source: binutils/trunk/bfd/elf64-sparc.c@ 1973

Last change on this file since 1973 was 1973, checked in by Silvan Scherrer, 8 years ago

binutils: update trunk to version 2.27

File size: 26.5 KB
Line 
1/* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21#include "sysdep.h"
22#include "bfd.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/sparc.h"
26#include "opcode/sparc.h"
27#include "elfxx-sparc.h"
28
29/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30#define MINUS_ONE (~ (bfd_vma) 0)
31
32/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33 section can represent up to two relocs, we must tell the user to allocate
34 more space. */
35
36static long
37elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
38{
39 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
40}
41
42static long
43elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
44{
45 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
46}
47
48/* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
49 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
50 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
51 for the same location, R_SPARC_LO10 and R_SPARC_13. */
52
53static bfd_boolean
54elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55 Elf_Internal_Shdr *rel_hdr,
56 asymbol **symbols, bfd_boolean dynamic)
57{
58 void * allocated = NULL;
59 bfd_byte *native_relocs;
60 arelent *relent;
61 unsigned int i;
62 int entsize;
63 bfd_size_type count;
64 arelent *relents;
65
66 allocated = bfd_malloc (rel_hdr->sh_size);
67 if (allocated == NULL)
68 goto error_return;
69
70 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72 goto error_return;
73
74 native_relocs = (bfd_byte *) allocated;
75
76 relents = asect->relocation + canon_reloc_count (asect);
77
78 entsize = rel_hdr->sh_entsize;
79 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
80
81 count = rel_hdr->sh_size / entsize;
82
83 for (i = 0, relent = relents; i < count;
84 i++, relent++, native_relocs += entsize)
85 {
86 Elf_Internal_Rela rela;
87 unsigned int r_type;
88
89 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
90
91 /* The address of an ELF reloc is section relative for an object
92 file, and absolute for an executable file or shared library.
93 The address of a normal BFD reloc is always section relative,
94 and the address of a dynamic reloc is absolute.. */
95 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96 relent->address = rela.r_offset;
97 else
98 relent->address = rela.r_offset - asect->vma;
99
100 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF
101 /* PR 17512: file: 996185f8. */
102 || ELF64_R_SYM (rela.r_info) > bfd_get_symcount (abfd))
103 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
104 else
105 {
106 asymbol **ps, *s;
107
108 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
109 s = *ps;
110
111 /* Canonicalize ELF section symbols. FIXME: Why? */
112 if ((s->flags & BSF_SECTION_SYM) == 0)
113 relent->sym_ptr_ptr = ps;
114 else
115 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
116 }
117
118 relent->addend = rela.r_addend;
119
120 r_type = ELF64_R_TYPE_ID (rela.r_info);
121 if (r_type == R_SPARC_OLO10)
122 {
123 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
124 relent[1].address = relent->address;
125 relent++;
126 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
127 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
128 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
129 }
130 else
131 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
132 }
133
134 canon_reloc_count (asect) += relent - relents;
135
136 if (allocated != NULL)
137 free (allocated);
138
139 return TRUE;
140
141 error_return:
142 if (allocated != NULL)
143 free (allocated);
144 return FALSE;
145}
146
147/* Read in and swap the external relocs. */
148
149static bfd_boolean
150elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
151 asymbol **symbols, bfd_boolean dynamic)
152{
153 struct bfd_elf_section_data * const d = elf_section_data (asect);
154 Elf_Internal_Shdr *rel_hdr;
155 Elf_Internal_Shdr *rel_hdr2;
156 bfd_size_type amt;
157
158 if (asect->relocation != NULL)
159 return TRUE;
160
161 if (! dynamic)
162 {
163 if ((asect->flags & SEC_RELOC) == 0
164 || asect->reloc_count == 0)
165 return TRUE;
166
167 rel_hdr = d->rel.hdr;
168 rel_hdr2 = d->rela.hdr;
169
170 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
171 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
172 }
173 else
174 {
175 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
176 case because relocations against this section may use the
