source: binutils/trunk/bfd/elf64-hppa.c@ 1973

Last change on this file since 1973 was 1973, checked in by Silvan Scherrer, 8 years ago

binutils: update trunk to version 2.27

File size: 121.3 KB
Line 
1/* Support for HPPA 64-bit ELF
2 Copyright (C) 1999-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21#include "sysdep.h"
22#include "alloca-conf.h"
23#include "bfd.h"
24#include "libbfd.h"
25#include "elf-bfd.h"
26#include "elf/hppa.h"
27#include "libhppa.h"
28#include "elf64-hppa.h"
29#include "libiberty.h"
30
31#define ARCH_SIZE 64
32
33#define PLT_ENTRY_SIZE 0x10
34#define DLT_ENTRY_SIZE 0x8
35#define OPD_ENTRY_SIZE 0x20
36
37#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
38
39/* The stub is supposed to load the target address and target's DP
40 value out of the PLT, then do an external branch to the target
41 address.
42
43 LDD PLTOFF(%r27),%r1
44 BVE (%r1)
45 LDD PLTOFF+8(%r27),%r27
46
47 Note that we must use the LDD with a 14 bit displacement, not the one
48 with a 5 bit displacement. */
49static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
50 0x53, 0x7b, 0x00, 0x00 };
51
52struct elf64_hppa_link_hash_entry
53{
54 struct elf_link_hash_entry eh;
55
56 /* Offsets for this symbol in various linker sections. */
57 bfd_vma dlt_offset;
58 bfd_vma plt_offset;
59 bfd_vma opd_offset;
60 bfd_vma stub_offset;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* Number of relocs copied in this section. */
91 bfd_size_type count;
92
93 /* The index of the section symbol for the input section of
94 the relocation. Only needed when building shared libraries. */
95 int sec_symndx;
96
97 /* The offset within the input section of the relocation. */
98 bfd_vma offset;
99
100 /* The addend for the relocation. */
101 bfd_vma addend;
102
103 } *reloc_entries;
104
105 /* Nonzero if this symbol needs an entry in one of the linker
106 sections. */
107 unsigned want_dlt;
108 unsigned want_plt;
109 unsigned want_opd;
110 unsigned want_stub;
111};
112
113struct elf64_hppa_link_hash_table
114{
115 struct elf_link_hash_table root;
116
117 /* Shortcuts to get to the various linker defined sections. */
118 asection *dlt_sec;
119 asection *dlt_rel_sec;
120 asection *plt_sec;
121 asection *plt_rel_sec;
122 asection *opd_sec;
123 asection *opd_rel_sec;
124 asection *other_rel_sec;
125
126 /* Offset of __gp within .plt section. When the PLT gets large we want
127 to slide __gp into the PLT section so that we can continue to use
128 single DP relative instructions to load values out of the PLT. */
129 bfd_vma gp_offset;
130
131 /* Note this is not strictly correct. We should create a stub section for
132 each input section with calls. The stub section should be placed before
133 the section with the call. */
134 asection *stub_sec;
135
136 bfd_vma text_segment_base;
137 bfd_vma data_segment_base;
138
139 /* We build tables to map from an input section back to its
140 symbol index. This is the BFD for which we currently have
141 a map. */
142 bfd *section_syms_bfd;
143
144 /* Array of symbol numbers for each input section attached to the
145 current BFD. */
146 int *section_syms;
147};
148
149#define hppa_link_hash_table(p) \
150 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
151 == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
152
153#define hppa_elf_hash_entry(ent) \
154 ((struct elf64_hppa_link_hash_entry *)(ent))
155
156#define eh_name(eh) \
157 (eh ? eh->root.root.string : "<undef>")
158
159typedef struct bfd_hash_entry *(*new_hash_entry_func)
160 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
161
162static struct bfd_link_hash_table *elf64_hppa_hash_table_create
163 (bfd *abfd);
164
165/* This must follow the definitions of the various derived linker
166 hash tables and shared functions. */
167#include "elf-hppa.h"
168
169static bfd_boolean elf64_hppa_object_p
170 (bfd *);
171
172static void elf64_hppa_post_process_headers
173 (bfd *, struct bfd_link_info *);
174
175static bfd_boolean elf64_hppa_create_dynamic_sections
176 (bfd *, struct bfd_link_info *);
177
178static bfd_boolean elf64_hppa_adjust_dynamic_symbol
179 (struct bfd_link_info *, struct elf_link_hash_entry *);
180
181static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
182 (struct elf_link_hash_entry *, void *);
183
184static bfd_boolean elf64_hppa_size_dynamic_sections
185 (bfd *, struct bfd_link_info *);
186
187static int elf64_hppa_link_output_symbol_hook
188 (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
189 asection *, struct elf_link_hash_entry *);
190
191static bfd_boolean elf64_hppa_finish_dynamic_symbol
192 (bfd *, struct bfd_link_info *,
193 struct elf_link_hash_entry *, Elf_Internal_Sym *);
194
195static bfd_boolean elf64_hppa_finish_dynamic_sections
196 (bfd *, struct bfd_link_info *);
197
198static bfd_boolean elf64_hppa_check_relocs
199 (bfd *, struct bfd_link_info *,
200 asection *, const Elf_Internal_Rela *);
201
202static bfd_boolean elf64_hppa_dynamic_symbol_p
203 (struct elf_link_hash_entry *, struct bfd_link_info *);
204
205static bfd_boolean elf64_hppa_mark_exported_functions
206 (struct elf_link_hash_entry *, void *);
207
208static bfd_boolean elf64_hppa_finalize_opd
209 (struct elf_link_hash_entry *, void *);
210
211static bfd_boolean elf64_hppa_finalize_dlt
212 (struct elf_link_hash_entry *, void *);
213
214static bfd_boolean allocate_global_data_dlt
215 (struct elf_link_hash_entry *, void *);
216
217static bfd_boolean allocate_global_data_plt
218 (struct elf_link_hash_entry *, void *);
219
220static bfd_boolean allocate_global_data_stub
221 (struct elf_link_hash_entry *, void *);
222
223static bfd_boolean allocate_global_data_opd
224 (struct elf_link_hash_entry *, void *);
225
226static bfd_boolean get_reloc_section
227 (bfd *, struct elf64_hppa_link_hash_table *, asection *);
228
229static bfd_boolean count_dyn_reloc
230 (bfd *, struct elf64_hppa_link_hash_entry *,
231 int, asection *, int, bfd_vma, bfd_vma);
232
233static bfd_boolean allocate_dynrel_entries
234 (struct elf_link_hash_entry *, void *);
235
236static bfd_boolean elf64_hppa_finalize_dynreloc
237 (struct elf_link_hash_entry *, void *);
238
239static bfd_boolean get_opd
240 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
241
242static bfd_boolean get_plt
243 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
244
245static bfd_boolean get_dlt
246 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
247
248static bfd_boolean get_stub
249 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
250
251static int elf64_hppa_elf_get_symbol_type
252 (Elf_Internal_Sym *, int);
253
254/* Initialize an entry in the link hash table. */
255
256static struct bfd_hash_entry *
257hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
258 struct bfd_hash_table *table,
259 const char *string)
260{
261 /* Allocate the structure if it has not already been allocated by a
262 subclass. */
263 if (entry == NULL)
264 {
265 entry = bfd_hash_allocate (table,
266 sizeof (struct elf64_hppa_link_hash_entry));
267 if (entry == NULL)
268 return entry;
269 }
270
271 /* Call the allocation method of the superclass. */
272 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
273 if (entry != NULL)
274 {
275 struct elf64_hppa_link_hash_entry *hh;
276
277 /* Initialize our local data. All zeros. */
