1 | //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
|
---|
2 | //
|
---|
3 | // The LLVM Compiler Infrastructure
|
---|
4 | //
|
---|
5 | // This file is distributed under the University of Illinois Open Source
|
---|
6 | // License. See LICENSE.TXT for details.
|
---|
7 | //
|
---|
8 | //===----------------------------------------------------------------------===//
|
---|
9 | //
|
---|
10 | // This file defines the LoopInfo class that is used to identify natural loops
|
---|
11 | // and determine the loop depth of various nodes of the CFG. Note that the
|
---|
12 | // loops identified may actually be several natural loops that share the same
|
---|
13 | // header node... not just a single natural loop.
|
---|
14 | //
|
---|
15 | //===----------------------------------------------------------------------===//
|
---|
16 |
|
---|
17 | #include "llvm/Analysis/LoopInfo.h"
|
---|
18 | #include "llvm/Constants.h"
|
---|
19 | #include "llvm/Instructions.h"
|
---|
20 | #include "llvm/Analysis/Dominators.h"
|
---|
21 | #include "llvm/Assembly/Writer.h"
|
---|
22 | #include "llvm/Support/CFG.h"
|
---|
23 | #include "llvm/Support/CommandLine.h"
|
---|
24 | #include "llvm/Support/Debug.h"
|
---|
25 | #include "llvm/ADT/DepthFirstIterator.h"
|
---|
26 | #include "llvm/ADT/SmallPtrSet.h"
|
---|
27 | #include <algorithm>
|
---|
28 | using namespace llvm;
|
---|
29 |
|
---|
30 | // Always verify loopinfo if expensive checking is enabled.
|
---|
31 | #ifdef XDEBUG
|
---|
32 | static bool VerifyLoopInfo = true;
|
---|
33 | #else
|
---|
34 | static bool VerifyLoopInfo = false;
|
---|
35 | #endif
|
---|
36 | static cl::opt<bool,true>
|
---|
37 | VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
|
---|
38 | cl::desc("Verify loop info (time consuming)"));
|
---|
39 |
|
---|
40 | char LoopInfo::ID = 0;
|
---|
41 | INITIALIZE_PASS(LoopInfo, "loops", "Natural Loop Information", true, true);
|
---|
42 |
|
---|
43 | //===----------------------------------------------------------------------===//
|
---|
44 | // Loop implementation
|
---|
45 | //
|
---|
46 |
|
---|
47 | /// isLoopInvariant - Return true if the specified value is loop invariant
|
---|
48 | ///
|
---|
49 | bool Loop::isLoopInvariant(Value *V) const {
|
---|
50 | if (Instruction *I = dyn_cast<Instruction>(V))
|
---|
51 | return isLoopInvariant(I);
|
---|
52 | return true; // All non-instructions are loop invariant
|
---|
53 | }
|
---|
54 |
|
---|
55 | /// isLoopInvariant - Return true if the specified instruction is
|
---|
56 | /// loop-invariant.
|
---|
57 | ///
|
---|
58 | bool Loop::isLoopInvariant(Instruction *I) const {
|
---|
59 | return !contains(I);
|
---|
60 | }
|
---|
61 |
|
---|
62 | /// makeLoopInvariant - If the given value is an instruciton inside of the
|
---|
63 | /// loop and it can be hoisted, do so to make it trivially loop-invariant.
|
---|
64 | /// Return true if the value after any hoisting is loop invariant. This
|
---|
65 | /// function can be used as a slightly more aggressive replacement for
|
---|
66 | /// isLoopInvariant.
|
---|
67 | ///
|
---|
68 | /// If InsertPt is specified, it is the point to hoist instructions to.
|
---|
69 | /// If null, the terminator of the loop preheader is used.
|
---|
70 | ///
|
---|
71 | bool Loop::makeLoopInvariant(Value *V, bool &Changed,
|
---|
72 | Instruction *InsertPt) const {
|
---|
73 | if (Instruction *I = dyn_cast<Instruction>(V))
|
---|
74 | return makeLoopInvariant(I, Changed, InsertPt);
|
---|
75 | return true; // All non-instructions are loop-invariant.