177 dynamic symbol table, and in that case bfd_section_from_shdr
178 in elf.c does not update the RELOC_COUNT. */
179 if (asect->size == 0)
180 return TRUE;
181
182 rel_hdr = &d->this_hdr;
183 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
184 rel_hdr2 = NULL;
185 }
186
187 amt = asect->reloc_count;
188 amt *= 2 * sizeof (arelent);
189 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
190 if (asect->relocation == NULL)
191 return FALSE;
192
193 /* The elf64_sparc_slurp_one_reloc_table routine increments
194 canon_reloc_count. */
195 canon_reloc_count (asect) = 0;
196
197 if (rel_hdr
198 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
199 dynamic))
200 return FALSE;
201
202 if (rel_hdr2
203 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
204 dynamic))
205 return FALSE;
206
207 return TRUE;
208}
209
210/* Canonicalize the relocs. */
211
212static long
213elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
214 arelent **relptr, asymbol **symbols)
215{
216 arelent *tblptr;
217 unsigned int i;
218 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
219
220 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
221 return -1;
222
223 tblptr = section->relocation;
224 for (i = 0; i < canon_reloc_count (section); i++)
225 *relptr++ = tblptr++;
226
227 *relptr = NULL;
228
229 return canon_reloc_count (section);
230}
231
232
233/* Canonicalize the dynamic relocation entries. Note that we return
234 the dynamic relocations as a single block, although they are
235 actually associated with particular sections; the interface, which
236 was designed for SunOS style shared libraries, expects that there
237 is only one set of dynamic relocs. Any section that was actually
238 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
239 the dynamic symbol table, is considered to be a dynamic reloc
240 section. */
241
242static long
243elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
244 asymbol **syms)
245{
246 asection *s;
247 long ret;
248
249 if (elf_dynsymtab (abfd) == 0)
250 {
251 bfd_set_error (bfd_error_invalid_operation);
252 return -1;
253 }
254
255 ret = 0;
256 for (s = abfd->sections; s != NULL; s = s->next)
257 {
258 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
259 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
260 {
261 arelent *p;
262 long count, i;
263
264 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
265 return -1;
266 count = canon_reloc_count (s);
267 p = s->relocation;
268 for (i = 0; i < count; i++)
269 *storage++ = p++;
270 ret += count;
271 }
272 }
273
274 *storage = NULL;
275
276 return ret;
277}
278
279/* Write out the relocs. */
280
281static void
282elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
283{
284 bfd_boolean *failedp = (bfd_boolean *) data;
285 Elf_Internal_Shdr *rela_hdr;
286 bfd_vma addr_offset;
287 Elf64_External_Rela *outbound_relocas, *src_rela;
288 unsigned int idx, count;
289 asymbol *last_sym = 0;
290 int last_sym_idx = 0;
291
292 /* If we have already failed, don't do anything. */
293 if (*failedp)
294 return;
295
296 if ((sec->flags & SEC_RELOC) == 0)
297 return;
298
299 /* The linker backend writes the relocs out itself, and sets the
300 reloc_count field to zero to inhibit writing them here. Also,
301 sometimes the SEC_RELOC flag gets set even when there aren't any
302 relocs. */
303 if (sec->reloc_count == 0)
304 return;
305
306 /* We can combine two relocs that refer to the same address
307 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
308 latter is R_SPARC_13 with no associated symbol. */
309 count = 0;
310 for (idx = 0; idx < sec->reloc_count; idx++)
311 {
312 bfd_vma addr;
313
314 ++count;
315
316 addr = sec->orelocation[idx]->address;
317 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
318 && idx < sec->reloc_count - 1)
319 {
320 arelent *r = sec->orelocation[idx + 1];
321
322 if (r->howto->type == R_SPARC_13
323 && r->address == addr
324 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
325 && (*r->sym_ptr_ptr)->value == 0)
326 ++idx;
327 }
328 }
329
330 rela_hdr = elf_section_data (sec)->rela.hdr;
331
332 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
333 rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
334 if (rela_hdr->contents == NULL)
335 {
336 *failedp = TRUE;
337 return;
338 }
339
340 /* Figure out whether the relocations are RELA or REL relocations. */
341 if (rela_hdr->sh_type != SHT_RELA)
342 abort ();
343
344 /* The address of an ELF reloc is section relative for an object
345 file, and absolute for an executable file or shared library.
