
|
---|
696 | /*
|
---|
697 | std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
|
---|
698 | << problem.getNumEdges() << " edges.\n";
|
---|
699 |
|
---|
700 | problem.printDot(std::cerr);
|
---|
701 | */
|
---|
702 | // We're done, PBQP problem constructed - return it.
|
---|
703 | return problem;
|
---|
704 | }
|
---|
705 |
|
---|
706 | void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
|
---|
707 | MachineRegisterInfo* mri) {
|
---|
708 | int stackSlot = vrm->getStackSlot(spilled->reg);
|
---|
709 |
|
---|
710 | if (stackSlot == VirtRegMap::NO_STACK_SLOT)
|
---|
711 | return;
|
---|
712 |
|
---|
713 | const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
|
---|
714 | LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
|
---|
715 |
|
---|
716 | VNInfo *vni;
|
---|
717 | if (stackInterval.getNumValNums() != 0)
|
---|
718 | vni = stackInterval.getValNumInfo(0);
|
---|
719 | else
|
---|
720 | vni = stackInterval.getNextValue(
|
---|
721 | SlotIndex(), 0, false, lss->getVNInfoAllocator());
|
---|
722 |
|
---|
723 | LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
|
---|
724 | stackInterval.MergeRangesInAsValue(rhsInterval, vni);
|
---|
725 | }
|
---|
726 |
|
---|
727 | bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
|
---|
728 |
|
---|
729 | // Set to true if we have any spills
|
---|
730 | bool anotherRoundNeeded = false;
|
---|
731 |
|
---|
732 | // Clear the existing allocation.
|
---|
733 | vrm->clearAllVirt();
|
---|
734 |
|
---|
735 | // Iterate over the nodes mapping the PBQP solution to a register assignment.
|
---|
736 | for (unsigned node = 0; node < node2LI.size(); ++node) {
|
---|
737 | unsigned virtReg = node2LI[node]->reg,
|
---|
738 | allocSelection = solution.getSelection(problemNodes[node]);
|
---|
739 |
|
---|
740 |
|
---|
741 | // If the PBQP solution is non-zero it's a physical register...
|
---|
742 | if (allocSelection != 0) {
|
---|
743 | // Get the physical reg, subtracting 1 to account for the spill option.
|
---|
744 | unsigned physReg = allowedSets[node][allocSelection - 1];
|
---|
745 |
|
---|
746 | DEBUG(dbgs() << "VREG " << virtReg << " -> "
|
---|
747 | << tri->getName(physReg) << "\n");
|
---|
748 |
|
---|
749 | assert(physReg != 0);
|
---|
750 |
|
---|
751 | // Add to the virt reg map and update the used phys regs.
|
---|
752 | vrm->assignVirt2Phys(virtReg, physReg);
|
---|
753 | }
|
---|
754 | // ...Otherwise it's a spill.
|
---|
755 | else {
|
---|
756 |
|
---|
757 | // Make sure we ignore this virtual reg on the next round
|
---|
758 | // of allocation
|
---|
759 | vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
|
---|
760 |
|
---|
761 | // Insert spill ranges for this live range
|
---|
762 | const LiveInterval *spillInterval = node2LI[node];
|
---|
763 | double oldSpillWeight = spillInterval->weight;
|
---|
764 | SmallVector<LiveInterval*, 8> spillIs;
|
---|
765 | rmf->rememberUseDefs(spillInterval);
|
---|
766 | std::vector<LiveInterval*> newSpills =
|
---|
767 | lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
|
---|
768 | addStackInterval(spillInterval, mri);
|
---|
769 | rmf->rememberSpills(spillInterval, newSpills);
|
---|
770 |
|
---|
771 | (void) oldSpillWeight;
|
---|
772 | DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: "
|
---|
773 | << oldSpillWeight << ", New vregs: ");
|
---|
774 |
|
---|
775 | // Copy any newly inserted live intervals into the list of regs to
|
---|
776 | // allocate.
|
---|
777 | for (std::vector<LiveInterval*>::const_iterator
|
---|
778 | itr = newSpills.begin(), end = newSpills.end();
|
---|
779 | itr != end; ++itr) {
|
---|
780 |
|
---|
781 | assert(!(*itr)->empty() && "Empty spill range.");
|
---|
782 |
|
---|
783 | DEBUG(dbgs() << (*itr)->reg << " ");
|
---|
784 |
|
---|
785 | vregIntervalsToAlloc.insert(*itr);
|
---|
786 | }
|
---|
787 |
|
---|
788 | DEBUG(dbgs() << ")\n");
|
---|
789 |
|
---|
790 | // We need another round if spill intervals were added.
|
---|
791 | anotherRoundNeeded |= !newSpills.empty();
|
---|
792 | }
|
---|
793 | }
|
---|
794 |
|
---|
795 | return !anotherRoundNeeded;
|
---|
796 | }
|
---|
797 |
|
---|
798 | void PBQPRegAlloc::finalizeAlloc() const {
|
---|
799 | typedef LiveIntervals::iterator LIIterator;
|
---|
800 | typedef LiveInterval::Ranges::const_iterator LRIterator;
|
---|
801 |
|
---|
802 | // First allocate registers for the empty intervals.
|
---|
803 | for (LiveIntervalSet::const_iterator
|
---|
804 | itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
|
---|
805 | itr != end; ++itr) {
|
---|
806 | LiveInterval *li = *itr;
|
---|
807 |
|
---|
808 | unsigned physReg = vrm->getRegAllocPref(li->reg);
|
---|
809 |
|
---|
810 | if (physReg == 0) {
|
---|
811 | const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
|
---|
812 | physReg = *liRC->allocation_order_begin(*mf);
|
---|
813 | }
|
---|
814 |
|
---|
815 | vrm->assignVirt2Phys(li->reg, physReg);
|
---|
816 | }
|
---|
817 |
|
---|
818 | // Finally iterate over the basic blocks to compute and set the live-in sets.