278 hh = hppa_elf_hash_entry (entry);
279 memset (&hh->dlt_offset, 0,
280 (sizeof (struct elf64_hppa_link_hash_entry)
281 - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
282 }
283
284 return entry;
285}
286
287/* Create the derived linker hash table. The PA64 ELF port uses this
288 derived hash table to keep information specific to the PA ElF
289 linker (without using static variables). */
290
291static struct bfd_link_hash_table*
292elf64_hppa_hash_table_create (bfd *abfd)
293{
294 struct elf64_hppa_link_hash_table *htab;
295 bfd_size_type amt = sizeof (*htab);
296
297 htab = bfd_zmalloc (amt);
298 if (htab == NULL)
299 return NULL;
300
301 if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
302 hppa64_link_hash_newfunc,
303 sizeof (struct elf64_hppa_link_hash_entry),
304 HPPA64_ELF_DATA))
305 {
306 free (htab);
307 return NULL;
308 }
309
310 htab->text_segment_base = (bfd_vma) -1;
311 htab->data_segment_base = (bfd_vma) -1;
312
313 return &htab->root.root;
314}
315
316
317/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
318
319 Additionally we set the default architecture and machine. */
320static bfd_boolean
321elf64_hppa_object_p (bfd *abfd)
322{
323 Elf_Internal_Ehdr * i_ehdrp;
324 unsigned int flags;
325
326 i_ehdrp = elf_elfheader (abfd);
327 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
328 {
329 /* GCC on hppa-linux produces binaries with OSABI=GNU,
330 but the kernel produces corefiles with OSABI=SysV. */
331 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
332 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
333 return FALSE;
334 }
335 else
336 {
337 /* HPUX produces binaries with OSABI=HPUX,
338 but the kernel produces corefiles with OSABI=SysV. */
339 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
340 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
341 return FALSE;
342 }
343
344 flags = i_ehdrp->e_flags;
345 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
346 {
347 case EFA_PARISC_1_0:
348 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
349 case EFA_PARISC_1_1:
350 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
351 case EFA_PARISC_2_0:
352 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
353 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
354 else
355 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
356 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
357 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
358 }
359 /* Don't be fussy. */
360 return TRUE;
361}
362
363/* Given section type (hdr->sh_type), return a boolean indicating
364 whether or not the section is an elf64-hppa specific section. */
365static bfd_boolean
366elf64_hppa_section_from_shdr (bfd *abfd,
367 Elf_Internal_Shdr *hdr,
368 const char *name,
369 int shindex)
370{
371 switch (hdr->sh_type)
372 {
373 case SHT_PARISC_EXT:
374 if (strcmp (name, ".PARISC.archext") != 0)
375 return FALSE;
376 break;
377 case SHT_PARISC_UNWIND:
378 if (strcmp (name, ".PARISC.unwind") != 0)
379 return FALSE;
380 break;
381 case SHT_PARISC_DOC:
382 case SHT_PARISC_ANNOT:
383 default:
384 return FALSE;
385 }
386
387 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
388 return FALSE;
389
390 return TRUE;
391}
392
393/* SEC is a section containing relocs for an input BFD when linking; return
394 a suitable section for holding relocs in the output BFD for a link. */
395
396static bfd_boolean
397get_reloc_section (bfd *abfd,
398 struct elf64_hppa_link_hash_table *hppa_info,
399 asection *sec)
400{
401 const char *srel_name;
402 asection *srel;
403 bfd *dynobj;
404
405 srel_name = (bfd_elf_string_from_elf_section
406 (abfd, elf_elfheader(abfd)->e_shstrndx,
407 _bfd_elf_single_rel_hdr(sec)->sh_name));
408 if (srel_name == NULL)
409 return FALSE;
410
411 dynobj = hppa_info->root.dynobj;
412 if (!dynobj)
413 hppa_info->root.dynobj = dynobj = abfd;
414
415 srel = bfd_get_linker_section (dynobj, srel_name);
416 if (srel == NULL)
417 {
418 srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
419 (SEC_ALLOC
420 | SEC_LOAD
421 | SEC_HAS_CONTENTS
422 | SEC_IN_MEMORY
423 | SEC_LINKER_CREATED
424 | SEC_READONLY));
425 if (srel == NULL
426 || !bfd_set_section_alignment (dynobj, srel, 3))
427 return FALSE;
428 }
429
430 hppa_info->other_rel_sec = srel;
431 return TRUE;
432}
433
434/* Add a new entry to the list of dynamic relocations against DYN_H.
435
436 We use this to keep a record of all the FPTR relocations against a
437 particular symbol so that we can create FPTR relocations in the
438 output file. */
439
440static bfd_boolean
441count_dyn_reloc (bfd *abfd,
442 struct elf64_hppa_link_hash_entry *hh,
443 int type,
444 asection *sec,
445 int sec_symndx,
446 bfd_vma offset,
447 bfd_vma addend)
448{
449 struct elf64_hppa_dyn_reloc_entry *rent;
450
451 rent = (struct elf64_hppa_dyn_reloc_entry *)
452 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
453 if (!rent)
454 return FALSE;
455
456 rent->next = hh->reloc_entries;
457 rent->type = type;
458 rent->sec = sec;
459 rent->sec_symndx = sec_symndx;
460 rent->offset = offset;
461 rent->addend = addend;
462 hh->reloc_entries = rent;
463
464 return TRUE;
465}
466
467/* Return a pointer to the local DLT, PLT and OPD reference counts
468 for ABFD. Returns NULL if the storage allocation fails. */
469
470static bfd_signed_vma *
471hppa64_elf_local_refcounts (bfd *abfd)
472{
473 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
474 bfd_signed_vma *local_refcounts;
475
476 local_refcounts = elf_local_got_refcounts (abfd);
477 if (local_refcounts == NULL)
478 {
479 bfd_size_type size;
480
481 /* Allocate space for local DLT, PLT and OPD reference
482 counts. Done this way to save polluting elf_obj_tdata
483 with another target specific pointer. */
484 size = symtab_hdr->sh_info;
485 size *= 3 * sizeof (bfd_signed_vma);
486 local_refcounts = bfd_zalloc (abfd, size);
487 elf_local_got_refcounts (abfd) = local_refcounts;
488 }
489 return local_refcounts;
490}
491
492/* Scan the RELOCS and record the type of dynamic entries that each
493 referenced symbol needs. */
494
495static bfd_boolean
496elf64_hppa_check_relocs (bfd *abfd,
497 struct bfd_link_info *info,
498 asection *sec,
499 const Elf_Internal_Rela *relocs)
500{
501 struct elf64_hppa_link_hash_table *hppa_info;
502 const Elf_Internal_Rela *relend;
503 Elf_Internal_Shdr *symtab_hdr;
504 const Elf_Internal_Rela *rel;
505 unsigned int sec_symndx;
506
507 if (bfd_link_relocatable (info))
508 return TRUE;
509
510 /* If this is the first dynamic object found in the link, create
511 the special sections required for dynamic linking. */
512 if (! elf_hash_table (info)->dynamic_sections_created)
513 {
514 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
515 return FALSE;
516 }
517
518 hppa_info = hppa_link_hash_table (info);
519 if (hppa_info == NULL)
520 return FALSE;
521 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
522
523 /* If necessary, build a new table holding section symbols indices
524 for this BFD. */
525
526 if (bfd_link_pic (info) && hppa_info->section_syms_bfd != abfd)
527 {
528 unsigned long i;
529 unsigned int highest_shndx;
530 Elf_Internal_Sym *local_syms = NULL;
531 Elf_Internal_Sym *isym, *isymend;
532 bfd_size_type amt;
533
534 /* We're done with the old cache of section index to section symbol
535 index information. Free it.