346 The address of a BFD reloc is always section relative. */
347 addr_offset = 0;
348 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
349 addr_offset = sec->vma;
350
351 /* orelocation has the data, reloc_count has the count... */
352 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
353 src_rela = outbound_relocas;
354
355 for (idx = 0; idx < sec->reloc_count; idx++)
356 {
357 Elf_Internal_Rela dst_rela;
358 arelent *ptr;
359 asymbol *sym;
360 int n;
361
362 ptr = sec->orelocation[idx];
363 sym = *ptr->sym_ptr_ptr;
364 if (sym == last_sym)
365 n = last_sym_idx;
366 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
367 n = STN_UNDEF;
368 else
369 {
370 last_sym = sym;
371 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
372 if (n < 0)
373 {
374 *failedp = TRUE;
375 return;
376 }
377 last_sym_idx = n;
378 }
379
380 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
381 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
382 && ! _bfd_elf_validate_reloc (abfd, ptr))
383 {
384 *failedp = TRUE;
385 return;
386 }
387
388 if (ptr->howto->type == R_SPARC_LO10
389 && idx < sec->reloc_count - 1)
390 {
391 arelent *r = sec->orelocation[idx + 1];
392
393 if (r->howto->type == R_SPARC_13
394 && r->address == ptr->address
395 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
396 && (*r->sym_ptr_ptr)->value == 0)
397 {
398 idx++;
399 dst_rela.r_info
400 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
401 R_SPARC_OLO10));
402 }
403 else
404 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
405 }
406 else
407 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
408
409 dst_rela.r_offset = ptr->address + addr_offset;
410 dst_rela.r_addend = ptr->addend;
411
412 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
413 ++src_rela;
414 }
415}
416
417
418/* Hook called by the linker routine which adds symbols from an object
419 file. We use it for STT_REGISTER symbols. */
420
421static bfd_boolean
422elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
423 Elf_Internal_Sym *sym, const char **namep,
424 flagword *flagsp ATTRIBUTE_UNUSED,
425 asection **secp ATTRIBUTE_UNUSED,
426 bfd_vma *valp ATTRIBUTE_UNUSED)
427{
428 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
429
430 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
431 && (abfd->flags & DYNAMIC) == 0
432 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
433 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
434
435 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
436 {
437 int reg;
438 struct _bfd_sparc_elf_app_reg *p;
439
440 reg = (int)sym->st_value;
441 switch (reg & ~1)
442 {
443 case 2: reg -= 2; break;
444 case 6: reg -= 4; break;
445 default:
446 (*_bfd_error_handler)
447 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
448 abfd);
449 return FALSE;
450 }
451
452 if (info->output_bfd->xvec != abfd->xvec
453 || (abfd->flags & DYNAMIC) != 0)
454 {
455 /* STT_REGISTER only works when linking an elf64_sparc object.