|
---|
76 | }
|
---|
77 |
|
---|
78 | /// makeLoopInvariant - If the given instruction is inside of the
|
---|
79 | /// loop and it can be hoisted, do so to make it trivially loop-invariant.
|
---|
80 | /// Return true if the instruction after any hoisting is loop invariant. This
|
---|
81 | /// function can be used as a slightly more aggressive replacement for
|
---|
82 | /// isLoopInvariant.
|
---|
83 | ///
|
---|
84 | /// If InsertPt is specified, it is the point to hoist instructions to.
|
---|
85 | /// If null, the terminator of the loop preheader is used.
|
---|
86 | ///
|
---|
87 | bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
|
---|
88 | Instruction *InsertPt) const {
|
---|
89 | // Test if the value is already loop-invariant.
|
---|
90 | if (isLoopInvariant(I))
|
---|
91 | return true;
|
---|
92 | if (!I->isSafeToSpeculativelyExecute())
|
---|
93 | return false;
|
---|
94 | if (I->mayReadFromMemory())
|
---|
95 | return false;
|
---|
96 | // Determine the insertion point, unless one was given.
|
---|
97 | if (!InsertPt) {
|
---|
98 | BasicBlock *Preheader = getLoopPreheader();
|
---|
99 | // Without a preheader, hoisting is not feasible.
|
---|
100 | if (!Preheader)
|
---|
101 | return false;
|
---|
102 | InsertPt = Preheader->getTerminator();
|
---|
103 | }
|
---|
104 | // Don't hoist instructions with loop-variant operands.
|
---|
105 | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
|
---|
106 | if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
|
---|
107 | return false;
|
---|
108 | // Hoist.
|
---|
109 | I->moveBefore(InsertPt);
|
---|
110 | Changed = true;
|
---|
111 | return true;
|
---|
112 | }
|
---|
113 |
|
---|
114 | /// getCanonicalInductionVariable - Check to see if the loop has a canonical
|
---|
115 | /// induction variable: an integer recurrence that starts at 0 and increments
|
---|
116 | /// by one each time through the loop. If so, return the phi node that
|
---|
117 | /// corresponds to it.
|
---|
118 | ///
|
---|
119 | /// The IndVarSimplify pass transforms loops to have a canonical induction
|
---|
120 | /// variable.
|
---|
121 | ///
|
---|
122 | PHINode *Loop::getCanonicalInductionVariable() const {
|
---|
123 | BasicBlock *H = getHeader();
|
---|
124 |
|
---|
125 | BasicBlock *Incoming = 0, *Backedge = 0;
|
---|
126 | pred_iterator PI = pred_begin(H);
|
---|
127 | assert(PI != pred_end(H) &&
|
---|
128 | "Loop must have at least one backedge!");
|
---|
129 | Backedge = *PI++;
|
---|
130 | if (PI == pred_end(H)) return 0; // dead loop
|
---|
131 | Incoming = *PI++;
|
---|
132 | if (PI != pred_end(H)) return 0; // multiple backedges?
|
---|
133 |
|
---|
134 | if (contains(Incoming)) {
|
---|
135 | if (contains(Backedge))
|
---|
136 | return 0;
|
---|
137 | std::swap(Incoming, Backedge);
|
---|
138 | } else if (!contains(Backedge))
|
---|
139 | return 0;
|
---|
140 |
|
---|
141 | // Loop over all of the PHI nodes, looking for a canonical indvar.
|
---|
142 | for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
|
---|
143 | PHINode *PN = cast<PHINode>(I);
|
---|
144 | if (ConstantInt *CI =
|
---|
145 | dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
|
---|
146 | if (CI->isNullValue())
|
---|
147 | if (Instruction *Inc =
|
---|
148 | dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
|
---|
149 | if (Inc->getOpcode() == Instruction::Add &&
|
---|
150 | Inc->getOperand(0) == PN)
|
---|
151 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
|
---|
152 | if (CI->equalsInt(1))
|
---|
153 | return PN;
|
---|
154 | }
|
---|
155 | return 0;
|
---|
156 | }
|
---|
157 |
|
---|
158 | /// getTripCount - Return a loop-invariant LLVM value indicating the number of
|
---|
159 | /// times the loop will be executed. Note that this means that the backedge
|
---|
160 | /// of the loop executes N-1 times. If the trip-count cannot be determined,
|
---|
161 | /// this returns null.