536
537 ?!? Note we leak the last section_syms array. Presumably we
538 could free it in one of the later routines in this file. */
539 if (hppa_info->section_syms)
540 free (hppa_info->section_syms);
541
542 /* Read this BFD's local symbols. */
543 if (symtab_hdr->sh_info != 0)
544 {
545 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
546 if (local_syms == NULL)
547 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
548 symtab_hdr->sh_info, 0,
549 NULL, NULL, NULL);
550 if (local_syms == NULL)
551 return FALSE;
552 }
553
554 /* Record the highest section index referenced by the local symbols. */
555 highest_shndx = 0;
556 isymend = local_syms + symtab_hdr->sh_info;
557 for (isym = local_syms; isym < isymend; isym++)
558 {
559 if (isym->st_shndx > highest_shndx
560 && isym->st_shndx < SHN_LORESERVE)
561 highest_shndx = isym->st_shndx;
562 }
563
564 /* Allocate an array to hold the section index to section symbol index
565 mapping. Bump by one since we start counting at zero. */
566 highest_shndx++;
567 amt = highest_shndx;
568 amt *= sizeof (int);
569 hppa_info->section_syms = (int *) bfd_malloc (amt);
570
571 /* Now walk the local symbols again. If we find a section symbol,
572 record the index of the symbol into the section_syms array. */
573 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
574 {
575 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
576 hppa_info->section_syms[isym->st_shndx] = i;
577 }
578
579 /* We are finished with the local symbols. */
580 if (local_syms != NULL
581 && symtab_hdr->contents != (unsigned char *) local_syms)
582 {
583 if (! info->keep_memory)
584 free (local_syms);
585 else
586 {
587 /* Cache the symbols for elf_link_input_bfd. */
588 symtab_hdr->contents = (unsigned char *) local_syms;
589 }
590 }
591
592 /* Record which BFD we built the section_syms mapping for. */
593 hppa_info->section_syms_bfd = abfd;
594 }
595
596 /* Record the symbol index for this input section. We may need it for
597 relocations when building shared libraries. When not building shared
598 libraries this value is never really used, but assign it to zero to
599 prevent out of bounds memory accesses in other routines. */
600 if (bfd_link_pic (info))
601 {
602 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
603
604 /* If we did not find a section symbol for this section, then
605 something went terribly wrong above. */
606 if (sec_symndx == SHN_BAD)
607 return FALSE;
608
609 if (sec_symndx < SHN_LORESERVE)
610 sec_symndx = hppa_info->section_syms[sec_symndx];
611 else
612 sec_symndx = 0;
613 }
614 else
615 sec_symndx = 0;
616
617 relend = relocs + sec->reloc_count;
618 for (rel = relocs; rel < relend; ++rel)
619 {
620 enum
621 {
622 NEED_DLT = 1,
623 NEED_PLT = 2,
624 NEED_STUB = 4,
625 NEED_OPD = 8,
626 NEED_DYNREL = 16,
627 };
628
629 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
630 struct elf64_hppa_link_hash_entry *hh;
631 int need_entry;
632 bfd_boolean maybe_dynamic;
633 int dynrel_type = R_PARISC_NONE;
634 static reloc_howto_type *howto;
635
636 if (r_symndx >= symtab_hdr->sh_info)
637 {
638 /* We're dealing with a global symbol -- find its hash entry
639 and mark it as being referenced. */
640 long indx = r_symndx - symtab_hdr->sh_info;
641 hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
642 while (hh->eh.root.type == bfd_link_hash_indirect
643 || hh->eh.root.type == bfd_link_hash_warning)
644 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
645
646 /* PR15323, ref flags aren't set for references in the same
647 object. */
648 hh->eh.root.non_ir_ref = 1;
649 hh->eh.ref_regular = 1;
650 }
651 else
652 hh = NULL;
653
654 /* We can only get preliminary data on whether a symbol is
655 locally or externally defined, as not all of the input files
656 have yet been processed. Do something with what we know, as
657 this may help reduce memory usage and processing time later. */
658 maybe_dynamic = FALSE;
659 if (hh && ((bfd_link_pic (info)
660 && (!info->symbolic
661 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
662 || !hh->eh.def_regular
663 || hh->eh.root.type == bfd_link_hash_defweak))
664 maybe_dynamic = TRUE;
665
666 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
667 need_entry = 0;
668 switch (howto->type)
669 {
670 /* These are simple indirect references to symbols through the
671 DLT. We need to create a DLT entry for any symbols which
672 appears in a DLTIND relocation. */
673 case R_PARISC_DLTIND21L:
674 case R_PARISC_DLTIND14R:
675 case R_PARISC_DLTIND14F:
676 case R_PARISC_DLTIND14WR:
677 case R_PARISC_DLTIND14DR:
678 need_entry = NEED_DLT;
679 break;
680
681 /* ?!? These need a DLT entry. But I have no idea what to do with
682 the "link time TP value. */
683 case R_PARISC_LTOFF_TP21L:
684 case R_PARISC_LTOFF_TP14R:
685 case R_PARISC_LTOFF_TP14F:
686 case R_PARISC_LTOFF_TP64:
687 case R_PARISC_LTOFF_TP14WR:
688 case R_PARISC_LTOFF_TP14DR:
689 case R_PARISC_LTOFF_TP16F:
690 case R_PARISC_LTOFF_TP16WF:
691 case R_PARISC_LTOFF_TP16DF:
692 need_entry = NEED_DLT;
693 break;
694
695 /* These are function calls. Depending on their precise target we
696 may need to make a stub for them. The stub uses the PLT, so we
697 need to create PLT entries for these symbols too. */
698 case R_PARISC_PCREL12F:
699 case R_PARISC_PCREL17F:
700 case R_PARISC_PCREL22F:
701 case R_PARISC_PCREL32:
702 case R_PARISC_PCREL64:
703 case R_PARISC_PCREL21L:
704 case R_PARISC_PCREL17R:
705 case R_PARISC_PCREL17C:
706 case R_PARISC_PCREL14R:
707 case R_PARISC_PCREL14F:
708 case R_PARISC_PCREL22C:
709 case R_PARISC_PCREL14WR:
710 case R_PARISC_PCREL14DR:
711 case R_PARISC_PCREL16F:
712 case R_PARISC_PCREL16WF:
713 case R_PARISC_PCREL16DF:
714 /* Function calls might need to go through the .plt, and
715 might need a long branch stub. */
716 if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
717 need_entry = (NEED_PLT | NEED_STUB);
718 else
719 need_entry = 0;
720 break;
721
722 case R_PARISC_PLTOFF21L:
723 case R_PARISC_PLTOFF14R:
724 case R_PARISC_PLTOFF14F:
725 case R_PARISC_PLTOFF14WR:
726 case R_PARISC_PLTOFF14DR:
727 case R_PARISC_PLTOFF16F:
728 case R_PARISC_PLTOFF16WF:
729 case R_PARISC_PLTOFF16DF:
730 need_entry = (NEED_PLT);
731 break;
732
733 case R_PARISC_DIR64:
734 if (bfd_link_pic (info) || maybe_dynamic)
735 need_entry = (NEED_DYNREL);
736 dynrel_type = R_PARISC_DIR64;
737 break;
738
739 /* This is an indirect reference through the DLT to get the address
740 of a OPD descriptor. Thus we need to make a DLT entry that points
741 to an OPD entry. */
742 case R_PARISC_LTOFF_FPTR21L:
743 case R_PARISC_LTOFF_FPTR14R:
744 case R_PARISC_LTOFF_FPTR14WR:
745 case R_PARISC_LTOFF_FPTR14DR:
746 case R_PARISC_LTOFF_FPTR32:
747 case R_PARISC_LTOFF_FPTR64:
748 case R_PARISC_LTOFF_FPTR16F:
749 case R_PARISC_LTOFF_FPTR16WF:
750 case R_PARISC_LTOFF_FPTR16DF:
751 if (bfd_link_pic (info) || maybe_dynamic)
752 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
753 else
754 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
755 dynrel_type = R_PARISC_FPTR64;
756 break;
757
758 /* This is a simple OPD entry. */
759 case R_PARISC_FPTR64:
760 if (bfd_link_pic (info) || maybe_dynamic)
761 need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
762 else
763 need_entry = (NEED_OPD | NEED_PLT);
764 dynrel_type = R_PARISC_FPTR64;
765 break;
766
767 /* Add more cases as needed. */
768 }
769
770 if (!need_entry)
771 continue;
772
773 if (hh)
774 {
775 /* Stash away enough information to be able to find this symbol
776 regardless of whether or not it is local or global. */
777 hh->owner = abfd;
778 hh->sym_indx = r_symndx;
779 }
780
781 /* Create what's needed. */
782 if (need_entry & NEED_DLT)
783 {
784 /* Allocate space for a DLT entry, as well as a dynamic
785 relocation for this entry. */
786 if (! hppa_info->dlt_sec
787 && ! get_dlt (abfd, info, hppa_info))
788 goto err_out;
789
790 if (hh != NULL)
791 {
792 hh->want_dlt = 1;
793 hh->eh.got.refcount += 1;
794 }
795 else
796 {
797 bfd_signed_vma *local_dlt_refcounts;
798
799 /* This is a DLT entry for a local symbol. */
800 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
801 if (local_dlt_refcounts == NULL)