456 If STT_REGISTER comes from a dynamic object, don't put it into
457 the output bfd. The dynamic linker will recheck it. */
458 *namep = NULL;
459 return TRUE;
460 }
461
462 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
463
464 if (p->name != NULL && strcmp (p->name, *namep))
465 {
466 (*_bfd_error_handler)
467 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
468 abfd, p->abfd, (int) sym->st_value,
469 **namep ? *namep : "#scratch",
470 *p->name ? p->name : "#scratch");
471 return FALSE;
472 }
473
474 if (p->name == NULL)
475 {
476 if (**namep)
477 {
478 struct elf_link_hash_entry *h;
479
480 h = (struct elf_link_hash_entry *)
481 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
482
483 if (h != NULL)
484 {
485 unsigned char type = h->type;
486
487 if (type > STT_FUNC)
488 type = 0;
489 (*_bfd_error_handler)
490 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
491 abfd, p->abfd, *namep, stt_types[type]);
492 return FALSE;
493 }
494
495 p->name = bfd_hash_allocate (&info->hash->table,
496 strlen (*namep) + 1);
497 if (!p->name)
498 return FALSE;
499
500 strcpy (p->name, *namep);
501 }
502 else
503 p->name = "";
504 p->bind = ELF_ST_BIND (sym->st_info);
505 p->abfd = abfd;
506 p->shndx = sym->st_shndx;
507 }
508 else
509 {
510 if (p->bind == STB_WEAK
511 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
512 {
513 p->bind = STB_GLOBAL;
514 p->abfd = abfd;
515 }
516 }
517 *namep = NULL;
518 return TRUE;
519 }
520 else if (*namep && **namep
521 && info->output_bfd->xvec == abfd->xvec)
522 {
523 int i;
524 struct _bfd_sparc_elf_app_reg *p;
525
526 p = _bfd_sparc_elf_hash_table(info)->app_regs;
527 for (i = 0; i < 4; i++, p++)
528 if (p->name != NULL && ! strcmp (p->name, *namep))
529 {
530 unsigned char type = ELF_ST_TYPE (sym->st_info);
531
532 if (type > STT_FUNC)
533 type = 0;
534 (*_bfd_error_handler)
535 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
536 abfd, p->abfd, *namep, stt_types[type]);
537 return FALSE;
538 }
539 }
540 return TRUE;
541}
542
543/* This function takes care of emitting STT_REGISTER symbols
544 which we cannot easily keep in the symbol hash table. */
545
546static bfd_boolean
547elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
548 struct bfd_link_info *info,
549 void * flaginfo,
550 int (*func) (void *, const char *,
551 Elf_Internal_Sym *,
552 asection *,
553 struct elf_link_hash_entry *))
554{
555 int reg;
556 struct _bfd_sparc_elf_app_reg *app_regs =
557 _bfd_sparc_elf_hash_table(info)->app_regs;
558 Elf_Internal_Sym sym;
559
560 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
561 at the end of the dynlocal list, so they came at the end of the local
562 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
563 to back up symtab->sh_info. */
564 if (elf_hash_table (info)->dynlocal)
565 {
566 bfd * dynobj = elf_hash_table (info)->dynobj;
567 asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym");
568 struct elf_link_local_dynamic_entry *e;
569
570 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
571 if (e->input_indx == -1)
572 break;
573 if (e)
574 {
575 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
576 = e->dynindx;
577 }
578 }
579
580 if (info->strip == strip_all)
581 return TRUE;
582
583 for (reg = 0; reg < 4; reg++)
584 if (app_regs [reg].name != NULL)
585 {
586 if (info->strip == strip_some
587 && bfd_hash_lookup (info->keep_hash,
588 app_regs [reg].name,
589 FALSE, FALSE) == NULL)
590 continue;
591
592 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
593 sym.st_size = 0;
594 sym.st_other = 0;
595 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
596 sym.st_shndx = app_regs [reg].shndx;
597 sym.st_target_internal = 0;
598 if ((*func) (flaginfo, app_regs [reg].name, &sym,
599 sym.st_shndx == SHN_ABS
600 ? bfd_abs_section_ptr : bfd_und_section_ptr,
601 NULL) != 1)
602 return FALSE;
603 }
604
605 return TRUE;
606}
607
608static int
609elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
610{
611 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
612 return STT_REGISTER;
613 else
614 return type;
615}
616
617/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
618 even in SHN_UNDEF section. */
619
620static void
621elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
622{
623 elf_symbol_type *elfsym;
624
625 elfsym = (elf_symbol_type *) asym;
626 if (elfsym->internal_elf_sym.st_info
627 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
628 {
629 asym->flags |= BSF_GLOBAL;
630 }
631}
632
633
634
635/* Functions for dealing with the e_flags field. */
636
637/* Merge backend specific data from an object file to the output
638 object file when linking. */
639
640static bfd_boolean
641elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
642{
643 bfd_boolean error;
644 flagword new_flags, old_flags;
645 int new_mm, old_mm;
646
647 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
648 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
649 return TRUE;
650
651 new_flags = elf_elfheader (ibfd)->e_flags;
652 old_flags = elf_elfheader (obfd)->e_flags;
653
654 if (!elf_flags_init (obfd)) /* First call, no flags set */
655 {
656 elf_flags_init (obfd) = TRUE;
657 elf_elfheader (obfd)->e_flags = new_flags;
658 }
659
660 else if (new_flags == old_flags) /* Compatible flags are ok */
661 ;
662
663 else /* Incompatible flags */
664 {
665 error = FALSE;
666
667#define EF_SPARC_ISA_EXTENSIONS \
668 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
669
670 if ((ibfd->flags & DYNAMIC) != 0)
671 {
672 /* We don't want dynamic objects memory ordering and
673 architecture to have any role. That's what dynamic linker
674 should do. */
675 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
676 new_flags |= (old_flags
677 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
678 }
679 else
680 {
681 /* Choose the highest architecture requirements. */
682 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
683 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
684 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
685 && (old_flags & EF_SPARC_HAL_R1))
686 {
687 error = TRUE;
688 (*_bfd_error_handler)
689 (_("%B: linking UltraSPARC specific with HAL specific code"),
690 ibfd);
691 }
692 /* Choose the most restrictive memory ordering. */
693 old_mm = (old_flags & EF_SPARCV9_MM);
694 new_mm = (new_flags & EF_SPARCV9_MM);
695 old_flags &= ~EF_SPARCV9_MM;
696 new_flags &= ~EF_SPARCV9_MM;
697 if (new_mm < old_mm)
698 old_mm = new_mm;
699 old_flags |= old_mm;
700 new_flags |= old_mm;
701 }
702
703 /* Warn about any other mismatches */
704 if (new_flags != old_flags)
705 {
706 error = TRUE;
707 (*_bfd_error_handler)
708 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
709 ibfd, (long) new_flags, (long) old_flags);
710 }
711
712 elf_elfheader (obfd)->e_flags = old_flags;
713
714 if (error)
715 {
716 bfd_set_error (bfd_error_bad_value);
717 return FALSE;
718 }
719 }
720 return _bfd_sparc_elf_merge_private_bfd_data (ibfd, obfd);
721}
722
723/* MARCO: Set the correct entry size for the .stab section. */
724
725static bfd_boolean
726elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
727 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
728 asection *sec)
729{
730 const char *name;
731
732 name = bfd_get_section_name (abfd, sec);
733
734 if (strcmp (name, ".stab") == 0)
735 {
736 /* Even in the 64bit case the stab entries are only 12 bytes long. */
737 elf_section_data (sec)->this_hdr.sh_entsize = 12;
738 }
739
740 return TRUE;
741}
742
743
744/* Print a STT_REGISTER symbol to file FILE. */
745
746static const char *
747elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
748 asymbol *symbol)
749{
750 FILE *file = (FILE *) filep;
751 int reg, type;
752
753 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
754 != STT_REGISTER)
755 return NULL;
756
757 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
758 type = symbol->flags;
759 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
760 ((type & BSF_LOCAL)
761 ? (type & BSF_GLOBAL) ? '!' : 'l'
762 : (type & BSF_GLOBAL) ? 'g' : ' '),
763 (type & BSF_WEAK) ? 'w' : ' ');
764 if (symbol->name == NULL || symbol->name [0] == '\0')
765 return "#scratch";
766 else
767 return symbol->name;
768}
769
770
771static enum elf_reloc_type_class
772elf64_sparc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
773 const asection *rel_sec ATTRIBUTE_UNUSED,
774 const Elf_Internal_Rela *rela)
775{
776 switch ((int) ELF64_R_TYPE (rela->r_info))
777 {
778 case R_SPARC_RELATIVE:
779 return reloc_class_relative;
780 case R_SPARC_JMP_SLOT:
781 return reloc_class_plt;
782 case R_SPARC_COPY:
783 return reloc_class_copy;
784 default:
785 return reloc_class_normal;
786 }
787}
788
789/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
790 standard ELF, because R_SPARC_OLO10 has secondary addend in
791 ELF64_R_TYPE_DATA field. This structure is used to redirect the
792 relocation handling routines. */
793
794const struct elf_size_info elf64_sparc_size_info =
795{
796 sizeof (Elf64_External_Ehdr),
797 sizeof (Elf64_External_Phdr),
798 sizeof (Elf64_External_Shdr),
799 sizeof (Elf64_External_Rel),
800 sizeof (Elf64_External_Rela),
801 sizeof (Elf64_External_Sym),
802 sizeof (Elf64_External_Dyn),
803 sizeof (Elf_External_Note),
804 4, /* hash-table entry size. */
805 /* Internal relocations per external relocations.