|
---|
162 | ///
|
---|
163 | /// The IndVarSimplify pass transforms loops to have a form that this
|
---|
164 | /// function easily understands.
|
---|
165 | ///
|
---|
166 | Value *Loop::getTripCount() const {
|
---|
167 | // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
|
---|
168 | // canonical induction variable and V is the trip count of the loop.
|
---|
169 | PHINode *IV = getCanonicalInductionVariable();
|
---|
170 | if (IV == 0 || IV->getNumIncomingValues() != 2) return 0;
|
---|
171 |
|
---|
172 | bool P0InLoop = contains(IV->getIncomingBlock(0));
|
---|
173 | Value *Inc = IV->getIncomingValue(!P0InLoop);
|
---|
174 | BasicBlock *BackedgeBlock = IV->getIncomingBlock(!P0InLoop);
|
---|
175 |
|
---|
176 | if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
|
---|
177 | if (BI->isConditional()) {
|
---|
178 | if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
|
---|
179 | if (ICI->getOperand(0) == Inc) {
|
---|
180 | if (BI->getSuccessor(0) == getHeader()) {
|
---|
181 | if (ICI->getPredicate() == ICmpInst::ICMP_NE)
|
---|
182 | return ICI->getOperand(1);
|
---|
183 | } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
|
---|
184 | return ICI->getOperand(1);
|
---|
185 | }
|
---|
186 | }
|
---|
187 | }
|
---|
188 | }
|
---|
189 |
|
---|
190 | return 0;
|
---|
191 | }
|
---|
192 |
|
---|
193 | /// getSmallConstantTripCount - Returns the trip count of this loop as a
|
---|
194 | /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
|
---|
195 | /// of not constant. Will also return 0 if the trip count is very large
|
---|
196 | /// (>= 2^32)
|
---|
197 | unsigned Loop::getSmallConstantTripCount() const {
|
---|
198 | Value* TripCount = this->getTripCount();
|
---|
199 | if (TripCount) {
|
---|
200 | if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
|
---|
201 | // Guard against huge trip counts.
|
---|
202 | if (TripCountC->getValue().getActiveBits() <= 32) {
|
---|
203 | return (unsigned)TripCountC->getZExtValue();
|
---|
204 | }
|
---|
205 | }
|
---|
206 | }
|
---|
207 | return 0;
|
---|
208 | }
|
---|
209 |
|
---|
210 | /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
|
---|
211 | /// trip count of this loop as a normal unsigned value, if possible. This
|
---|
212 | /// means that the actual trip count is always a multiple of the returned
|
---|
213 | /// value (don't forget the trip count could very well be zero as well!).
|
---|
214 | ///
|
---|
215 | /// Returns 1 if the trip count is unknown or not guaranteed to be the
|
---|
216 | /// multiple of a constant (which is also the case if the trip count is simply
|
---|
217 | /// constant, use getSmallConstantTripCount for that case), Will also return 1
|
---|
218 | /// if the trip count is very large (>= 2^32).
|
---|
219 | unsigned Loop::getSmallConstantTripMultiple() const {
|
---|
220 | Value* TripCount = this->getTripCount();
|
---|
221 | // This will hold the ConstantInt result, if any
|
---|
222 | ConstantInt *Result = NULL;
|
---|
223 | if (TripCount) {
|
---|
224 | // See if the trip count is constant itself
|
---|
225 | Result = dyn_cast<ConstantInt>(TripCount);
|
---|
226 | // if not, see if it is a multiplication
|
---|
227 | if (!Result)
|
---|
228 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
|
---|
229 | switch (BO->getOpcode()) {
|
---|
230 | case BinaryOperator::Mul:
|
---|
231 | Result = dyn_cast<ConstantInt>(BO->getOperand(1));
|
---|
232 | break;
|
---|
233 | case BinaryOperator::Shl:
|
---|
234 | if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
|
---|
235 | if (CI->getValue().getActiveBits() <= 5)
|
---|
236 | return 1u << CI->getZExtValue();
|
---|
237 | break;
|
---|
238 | default:
|
---|
239 | break;
|
---|
240 | }
|
---|
241 | }
|
---|
242 | }
|
---|
243 | // Guard against huge trip counts.