802 return FALSE;
803 local_dlt_refcounts[r_symndx] += 1;
804 }
805 }
806
807 if (need_entry & NEED_PLT)
808 {
809 if (! hppa_info->plt_sec
810 && ! get_plt (abfd, info, hppa_info))
811 goto err_out;
812
813 if (hh != NULL)
814 {
815 hh->want_plt = 1;
816 hh->eh.needs_plt = 1;
817 hh->eh.plt.refcount += 1;
818 }
819 else
820 {
821 bfd_signed_vma *local_dlt_refcounts;
822 bfd_signed_vma *local_plt_refcounts;
823
824 /* This is a PLT entry for a local symbol. */
825 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
826 if (local_dlt_refcounts == NULL)
827 return FALSE;
828 local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
829 local_plt_refcounts[r_symndx] += 1;
830 }
831 }
832
833 if (need_entry & NEED_STUB)
834 {
835 if (! hppa_info->stub_sec
836 && ! get_stub (abfd, info, hppa_info))
837 goto err_out;
838 if (hh)
839 hh->want_stub = 1;
840 }
841
842 if (need_entry & NEED_OPD)
843 {
844 if (! hppa_info->opd_sec
845 && ! get_opd (abfd, info, hppa_info))
846 goto err_out;
847
848 /* FPTRs are not allocated by the dynamic linker for PA64,
849 though it is possible that will change in the future. */
850
851 if (hh != NULL)
852 hh->want_opd = 1;
853 else
854 {
855 bfd_signed_vma *local_dlt_refcounts;
856 bfd_signed_vma *local_opd_refcounts;
857
858 /* This is a OPD for a local symbol. */
859 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
860 if (local_dlt_refcounts == NULL)
861 return FALSE;
862 local_opd_refcounts = (local_dlt_refcounts
863 + 2 * symtab_hdr->sh_info);
864 local_opd_refcounts[r_symndx] += 1;
865 }
866 }
867
868 /* Add a new dynamic relocation to the chain of dynamic
869 relocations for this symbol. */
870 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
871 {
872 if (! hppa_info->other_rel_sec
873 && ! get_reloc_section (abfd, hppa_info, sec))
874 goto err_out;
875
876 /* Count dynamic relocations against global symbols. */
877 if (hh != NULL
878 && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
879 sec_symndx, rel->r_offset, rel->r_addend))
880 goto err_out;
881
882 /* If we are building a shared library and we just recorded
883 a dynamic R_PARISC_FPTR64 relocation, then make sure the
884 section symbol for this section ends up in the dynamic
885 symbol table. */
886 if (bfd_link_pic (info) && dynrel_type == R_PARISC_FPTR64
887 && ! (bfd_elf_link_record_local_dynamic_symbol
888 (info, abfd, sec_symndx)))
889 return FALSE;
890 }
891 }
892
893 return TRUE;
894
895 err_out:
896 return FALSE;
897}
898
899struct elf64_hppa_allocate_data
900{
901 struct bfd_link_info *info;
902 bfd_size_type ofs;
903};
904
905/* Should we do dynamic things to this symbol? */
906
907static bfd_boolean
908elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
909 struct bfd_link_info *info)
910{
911 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
912 and relocations that retrieve a function descriptor? Assume the
913 worst for now. */
914 if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
915 {
916 /* ??? Why is this here and not elsewhere is_local_label_name. */
917 if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
918 return FALSE;
919
920 return TRUE;
921 }
922 else
923 return FALSE;
924}
925
926/* Mark all functions exported by this file so that we can later allocate
927 entries in .opd for them. */
928
929static bfd_boolean
930elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
931{
932 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
933 struct bfd_link_info *info = (struct bfd_link_info *)data;
934 struct elf64_hppa_link_hash_table *hppa_info;
935
936 hppa_info = hppa_link_hash_table (info);
937 if (hppa_info == NULL)
938 return FALSE;
939
940 if (eh
941 && (eh->root.type == bfd_link_hash_defined
942 || eh->root.type == bfd_link_hash_defweak)
943 && eh->root.u.def.section->output_section != NULL
944 && eh->type == STT_FUNC)
945 {
946 if (! hppa_info->opd_sec
947 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
948 return FALSE;
949
950 hh->want_opd = 1;
951
952 /* Put a flag here for output_symbol_hook. */
953 hh->st_shndx = -1;
954 eh->needs_plt = 1;
955 }
956
957 return TRUE;
958}
959
960/* Allocate space for a DLT entry. */
961
962static bfd_boolean
963allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
964{
965 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
966 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
967
968 if (hh->want_dlt)
969 {
970 if (bfd_link_pic (x->info))
971 {
972 /* Possibly add the symbol to the local dynamic symbol
973 table since we might need to create a dynamic relocation
974 against it. */
975 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
976 {
977 bfd *owner = eh->root.u.def.section->owner;
978
979 if (! (bfd_elf_link_record_local_dynamic_symbol
980 (x->info, owner, hh->sym_indx)))
981 return FALSE;
982 }
983 }
984
985 hh->dlt_offset = x->ofs;
986 x->ofs += DLT_ENTRY_SIZE;
987 }
988 return TRUE;
989}
990
991/* Allocate space for a DLT.PLT entry. */
992
993static bfd_boolean
994allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
995{
996 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
997 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
998
999 if (hh->want_plt
1000 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1001 && !((eh->root.type == bfd_link_hash_defined
1002 || eh->root.type == bfd_link_hash_defweak)
1003 && eh->root.u.def.section->output_section != NULL))
1004 {
1005 hh->plt_offset = x->ofs;
1006 x->ofs += PLT_ENTRY_SIZE;
1007 if (hh->plt_offset < 0x2000)
1008 {
1009 struct elf64_hppa_link_hash_table *hppa_info;
1010
1011 hppa_info = hppa_link_hash_table (x->info);
1012 if (hppa_info == NULL)
1013 return FALSE;
1014
1015 hppa_info->gp_offset = hh->plt_offset;
1016 }
1017 }
1018 else
1019 hh->want_plt = 0;
1020
1021 return TRUE;
1022}
1023
1024/* Allocate space for a STUB entry. */
1025
1026static bfd_boolean
1027allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1028{
1029 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1030 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1031
1032 if (hh->want_stub
1033 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1034 && !((eh->root.type == bfd_link_hash_defined
1035 || eh->root.type == bfd_link_hash_defweak)
1036 && eh->root.u.def.section->output_section != NULL))
1037 {
1038 hh->stub_offset = x->ofs;
1039 x->ofs += sizeof (plt_stub);
1040 }
1041 else
1042 hh->want_stub = 0;
1043 return TRUE;
1044}
1045
1046/* Allocate space for a FPTR entry. */
1047
1048static bfd_boolean
1049allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1050{
1051 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1052 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1053
1054 if (hh && hh->want_opd)
1055 {
1056 /* We never need an opd entry for a symbol which is not
1057 defined by this output file. */
1058 if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1059 || hh->eh.root.type == bfd_link_hash_undefweak
1060 || hh->eh.root.u.def.section->output_section == NULL))
1061 hh->want_opd = 0;
1062
1063 /* If we are creating a shared library, took the address of a local
1064 function or might export this function from this object file, then
1065 we have to create an opd descriptor. */
1066 else if (bfd_link_pic (x->info)
1067 || hh == NULL
1068 || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1069 || (hh->eh.root.type == bfd_link_hash_defined
1070 || hh->eh.root.type == bfd_link_hash_defweak))
1071 {
1072 /* If we are creating a shared library, then we will have to
1073 create a runtime relocation for the symbol to properly
1074 initialize the .opd entry. Make sure the symbol gets
1075 added to the dynamic symbol table. */
1076 if (bfd_link_pic (x->info)
1077 && (hh == NULL || (hh->eh.dynindx == -1)))
1078 {
1079 bfd *owner;
1080 /* PR 6511: Default to using the dynamic symbol table. */
1081 owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1082
1083 if (!bfd_elf_link_record_local_dynamic_symbol
1084 (x->info, owner, hh->sym_indx))
1085 return FALSE;
1086 }
1087
1088 /* This may not be necessary or desirable anymore now that
1089 we have some support for dealing with section symbols