806 For link purposes we use just 1 internal per
807 1 external, for assembly and slurp symbol table
808 we use 2. */
809 1,
810 64, /* arch_size. */
811 3, /* log_file_align. */
812 ELFCLASS64,
813 EV_CURRENT,
814 bfd_elf64_write_out_phdrs,
815 bfd_elf64_write_shdrs_and_ehdr,
816 bfd_elf64_checksum_contents,
817 elf64_sparc_write_relocs,
818 bfd_elf64_swap_symbol_in,
819 bfd_elf64_swap_symbol_out,
820 elf64_sparc_slurp_reloc_table,
821 bfd_elf64_slurp_symbol_table,
822 bfd_elf64_swap_dyn_in,
823 bfd_elf64_swap_dyn_out,
824 bfd_elf64_swap_reloc_in,
825 bfd_elf64_swap_reloc_out,
826 bfd_elf64_swap_reloca_in,
827 bfd_elf64_swap_reloca_out
828};
829
830#define TARGET_BIG_SYM sparc_elf64_vec
831#define TARGET_BIG_NAME "elf64-sparc"
832#define ELF_ARCH bfd_arch_sparc
833#define ELF_MAXPAGESIZE 0x100000
834#define ELF_COMMONPAGESIZE 0x2000
835
836/* This is the official ABI value. */
837#define ELF_MACHINE_CODE EM_SPARCV9
838
839/* This is the value that we used before the ABI was released. */
840#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
841
842#define elf_backend_reloc_type_class \
843 elf64_sparc_reloc_type_class
844#define bfd_elf64_get_reloc_upper_bound \
845 elf64_sparc_get_reloc_upper_bound
846#define bfd_elf64_get_dynamic_reloc_upper_bound \
847 elf64_sparc_get_dynamic_reloc_upper_bound
848#define bfd_elf64_canonicalize_reloc \
849 elf64_sparc_canonicalize_reloc
850#define bfd_elf64_canonicalize_dynamic_reloc \
851 elf64_sparc_canonicalize_dynamic_reloc
852#define elf_backend_add_symbol_hook \
853 elf64_sparc_add_symbol_hook
854#define elf_backend_get_symbol_type \
855 elf64_sparc_get_symbol_type
856#define elf_backend_symbol_processing \
857 elf64_sparc_symbol_processing
858#define elf_backend_print_symbol_all \
859 elf64_sparc_print_symbol_all
860#define elf_backend_output_arch_syms \
861 elf64_sparc_output_arch_syms
862#define bfd_elf64_bfd_merge_private_bfd_data \
863 elf64_sparc_merge_private_bfd_data
864#define elf_backend_fake_sections \
865 elf64_sparc_fake_sections
866#define elf_backend_size_info \
867 elf64_sparc_size_info
868
869#define elf_backend_plt_sym_val \
870 _bfd_sparc_elf_plt_sym_val
871#define bfd_elf64_bfd_link_hash_table_create \
872 _bfd_sparc_elf_link_hash_table_create
873#define elf_info_to_howto \
874 _bfd_sparc_elf_info_to_howto
875#define elf_backend_copy_indirect_symbol \
876 _bfd_sparc_elf_copy_indirect_symbol
877#define bfd_elf64_bfd_reloc_type_lookup \
878 _bfd_sparc_elf_reloc_type_lookup
879#define bfd_elf64_bfd_reloc_name_lookup \
880 _bfd_sparc_elf_reloc_name_lookup
881#define bfd_elf64_bfd_relax_section \