|
---|
819 | SmallVector<MachineBasicBlock*, 8> liveInMBBs;
|
---|
820 | MachineBasicBlock *entryMBB = &*mf->begin();
|
---|
821 |
|
---|
822 | for (LIIterator liItr = lis->begin(), liEnd = lis->end();
|
---|
823 | liItr != liEnd; ++liItr) {
|
---|
824 |
|
---|
825 | const LiveInterval *li = liItr->second;
|
---|
826 | unsigned reg = 0;
|
---|
827 |
|
---|
828 | // Get the physical register for this interval
|
---|
829 | if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
|
---|
830 | reg = li->reg;
|
---|
831 | }
|
---|
832 | else if (vrm->isAssignedReg(li->reg)) {
|
---|
833 | reg = vrm->getPhys(li->reg);
|
---|
834 | }
|
---|
835 | else {
|
---|
836 | // Ranges which are assigned a stack slot only are ignored.
|
---|
837 | continue;
|
---|
838 | }
|
---|
839 |
|
---|
840 | if (reg == 0) {
|
---|
841 | // Filter out zero regs - they're for intervals that were spilled.
|
---|
842 | continue;
|
---|
843 | }
|
---|
844 |
|
---|
845 | // Iterate over the ranges of the current interval...
|
---|
846 | for (LRIterator lrItr = li->begin(), lrEnd = li->end();
|
---|
847 | lrItr != lrEnd; ++lrItr) {
|
---|
848 |
|
---|
849 | // Find the set of basic blocks which this range is live into...
|
---|
850 | if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
|
---|
851 | // And add the physreg for this interval to their live-in sets.
|
---|
852 | for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
|
---|
853 | if (liveInMBBs[i] != entryMBB) {
|
---|
854 | if (!liveInMBBs[i]->isLiveIn(reg)) {
|
---|
855 | liveInMBBs[i]->addLiveIn(reg);
|
---|
856 | }
|
---|
857 | }
|
---|
858 | }
|
---|
859 | liveInMBBs.clear();
|
---|
860 | }
|
---|
861 | }
|
---|
862 | }
|
---|
863 |
|
---|
864 | }
|
---|
865 |
|
---|
866 | bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
|
---|
867 |
|
---|
868 | mf = &MF;
|
---|
869 | tm = &mf->getTarget();
|
---|
870 | tri = tm->getRegisterInfo();
|
---|
871 | tii = tm->getInstrInfo();
|
---|
872 | mri = &mf->getRegInfo();
|
---|
873 |
|
---|
874 | lis = &getAnalysis<LiveIntervals>();
|
---|
875 | lss = &getAnalysis<LiveStacks>();
|
---|
876 | loopInfo = &getAnalysis<MachineLoopInfo>();
|
---|
877 | rmf = &getAnalysis<RenderMachineFunction>();
|
---|
878 |
|
---|
879 | vrm = &getAnalysis<VirtRegMap>();
|
---|
880 |
|
---|
881 |
|
---|
882 | DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n");
|
---|
883 |
|
---|
884 | // Allocator main loop:
|
---|
885 | //
|
---|
886 | // * Map current regalloc problem to a PBQP problem
|
---|
887 | // * Solve the PBQP problem
|
---|
888 | // * Map the solution back to a register allocation
|
---|
889 | // * Spill if necessary
|
---|
890 | //
|
---|
891 | // This process is continued till no more spills are generated.
|
---|
892 |
|
---|
893 | // Find the vreg intervals in need of allocation.
|
---|
894 | findVRegIntervalsToAlloc();
|
---|
895 |
|
---|
896 | // If there are non-empty intervals allocate them using pbqp.
|
---|
897 | if (!vregIntervalsToAlloc.empty()) {
|
---|
898 |
|
---|
899 | bool pbqpAllocComplete = false;
|
---|
900 | unsigned round = 0;
|
---|
901 |
|
---|
902 | while (!pbqpAllocComplete) {
|
---|
903 | DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
|
---|
904 |
|
---|
905 | PBQP::Graph problem = constructPBQPProblem();
|
---|
906 | PBQP::Solution solution =
|
---|
907 | PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem);
|
---|
908 |
|
---|
909 | pbqpAllocComplete = mapPBQPToRegAlloc(solution);
|
---|
910 |
|
---|
911 | ++round;
|
---|
912 | }
|
---|
913 | }
|
---|
914 |
|
---|
915 | // Finalise allocation, allocate empty ranges.
|
---|
916 | finalizeAlloc();
|
---|
917 |
|
---|
918 | rmf->renderMachineFunction("After PBQP register allocation.", vrm);
|
---|
919 |
|
---|
920 | vregIntervalsToAlloc.clear();
|
---|
921 | emptyVRegIntervals.clear();
|
---|
922 | li2Node.clear();
|
---|
923 | node2LI.clear();
|
---|
924 | allowedSets.clear();
|
---|
925 | problemNodes.clear();
|
---|
926 |
|
---|
927 | DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
|
---|
928 |
|
---|
929 | // Run rewriter
|
---|
930 | std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
|
---|
931 |
|
---|
932 | rewriter->runOnMachineFunction(*mf, *vrm, lis);
|
---|
933 |
|
---|
934 | return true;
|
---|
935 | }
|
---|
936 |
|
---|
937 | FunctionPass* llvm::createPBQPRegisterAllocator() {
|
---|
938 | return new PBQPRegAlloc();
|
---|
939 | }
|
---|
940 |
|
---|
941 |
|
---|
942 | #undef DEBUG_TYPE
|
---|