1090 in dynamic relocs. But name munging does make the result
1091 much easier to debug. ie, the EPLT reloc will reference
1092 a symbol like .foobar, instead of .text + offset. */
1093 if (bfd_link_pic (x->info) && eh)
1094 {
1095 char *new_name;
1096 struct elf_link_hash_entry *nh;
1097
1098 new_name = concat (".", eh->root.root.string, NULL);
1099
1100 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1101 new_name, TRUE, TRUE, TRUE);
1102
1103 free (new_name);
1104 nh->root.type = eh->root.type;
1105 nh->root.u.def.value = eh->root.u.def.value;
1106 nh->root.u.def.section = eh->root.u.def.section;
1107
1108 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1109 return FALSE;
1110 }
1111 hh->opd_offset = x->ofs;
1112 x->ofs += OPD_ENTRY_SIZE;
1113 }
1114
1115 /* Otherwise we do not need an opd entry. */
1116 else
1117 hh->want_opd = 0;
1118 }
1119 return TRUE;
1120}
1121
1122/* HP requires the EI_OSABI field to be filled in. The assignment to
1123 EI_ABIVERSION may not be strictly necessary. */
1124
1125static void
1126elf64_hppa_post_process_headers (bfd *abfd,
1127 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
1128{
1129 Elf_Internal_Ehdr * i_ehdrp;
1130
1131 i_ehdrp = elf_elfheader (abfd);
1132
1133 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1134 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1135}
1136
1137/* Create function descriptor section (.opd). This section is called .opd
1138 because it contains "official procedure descriptors". The "official"
1139 refers to the fact that these descriptors are used when taking the address
1140 of a procedure, thus ensuring a unique address for each procedure. */
1141
1142static bfd_boolean
1143get_opd (bfd *abfd,
1144 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1145 struct elf64_hppa_link_hash_table *hppa_info)
1146{
1147 asection *opd;
1148 bfd *dynobj;
1149
1150 opd = hppa_info->opd_sec;
1151 if (!opd)
1152 {
1153 dynobj = hppa_info->root.dynobj;
1154 if (!dynobj)
1155 hppa_info->root.dynobj = dynobj = abfd;
1156
1157 opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1158 (SEC_ALLOC
1159 | SEC_LOAD
1160 | SEC_HAS_CONTENTS
1161 | SEC_IN_MEMORY
1162 | SEC_LINKER_CREATED));
1163 if (!opd
1164 || !bfd_set_section_alignment (abfd, opd, 3))
1165 {
1166 BFD_ASSERT (0);
1167 return FALSE;
1168 }
1169
1170 hppa_info->opd_sec = opd;
1171 }
1172
1173 return TRUE;
1174}
1175
1176/* Create the PLT section. */
1177
1178static bfd_boolean
1179get_plt (bfd *abfd,
1180 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1181 struct elf64_hppa_link_hash_table *hppa_info)
1182{
1183 asection *plt;
1184 bfd *dynobj;
1185
1186 plt = hppa_info->plt_sec;
1187 if (!plt)
1188 {
1189 dynobj = hppa_info->root.dynobj;
1190 if (!dynobj)
1191 hppa_info->root.dynobj = dynobj = abfd;
1192
1193 plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1194 (SEC_ALLOC
1195 | SEC_LOAD
1196 | SEC_HAS_CONTENTS
1197 | SEC_IN_MEMORY
1198 | SEC_LINKER_CREATED));
1199 if (!plt
1200 || !bfd_set_section_alignment (abfd, plt, 3))
1201 {
1202 BFD_ASSERT (0);
1203 return FALSE;
1204 }
1205
1206 hppa_info->plt_sec = plt;
1207 }
1208
1209 return TRUE;
1210}
1211
1212/* Create the DLT section. */
1213
1214static bfd_boolean
1215get_dlt (bfd *abfd,
1216 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1217 struct elf64_hppa_link_hash_table *hppa_info)
1218{
1219 asection *dlt;
1220 bfd *dynobj;
1221
1222 dlt = hppa_info->dlt_sec;
1223 if (!dlt)
1224 {
1225 dynobj = hppa_info->root.dynobj;
1226 if (!dynobj)
1227 hppa_info->root.dynobj = dynobj = abfd;
1228
1229 dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1230 (SEC_ALLOC
1231 | SEC_LOAD
1232 | SEC_HAS_CONTENTS
1233 | SEC_IN_MEMORY
1234 | SEC_LINKER_CREATED));
1235 if (!dlt
1236 || !bfd_set_section_alignment (abfd, dlt, 3))
1237 {
1238 BFD_ASSERT (0);
1239 return FALSE;
1240 }
1241
1242 hppa_info->dlt_sec = dlt;
1243 }
1244
1245 return TRUE;
1246}
1247
1248/* Create the stubs section. */
1249
1250static bfd_boolean
1251get_stub (bfd *abfd,
1252 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1253 struct elf64_hppa_link_hash_table *hppa_info)
1254{
1255 asection *stub;
1256 bfd *dynobj;
1257
1258 stub = hppa_info->stub_sec;
1259 if (!stub)
1260 {
1261 dynobj = hppa_info->root.dynobj;
1262 if (!dynobj)
1263 hppa_info->root.dynobj = dynobj = abfd;
1264
1265 stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1266 (SEC_ALLOC | SEC_LOAD
1267 | SEC_HAS_CONTENTS
1268 | SEC_IN_MEMORY
1269 | SEC_READONLY
1270 | SEC_LINKER_CREATED));
1271 if (!stub
1272 || !bfd_set_section_alignment (abfd, stub, 3))
1273 {
1274 BFD_ASSERT (0);
1275 return FALSE;
1276 }
1277
1278 hppa_info->stub_sec = stub;
1279 }
1280
1281 return TRUE;
1282}
1283
1284/* Create sections necessary for dynamic linking. This is only a rough
1285 cut and will likely change as we learn more about the somewhat
1286 unusual dynamic linking scheme HP uses.
1287
1288 .stub:
1289 Contains code to implement cross-space calls. The first time one
1290 of the stubs is used it will call into the dynamic linker, later
1291 calls will go straight to the target.
1292
1293 The only stub we support right now looks like
1294
1295 ldd OFFSET(%dp),%r1
1296 bve %r0(%r1)
1297 ldd OFFSET+8(%dp),%dp
1298
1299 Other stubs may be needed in the future. We may want the remove
1300 the break/nop instruction. It is only used right now to keep the
1301 offset of a .plt entry and a .stub entry in sync.
1302
1303 .dlt:
1304 This is what most people call the .got. HP used a different name.
1305 Losers.
1306
1307 .rela.dlt:
1308 Relocations for the DLT.
1309
1310 .plt:
1311 Function pointers as address,gp pairs.
1312
1313 .rela.plt:
1314 Should contain dynamic IPLT (and EPLT?) relocations.
1315
1316 .opd:
1317 FPTRS
1318
1319 .rela.opd:
1320 EPLT relocations for symbols exported from shared libraries. */
1321
1322static bfd_boolean
1323elf64_hppa_create_dynamic_sections (bfd *abfd,
1324 struct bfd_link_info *info)
1325{
1326 asection *s;
1327 struct elf64_hppa_link_hash_table *hppa_info;
1328
1329 hppa_info = hppa_link_hash_table (info);
1330 if (hppa_info == NULL)
1331 return FALSE;
1332
1333 if (! get_stub (abfd, info, hppa_info))
1334 return FALSE;
1335
1336 if (! get_dlt (abfd, info, hppa_info))
1337 return FALSE;
1338
1339 if (! get_plt (abfd, info, hppa_info))
1340 return FALSE;
1341
1342 if (! get_opd (abfd, info, hppa_info))
1343 return FALSE;
1344
1345 s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1346 (SEC_ALLOC | SEC_LOAD
1347 | SEC_HAS_CONTENTS
1348 | SEC_IN_MEMORY
1349 | SEC_READONLY
1350 | SEC_LINKER_CREATED));
1351 if (s == NULL
1352 || !bfd_set_section_alignment (abfd, s, 3))
1353 return FALSE;
1354 hppa_info->dlt_rel_sec = s;
1355
1356 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1357 (SEC_ALLOC | SEC_LOAD
1358 | SEC_HAS_CONTENTS
1359 | SEC_IN_MEMORY
1360 | SEC_READONLY
1361 | SEC_LINKER_CREATED));
1362 if (s == NULL
1363 || !bfd_set_section_alignment (abfd, s, 3))
1364 return FALSE;
1365 hppa_info->plt_rel_sec = s;
1366
1367 s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1368 (SEC_ALLOC | SEC_LOAD
1369 | SEC_HAS_CONTENTS
1370 | SEC_IN_MEMORY
1371 | SEC_READONLY
1372 | SEC_LINKER_CREATED));
1373 if (s == NULL
1374 || !bfd_set_section_alignment (abfd, s, 3))
1375 return FALSE;
1376 hppa_info->other_rel_sec = s;
1377
1378 s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1379 (SEC_ALLOC | SEC_LOAD
1380 | SEC_HAS_CONTENTS
1381 | SEC_IN_MEMORY
1382 | SEC_READONLY
1383 | SEC_LINKER_CREATED));
1384 if (s == NULL
1385 || !bfd_set_section_alignment (abfd, s, 3))
1386 return FALSE;
1387 hppa_info->opd_rel_sec = s;
1388
1389 return TRUE;
1390}
1391
1392/* Allocate dynamic relocations for those symbols that turned out
1393 to be dynamic. */
1394
1395static bfd_boolean
1396allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1397{
1398 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1399 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1400 struct elf64_hppa_link_hash_table *hppa_info;
1401 struct elf64_hppa_dyn_reloc_entry *rent;
1402 bfd_boolean dynamic_symbol, shared;
1403
1404 hppa_info = hppa_link_hash_table (x->info);
1405 if (hppa_info == NULL)