882 _bfd_sparc_elf_relax_section
883#define bfd_elf64_new_section_hook \
884 _bfd_sparc_elf_new_section_hook
885
886#define elf_backend_create_dynamic_sections \
887 _bfd_sparc_elf_create_dynamic_sections
888#define elf_backend_relocs_compatible \
889 _bfd_elf_relocs_compatible
890#define elf_backend_check_relocs \
891 _bfd_sparc_elf_check_relocs
892#define elf_backend_adjust_dynamic_symbol \
893 _bfd_sparc_elf_adjust_dynamic_symbol
894#define elf_backend_omit_section_dynsym \
895 _bfd_sparc_elf_omit_section_dynsym
896#define elf_backend_size_dynamic_sections \
897 _bfd_sparc_elf_size_dynamic_sections
898#define elf_backend_relocate_section \
899 _bfd_sparc_elf_relocate_section
900#define elf_backend_finish_dynamic_symbol \
901 _bfd_sparc_elf_finish_dynamic_symbol
902#define elf_backend_finish_dynamic_sections \
903 _bfd_sparc_elf_finish_dynamic_sections
904
905#define bfd_elf64_mkobject \
906 _bfd_sparc_elf_mkobject
907#define elf_backend_object_p \
908 _bfd_sparc_elf_object_p
909#define elf_backend_gc_mark_hook \
910 _bfd_sparc_elf_gc_mark_hook
911#define elf_backend_gc_sweep_hook \
912 _bfd_sparc_elf_gc_sweep_hook
913#define elf_backend_init_index_section \
914 _bfd_elf_init_1_index_section
915
916#define elf_backend_can_gc_sections 1
917#define elf_backend_can_refcount 1
918#define elf_backend_want_got_plt 0
919#define elf_backend_plt_readonly 0
920#define elf_backend_want_plt_sym 1
921#define elf_backend_got_header_size 8
922#define elf_backend_rela_normal 1
923
924/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
925#define elf_backend_plt_alignment 8
926
927#include "elf64-target.h"
928
929/* FreeBSD support */
930#undef TARGET_BIG_SYM
931#define TARGET_BIG_SYM sparc_elf64_fbsd_vec
932#undef TARGET_BIG_NAME
933#define TARGET_BIG_NAME "elf64-sparc-freebsd"
934#undef ELF_OSABI
935#define ELF_OSABI ELFOSABI_FREEBSD
936
937#undef elf64_bed
938#define elf64_bed elf64_sparc_fbsd_bed
939
940#include "elf64-target.h"
941
942/* Solaris 2. */
943
944#undef TARGET_BIG_SYM
945#define TARGET_BIG_SYM sparc_elf64_sol2_vec
946#undef TARGET_BIG_NAME
947#define TARGET_BIG_NAME "elf64-sparc-sol2"
948
949/* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
950 objects won't be recognized. */
951#undef ELF_OSABI
952
953#undef elf64_bed
954#define elf64_bed elf64_sparc_sol2_bed
955
956/* The 64-bit static TLS arena size is rounded to the nearest 16-byte
957 boundary. */
958#undef elf_backend_static_tls_alignment
959#define elf_backend_static_tls_alignment 16
960
961#include "elf64-target.h"
Note: See TracBrowser for help on using the repository browser.