|
---|
244 | if (Result && Result->getValue().getActiveBits() <= 32) {
|
---|
245 | return (unsigned)Result->getZExtValue();
|
---|
246 | } else {
|
---|
247 | return 1;
|
---|
248 | }
|
---|
249 | }
|
---|
250 |
|
---|
251 | /// isLCSSAForm - Return true if the Loop is in LCSSA form
|
---|
252 | bool Loop::isLCSSAForm(DominatorTree &DT) const {
|
---|
253 | // Sort the blocks vector so that we can use binary search to do quick
|
---|
254 | // lookups.
|
---|
255 | SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
|
---|
256 |
|
---|
257 | for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
|
---|
258 | BasicBlock *BB = *BI;
|
---|
259 | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
|
---|
260 | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
|
---|
261 | ++UI) {
|
---|
262 | User *U = *UI;
|
---|
263 | BasicBlock *UserBB = cast<Instruction>(U)->getParent();
|
---|
264 | if (PHINode *P = dyn_cast<PHINode>(U))
|
---|
265 | UserBB = P->getIncomingBlock(UI);
|
---|
266 |
|
---|
267 | // Check the current block, as a fast-path, before checking whether
|
---|
268 | // the use is anywhere in the loop. Most values are used in the same
|
---|
269 | // block they are defined in. Also, blocks not reachable from the
|
---|
270 | // entry are special; uses in them don't need to go through PHIs.
|
---|
271 | if (UserBB != BB &&
|
---|
272 | !LoopBBs.count(UserBB) &&
|
---|
273 | DT.isReachableFromEntry(UserBB))
|
---|
274 | return false;
|
---|
275 | }
|
---|
276 | }
|
---|
277 |
|
---|
278 | return true;
|
---|
279 | }
|
---|
280 |
|
---|
281 | /// isLoopSimplifyForm - Return true if the Loop is in the form that
|
---|
282 | /// the LoopSimplify form transforms loops to, which is sometimes called
|
---|
283 | /// normal form.
|
---|
284 | bool Loop::isLoopSimplifyForm() const {
|
---|
285 | // Normal-form loops have a preheader, a single backedge, and all of their
|
---|
286 | // exits have all their predecessors inside the loop.
|
---|
287 | return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
|
---|
288 | }
|
---|
289 |
|
---|
290 | /// hasDedicatedExits - Return true if no exit block for the loop
|
---|
291 | /// has a predecessor that is outside the loop.
|
---|
292 | bool Loop::hasDedicatedExits() const {
|
---|
293 | // Sort the blocks vector so that we can use binary search to do quick
|
---|
294 | // lookups.
|
---|
295 | SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
|
---|
296 | // Each predecessor of each exit block of a normal loop is contained
|
---|
297 | // within the loop.
|
---|
298 | SmallVector<BasicBlock *, 4> ExitBlocks;
|
---|
299 | getExitBlocks(ExitBlocks);
|
---|
300 | for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
|
---|
301 | for (pred_iterator PI = pred_begin(ExitBlocks[i]),
|
---|
302 | PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
|
---|
303 | if (!LoopBBs.count(*PI))
|
---|
304 | return false;
|
---|
305 | // All the requirements are met.
|
---|
306 | return true;
|
---|
307 | }
|
---|
308 |
|
---|
309 | /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
|
---|
310 | /// These are the blocks _outside of the current loop_ which are branched to.
|
---|
311 | /// This assumes that loop exits are in canonical form.
|
---|
312 | ///
|
---|
313 | void
|
---|
314 | Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
|
---|
315 | assert(hasDedicatedExits() &&
|
---|
316 | "getUniqueExitBlocks assumes the loop has canonical form exits!");
|
---|
317 |
|
---|
318 | // Sort the blocks vector so that we can use binary search to do quick
|
---|
319 | // lookups.