1406 return FALSE;
1407
1408 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1409 shared = bfd_link_pic (x->info);
1410
1411 /* We may need to allocate relocations for a non-dynamic symbol
1412 when creating a shared library. */
1413 if (!dynamic_symbol && !shared)
1414 return TRUE;
1415
1416 /* Take care of the normal data relocations. */
1417
1418 for (rent = hh->reloc_entries; rent; rent = rent->next)
1419 {
1420 /* Allocate one iff we are building a shared library, the relocation
1421 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1422 if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1423 continue;
1424
1425 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1426
1427 /* Make sure this symbol gets into the dynamic symbol table if it is
1428 not already recorded. ?!? This should not be in the loop since
1429 the symbol need only be added once. */
1430 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1431 if (!bfd_elf_link_record_local_dynamic_symbol
1432 (x->info, rent->sec->owner, hh->sym_indx))
1433 return FALSE;
1434 }
1435
1436 /* Take care of the GOT and PLT relocations. */
1437
1438 if ((dynamic_symbol || shared) && hh->want_dlt)
1439 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1440
1441 /* If we are building a shared library, then every symbol that has an
1442 opd entry will need an EPLT relocation to relocate the symbol's address
1443 and __gp value based on the runtime load address. */
1444 if (shared && hh->want_opd)
1445 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1446
1447 if (hh->want_plt && dynamic_symbol)
1448 {
1449 bfd_size_type t = 0;
1450
1451 /* Dynamic symbols get one IPLT relocation. Local symbols in
1452 shared libraries get two REL relocations. Local symbols in
1453 main applications get nothing. */
1454 if (dynamic_symbol)
1455 t = sizeof (Elf64_External_Rela);
1456 else if (shared)
1457 t = 2 * sizeof (Elf64_External_Rela);
1458
1459 hppa_info->plt_rel_sec->size += t;
1460 }
1461
1462 return TRUE;
1463}
1464
1465/* Adjust a symbol defined by a dynamic object and referenced by a
1466 regular object. */
1467
1468static bfd_boolean
1469elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1470 struct elf_link_hash_entry *eh)
1471{
1472 /* ??? Undefined symbols with PLT entries should be re-defined
1473 to be the PLT entry. */
1474
1475 /* If this is a weak symbol, and there is a real definition, the
1476 processor independent code will have arranged for us to see the
1477 real definition first, and we can just use the same value. */
1478 if (eh->u.weakdef != NULL)
1479 {
1480 BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
1481 || eh->u.weakdef->root.type == bfd_link_hash_defweak);
1482 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1483 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1484 return TRUE;
1485 }
1486
1487 /* If this is a reference to a symbol defined by a dynamic object which
1488 is not a function, we might allocate the symbol in our .dynbss section
1489 and allocate a COPY dynamic relocation.
1490
1491 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1492 of hackery. */
1493
1494 return TRUE;
1495}
1496
1497/* This function is called via elf_link_hash_traverse to mark millicode
1498 symbols with a dynindx of -1 and to remove the string table reference
1499 from the dynamic symbol table. If the symbol is not a millicode symbol,
1500 elf64_hppa_mark_exported_functions is called. */
1501
1502static bfd_boolean
1503elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1504 void *data)
1505{
1506 struct bfd_link_info *info = (struct bfd_link_info *) data;
1507
1508 if (eh->type == STT_PARISC_MILLI)
1509 {
1510 if (eh->dynindx != -1)
1511 {
1512 eh->dynindx = -1;
1513 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1514 eh->dynstr_index);
1515 }
1516 return TRUE;
1517 }
1518
1519 return elf64_hppa_mark_exported_functions (eh, data);
1520}
1521
1522/* Set the final sizes of the dynamic sections and allocate memory for
1523 the contents of our special sections. */
1524
1525static bfd_boolean
1526elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1527{
1528 struct elf64_hppa_link_hash_table *hppa_info;
1529 struct elf64_hppa_allocate_data data;
1530 bfd *dynobj;
1531 bfd *ibfd;
1532 asection *sec;
1533 bfd_boolean plt;
1534 bfd_boolean relocs;
1535 bfd_boolean reltext;
1536
1537 hppa_info = hppa_link_hash_table (info);
1538 if (hppa_info == NULL)
1539 return FALSE;
1540
1541 dynobj = elf_hash_table (info)->dynobj;
1542 BFD_ASSERT (dynobj != NULL);
1543
1544 /* Mark each function this program exports so that we will allocate
1545 space in the .opd section for each function's FPTR. If we are
1546 creating dynamic sections, change the dynamic index of millicode
1547 symbols to -1 and remove them from the string table for .dynstr.
1548
1549 We have to traverse the main linker hash table since we have to
1550 find functions which may not have been mentioned in any relocs. */
1551 elf_link_hash_traverse (elf_hash_table (info),
1552 (elf_hash_table (info)->dynamic_sections_created
1553 ? elf64_hppa_mark_milli_and_exported_functions
1554 : elf64_hppa_mark_exported_functions),
1555 info);
1556
1557 if (elf_hash_table (info)->dynamic_sections_created)
1558 {
1559 /* Set the contents of the .interp section to the interpreter. */
1560 if (bfd_link_executable (info) && !info->nointerp)
1561 {
1562 sec = bfd_get_linker_section (dynobj, ".interp");
1563 BFD_ASSERT (sec != NULL);
1564 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1565 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1566 }
1567 }
1568 else
1569 {
1570 /* We may have created entries in the .rela.got section.
1571 However, if we are not creating the dynamic sections, we will
1572 not actually use these entries. Reset the size of .rela.dlt,
1573 which will cause it to get stripped from the output file
1574 below. */
1575 sec = bfd_get_linker_section (dynobj, ".rela.dlt");
1576 if (sec != NULL)
1577 sec->size = 0;
1578 }
1579
1580 /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1581 dynamic relocs. */
1582 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1583 {
1584 bfd_signed_vma *local_dlt;
1585 bfd_signed_vma *end_local_dlt;
1586 bfd_signed_vma *local_plt;
1587 bfd_signed_vma *end_local_plt;
1588 bfd_signed_vma *local_opd;
1589 bfd_signed_vma *end_local_opd;
1590 bfd_size_type locsymcount;
1591 Elf_Internal_Shdr *symtab_hdr;
1592 asection *srel;
1593
1594 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1595 continue;
1596
1597 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1598 {
1599 struct elf64_hppa_dyn_reloc_entry *hdh_p;
1600
1601 for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1602 elf_section_data (sec)->local_dynrel);
1603 hdh_p != NULL;
1604 hdh_p = hdh_p->next)
1605 {
1606 if (!bfd_is_abs_section (hdh_p->sec)
1607 && bfd_is_abs_section (hdh_p->sec->output_section))
1608 {
1609 /* Input section has been discarded, either because
1610 it is a copy of a linkonce section or due to
1611 linker script /DISCARD/, so we'll be discarding
1612 the relocs too. */
1613 }
1614 else if (hdh_p->count != 0)
1615 {
1616 srel = elf_section_data (hdh_p->sec)->sreloc;
1617 srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1618 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1619 info->flags |= DF_TEXTREL;
1620 }
1621 }
1622 }
1623
1624 local_dlt = elf_local_got_refcounts (ibfd);
1625 if (!local_dlt)
1626 continue;
1627
1628 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1629 locsymcount = symtab_hdr->sh_info;
1630 end_local_dlt = local_dlt + locsymcount;
1631 sec = hppa_info->dlt_sec;
1632 srel = hppa_info->dlt_rel_sec;
1633 for (; local_dlt < end_local_dlt; ++local_dlt)
1634 {
1635 if (*local_dlt > 0)
1636 {
1637 *local_dlt = sec->size;
1638 sec->size += DLT_ENTRY_SIZE;
1639 if (bfd_link_pic (info))
1640 {
1641 srel->size += sizeof (Elf64_External_Rela);
1642 }
1643 }
1644 else
1645 *local_dlt = (bfd_vma) -1;
1646 }
1647
1648 local_plt = end_local_dlt;
1649 end_local_plt = local_plt + locsymcount;
1650 if (! hppa_info->root.dynamic_sections_created)
1651 {
1652 /* Won't be used, but be safe. */
1653 for (; local_plt < end_local_plt; ++local_plt)
1654 *local_plt = (bfd_vma) -1;
1655 }
1656 else
1657 {
1658 sec = hppa_info->plt_sec;
1659 srel = hppa_info->plt_rel_sec;
1660 for (; local_plt < end_local_plt; ++local_plt)
1661 {
1662 if (*local_plt > 0)
1663 {
1664 *local_plt = sec->size;
1665 sec->size += PLT_ENTRY_SIZE;
1666 if (bfd_link_pic (info))
1667 srel->size += sizeof (Elf64_External_Rela);
1668 }
1669 else
1670 *local_plt = (bfd_vma) -1;
1671 }
1672 }
1673
1674 local_opd = end_local_plt;
1675 end_local_opd = local_opd + locsymcount;
1676 if (! hppa_info->root.dynamic_sections_created)
1677 {
1678 /* Won't be used, but be safe. */
1679 for (; local_opd < end_local_opd; ++local_opd)
1680 *local_opd = (bfd_vma) -1;
1681 }
1682 else
1683 {
1684 sec = hppa_info->opd_sec;
1685 srel = hppa_info->opd_rel_sec;
1686 for (; local_opd < end_local_opd; ++local_opd)
1687 {
1688 if (*local_opd > 0)
1689 {
1690 *local_opd = sec->size;
1691 sec->size += OPD_ENTRY_SIZE;
1692 if (bfd_link_pic (info))
1693 srel->size += sizeof (Elf64_External_Rela);
1694 }
1695 else
1696 *local_opd = (bfd_vma) -1;
1697 }
1698 }
1699 }
1700
1701 /* Allocate the GOT entries. */
1702
1703 data.info = info;
1704 if (hppa_info->dlt_sec)
1705 {
1706 data.ofs = hppa_info->dlt_sec->size;
1707 elf_link_hash_traverse (elf_hash_table (info),
1708 allocate_global_data_dlt, &data);
1709 hppa_info->dlt_sec->size = data.ofs;
1710 }
1711
1712 if (hppa_info->plt_sec)
1713 {
1714 data.ofs = hppa_info->plt_sec->size;
1715 elf_link_hash_traverse (elf_hash_table (info),
1716 allocate_global_data_plt, &data);
1717 hppa_info->plt_sec->size = data.ofs;
1718 }
1719
1720 if (hppa_info->stub_sec)
1721 {
1722 data.ofs = 0x0;
1723 elf_link_hash_traverse (elf_hash_table (info),
1724 allocate_global_data_stub, &data);
1725 hppa_info->stub_sec->size = data.ofs;
1726 }
1727
1728 /* Allocate space for entries in the .opd section. */
1729 if (hppa_info->opd_sec)
1730 {
1731 data.ofs = hppa_info->opd_sec->size;
1732 elf_link_hash_traverse (elf_hash_table (info),
1733 allocate_global_data_opd, &data);
1734 hppa_info->opd_sec->size = data.ofs;
1735 }
1736
1737 /* Now allocate space for dynamic relocations, if necessary. */
1738 if (hppa_info->root.dynamic_sections_created)
1739 elf_link_hash_traverse (elf_hash_table (info),
1740 allocate_dynrel_entries, &data);
1741
1742 /* The sizes of all the sections are set. Allocate memory for them. */
1743 plt = FALSE;
1744 relocs = FALSE;
1745 reltext = FALSE;
1746 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1747 {
1748 const char *name;
1749
1750 if ((sec->flags & SEC_LINKER_CREATED) == 0)
1751 continue;
1752
1753 /* It's OK to base decisions on the section name, because none
1754 of the dynobj section names depend upon the input files. */
1755 name = bfd_get_section_name (dynobj, sec);
1756
1757 if (strcmp (name, ".plt") == 0)
1758 {
1759 /* Remember whether there is a PLT. */
1760 plt = sec->size != 0;
1761 }
1762 else if (strcmp (name, ".opd") == 0
1763 || CONST_STRNEQ (name, ".dlt")
1764 || strcmp (name, ".stub") == 0
1765 || strcmp (name, ".got") == 0)
1766 {
1767 /* Strip this section if we don't need it; see the comment below. */
1768 }
1769 else if (CONST_STRNEQ (name, ".rela"))
1770 {
1771 if (sec->size != 0)
1772 {
1773 asection *target;
1774
1775 /* Remember whether there are any reloc sections other
1776 than .rela.plt. */
1777 if (strcmp (name, ".rela.plt") != 0)
1778 {
1779 const char *outname;
1780
1781 relocs = TRUE;
1782
1783 /* If this relocation section applies to a read only
1784 section, then we probably need a DT_TEXTREL
1785 entry. The entries in the .rela.plt section
1786 really apply to the .got section, which we
1787 created ourselves and so know is not readonly. */
1788 outname = bfd_get_section_name (output_bfd,
1789 sec->output_section);
1790 target = bfd_get_section_by_name (output_bfd, outname + 4);
1791 if (target != NULL
1792 && (target->flags & SEC_READONLY) != 0
1793 && (target->flags & SEC_ALLOC) != 0)
1794 reltext = TRUE;
1795 }
1796
1797 /* We use the reloc_count field as a counter if we need
1798 to copy relocs into the output file. */
1799 sec->reloc_count = 0;
1800 }
1801 }
1802 else
1803 {
1804 /* It's not one of our sections, so don't allocate space. */
1805 continue;
1806 }
1807
1808 if (sec->size == 0)
1809 {
1810 /* If we don't need this section, strip it from the
1811 output file. This is mostly to handle .rela.bss and
1812 .rela.plt. We must create both sections in
1813 create_dynamic_sections, because they must be created
1814 before the linker maps input sections to output
1815 sections. The linker does that before
1816 adjust_dynamic_symbol is called, and it is that
1817 function which decides whether anything needs to go
1818 into these sections. */
1819 sec->flags |= SEC_EXCLUDE;
1820 continue;
1821 }
1822
1823 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1824 continue;
1825
1826 /* Allocate memory for the section contents if it has not
1827 been allocated already. We use bfd_zalloc here in case
1828 unused entries are not reclaimed before the section's
1829 contents are written out. This should not happen, but this
1830 way if it does, we get a R_PARISC_NONE reloc instead of
1831 garbage. */
1832 if (sec->contents == NULL)
1833 {
1834 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1835 if (sec->contents == NULL)
1836 return FALSE;
1837 }
1838 }
1839
1840 if (elf_hash_table (info)->dynamic_sections_created)
1841 {
1842 /* Always create a DT_PLTGOT. It actually has nothing to do with
1843 the PLT, it is how we communicate the __gp value of a load
1844 module to the dynamic linker. */
1845#define add_dynamic_entry(TAG, VAL) \
1846 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1847
1848 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1849 || !add_dynamic_entry (DT_PLTGOT, 0))
1850 return FALSE;
1851
1852 /* Add some entries to the .dynamic section. We fill in the
1853 values later, in elf64_hppa_finish_dynamic_sections, but we
1854 must add the entries now so that we get the correct size for
1855 the .dynamic section. The DT_DEBUG entry is filled in by the
1856 dynamic linker and used by the debugger. */
1857 if (! bfd_link_pic (info))
1858 {
1859 if (!add_dynamic_entry (DT_DEBUG, 0)
1860 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1861 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1862 return FALSE;
1863 }
1864
1865 /* Force DT_FLAGS to always be set.
1866 Required by HPUX 11.00 patch PHSS_26559. */
1867 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1868 return FALSE;
1869
1870 if (plt)
1871 {
1872 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1873 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1874 || !add_dynamic_entry (DT_JMPREL, 0))
1875 return FALSE;
1876 }
1877
1878 if (relocs)
1879 {
1880 if (!add_dynamic_entry (DT_RELA, 0)
1881 || !add_dynamic_entry (DT_RELASZ, 0)
1882 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1883 return FALSE;
1884 }
1885
1886 if (reltext)
1887 {
1888 if (!add_dynamic_entry (DT_TEXTREL, 0))
1889 return FALSE;
1890 info->flags |= DF_TEXTREL;
1891 }
1892 }
1893#undef add_dynamic_entry
1894
1895 return TRUE;
1896}
1897
1898/* Called after we have output the symbol into the dynamic symbol
1899 table, but before we output the symbol into the normal symbol
1900 table.
1901
1902 For some symbols we had to change their address when outputting
1903 the dynamic symbol table. We undo that change here so that
1904 the symbols have their expected value in the normal symbol
1905 table. Ick. */
1906
1907static int
1908elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1909 const char *name,
1910 Elf_Internal_Sym *sym,
1911 asection *input_sec ATTRIBUTE_UNUSED,
1912 struct elf_link_hash_entry *eh)
1913{
1914 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1915
1916 /* We may be called with the file symbol or section symbols.
1917 They never need munging, so it is safe to ignore them. */
1918 if (!name || !eh)
1919 return 1;
1920
1921 /* Function symbols for which we created .opd entries *may* have been
1922 munged by finish_dynamic_symbol and have to be un-munged here.