|
---|
320 | SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
|
---|
321 | std::sort(LoopBBs.begin(), LoopBBs.end());
|
---|
322 |
|
---|
323 | SmallVector<BasicBlock *, 32> switchExitBlocks;
|
---|
324 |
|
---|
325 | for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
|
---|
326 |
|
---|
327 | BasicBlock *current = *BI;
|
---|
328 | switchExitBlocks.clear();
|
---|
329 |
|
---|
330 | for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
|
---|
331 | // If block is inside the loop then it is not a exit block.
|
---|
332 | if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
|
---|
333 | continue;
|
---|
334 |
|
---|
335 | pred_iterator PI = pred_begin(*I);
|
---|
336 | BasicBlock *firstPred = *PI;
|
---|
337 |
|
---|
338 | // If current basic block is this exit block's first predecessor
|
---|
339 | // then only insert exit block in to the output ExitBlocks vector.
|
---|
340 | // This ensures that same exit block is not inserted twice into
|
---|
341 | // ExitBlocks vector.
|
---|
342 | if (current != firstPred)
|
---|
343 | continue;
|
---|
344 |
|
---|
345 | // If a terminator has more then two successors, for example SwitchInst,
|
---|
346 | // then it is possible that there are multiple edges from current block
|
---|
347 | // to one exit block.
|
---|
348 | if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
|
---|
349 | ExitBlocks.push_back(*I);
|
---|
350 | continue;
|
---|
351 | }
|
---|
352 |
|
---|
353 | // In case of multiple edges from current block to exit block, collect
|
---|
354 | // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
|
---|
355 | // duplicate edges.
|
---|
356 | if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
|
---|
357 | == switchExitBlocks.end()) {
|
---|
358 | switchExitBlocks.push_back(*I);
|
---|
359 | ExitBlocks.push_back(*I);
|
---|
360 | }
|
---|
361 | }
|
---|
362 | }
|
---|
363 | }
|
---|
364 |
|
---|
365 | /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
|
---|
366 | /// block, return that block. Otherwise return null.
|
---|
367 | BasicBlock *Loop::getUniqueExitBlock() const {
|
---|
368 | SmallVector<BasicBlock *, 8> UniqueExitBlocks;
|
---|
369 | getUniqueExitBlocks(UniqueExitBlocks);
|
---|
370 | if (UniqueExitBlocks.size() == 1)
|
---|
371 | return UniqueExitBlocks[0];
|
---|
372 | return 0;
|
---|
373 | }
|
---|
374 |
|
---|
375 | void Loop::dump() const {
|
---|
376 | print(dbgs());
|
---|
377 | }
|
---|
378 |
|
---|
379 | //===----------------------------------------------------------------------===//
|
---|
380 | // LoopInfo implementation
|
---|
381 | //
|
---|
382 | bool LoopInfo::runOnFunction(Function &) {
|
---|
383 | releaseMemory();
|
---|
384 | LI.Calculate(getAnalysis<DominatorTree>().getBase()); // Update
|
---|
385 | return false;
|
---|
386 | }
|
---|
387 |
|
---|
388 | void LoopInfo::verifyAnalysis() const {
|
---|
389 | // LoopInfo is a FunctionPass, but verifying every loop in the function
|
---|
390 | // each time verifyAnalysis is called is very expensive. The
|
---|
391 | // -verify-loop-info option can enable this. In order to perform some
|
---|
392 | // checking by default, LoopPass has been taught to call verifyLoop
|
---|
393 | // manually during loop pass sequences.
|
---|
394 |
|
---|
395 | if (!VerifyLoopInfo) return;
|
---|
396 |
|
---|
397 | for (iterator I = begin(), E = end(); I != E; ++I) {
|
---|
398 | assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
|
---|
399 | (*I)->verifyLoopNest();
|
---|
400 | }
|
---|
401 |
|
---|
402 | // TODO: check BBMap consistency.
|
---|
403 | }
|
---|
404 |
|
---|
405 | void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
|
---|
406 | AU.setPreservesAll();
|
---|
407 | AU.addRequired<DominatorTree>();
|
---|
408 | }
|
---|
409 |
|
---|
410 | void LoopInfo::print(raw_ostream &OS, const Module*) const {
|
---|
411 | LI.print(OS);
|
---|
412 | }
|
---|
413 |
|
---|