1923
1924 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1925 into non-dynamic ones, so we initialize st_shndx to -1 in
1926 mark_exported_functions and check to see if it was overwritten
1927 here instead of just checking eh->dynindx. */
1928 if (hh->want_opd && hh->st_shndx != -1)
1929 {
1930 /* Restore the saved value and section index. */
1931 sym->st_value = hh->st_value;
1932 sym->st_shndx = hh->st_shndx;
1933 }
1934
1935 return 1;
1936}
1937
1938/* Finish up dynamic symbol handling. We set the contents of various
1939 dynamic sections here. */
1940
1941static bfd_boolean
1942elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1943 struct bfd_link_info *info,
1944 struct elf_link_hash_entry *eh,
1945 Elf_Internal_Sym *sym)
1946{
1947 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1948 asection *stub, *splt, *sopd, *spltrel;
1949 struct elf64_hppa_link_hash_table *hppa_info;
1950
1951 hppa_info = hppa_link_hash_table (info);
1952 if (hppa_info == NULL)
1953 return FALSE;
1954
1955 stub = hppa_info->stub_sec;
1956 splt = hppa_info->plt_sec;
1957 sopd = hppa_info->opd_sec;
1958 spltrel = hppa_info->plt_rel_sec;
1959
1960 /* Incredible. It is actually necessary to NOT use the symbol's real
1961 value when building the dynamic symbol table for a shared library.
1962 At least for symbols that refer to functions.
1963
1964 We will store a new value and section index into the symbol long
1965 enough to output it into the dynamic symbol table, then we restore
1966 the original values (in elf64_hppa_link_output_symbol_hook). */
1967 if (hh->want_opd)
1968 {
1969 BFD_ASSERT (sopd != NULL);
1970
1971 /* Save away the original value and section index so that we
1972 can restore them later. */
1973 hh->st_value = sym->st_value;
1974 hh->st_shndx = sym->st_shndx;
1975
1976 /* For the dynamic symbol table entry, we want the value to be
1977 address of this symbol's entry within the .opd section. */
1978 sym->st_value = (hh->opd_offset
1979 + sopd->output_offset
1980 + sopd->output_section->vma);
1981 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1982 sopd->output_section);
1983 }
1984
1985 /* Initialize a .plt entry if requested. */
1986 if (hh->want_plt
1987 && elf64_hppa_dynamic_symbol_p (eh, info))
1988 {
1989 bfd_vma value;
1990 Elf_Internal_Rela rel;
1991 bfd_byte *loc;
1992
1993 BFD_ASSERT (splt != NULL && spltrel != NULL);
1994
1995 /* We do not actually care about the value in the PLT entry
1996 if we are creating a shared library and the symbol is
1997 still undefined, we create a dynamic relocation to fill
1998 in the correct value. */
1999 if (bfd_link_pic (info) && eh->root.type == bfd_link_hash_undefined)
2000 value = 0;
2001 else
2002 value = (eh->root.u.def.value + eh->root.u.def.section->vma);
2003
2004 /* Fill in the entry in the procedure linkage table.
2005
2006 The format of a plt entry is
2007 <funcaddr> <__gp>.
2008
2009 plt_offset is the offset within the PLT section at which to
2010 install the PLT entry.
2011
2012 We are modifying the in-memory PLT contents here, so we do not add
2013 in the output_offset of the PLT section. */
2014
2015 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2016 value = _bfd_get_gp_value (splt->output_section->owner);
2017 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2018
2019 /* Create a dynamic IPLT relocation for this entry.
2020
2021 We are creating a relocation in the output file's PLT section,
2022 which is included within the DLT secton. So we do need to include
2023 the PLT's output_offset in the computation of the relocation's
2024 address. */
2025 rel.r_offset = (hh->plt_offset + splt->output_offset
2026 + splt->output_section->vma);
2027 rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2028 rel.r_addend = 0;
2029
2030 loc = spltrel->contents;
2031 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2032 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2033 }
2034
2035 /* Initialize an external call stub entry if requested. */
2036 if (hh->want_stub
2037 && elf64_hppa_dynamic_symbol_p (eh, info))
2038 {
2039 bfd_vma value;
2040 int insn;
2041 unsigned int max_offset;
2042
2043 BFD_ASSERT (stub != NULL);
2044
2045 /* Install the generic stub template.
2046
2047 We are modifying the contents of the stub section, so we do not
2048 need to include the stub section's output_offset here. */
2049 memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2050
2051 /* Fix up the first ldd instruction.
2052
2053 We are modifying the contents of the STUB section in memory,
2054 so we do not need to include its output offset in this computation.
2055
2056 Note the plt_offset value is the value of the PLT entry relative to
2057 the start of the PLT section. These instructions will reference
2058 data relative to the value of __gp, which may not necessarily have
2059 the same address as the start of the PLT section.
2060
2061 gp_offset contains the offset of __gp within the PLT section. */
2062 value = hh->plt_offset - hppa_info->gp_offset;
2063
2064 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2065 if (output_bfd->arch_info->mach >= 25)
2066 {
2067 /* Wide mode allows 16 bit offsets. */
2068 max_offset = 32768;
2069 insn &= ~ 0xfff1;
2070 insn |= re_assemble_16 ((int) value);
2071 }
2072 else
2073 {
2074 max_offset = 8192;
2075 insn &= ~ 0x3ff1;
2076 insn |= re_assemble_14 ((int) value);
2077 }
2078
2079 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2080 {
2081 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2082 hh->eh.root.root.string,
2083 (long) value);
2084 return FALSE;
2085 }
2086
2087 bfd_put_32 (stub->owner, (bfd_vma) insn,
2088 stub->contents + hh->stub_offset);
2089
2090 /* Fix up the second ldd instruction. */
2091 value += 8;
2092 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2093 if (output_bfd->arch_info->mach >= 25)
2094 {
2095 insn &= ~ 0xfff1;
2096 insn |= re_assemble_16 ((int) value);
2097 }
2098 else
2099 {
2100 insn &= ~ 0x3ff1;
2101 insn |= re_assemble_14 ((int) value);
2102 }
2103 bfd_put_32 (stub->owner, (bfd_vma) insn,
2104 stub->contents + hh->stub_offset + 8);
2105 }
2106
2107 return TRUE;
2108}
2109
2110/* The .opd section contains FPTRs for each function this file
2111 exports. Initialize the FPTR entries. */
2112
2113static bfd_boolean
2114elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2115{
2116 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2117 struct bfd_link_info *info = (struct bfd_link_info *)data;
2118 struct elf64_hppa_link_hash_table *hppa_info;
2119 asection *sopd;
2120 asection *sopdrel;
2121
2122 hppa_info = hppa_link_hash_table (info);
2123 if (hppa_info == NULL)
2124 return FALSE;
2125
2126 sopd = hppa_info->opd_sec;
2127 sopdrel = hppa_info->opd_rel_sec;
2128
2129 if (hh->want_opd)
2130 {
2131 bfd_vma value;
2132
2133 /* The first two words of an .opd entry are zero.
2134
2135 We are modifying the contents of the OPD section in memory, so we
2136 do not need to include its output offset in this computation. */
2137 memset (sopd->contents + hh->opd_offset, 0, 16);
2138
2139 value = (eh->root.u.def.value
2140 + eh->root.u.def.section->output_section->vma
2141 + eh->root.u.def.section->output_offset);
2142
2143 /* The next word is the address of the function. */
2144 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2145
2146 /* The last word is our local __gp value. */
2147 value = _bfd_get_gp_value (sopd->output_section->owner);
2148 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2149 }
2150
2151 /* If we are generating a shared library, we must generate EPLT relocations
2152 for each entry in the .opd, even for static functions (they may have
2153 had their address taken). */
2154 if (bfd_link_pic (info) && hh->want_opd)
2155 {
2156 Elf_Internal_Rela rel;
2157 bfd_byte *loc;
2158 int dynindx;
2159
2160 /* We may need to do a relocation against a local symbol, in
2161 which case we have to look up it's dynamic symbol index off
2162 the local symbol hash table. */
2163 if (eh->dynindx != -1)
2164 dynindx = eh->dynindx;
2165 else
2166 dynindx
2167 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2168 hh->sym_indx);
2169
2170 /* The offset of this relocation is the absolute address of the
2171 .opd entry for this symbol. */
2172 rel.r_offset = (hh->opd_offset + sopd->output_offset
2173 + sopd->output_section->vma);
2174
2175 /* If H is non-null, then we have an external symbol.
2176
2177 It is imperative that we use a different dynamic symbol for the
2178 EPLT relocation if the symbol has global scope.
2179
2180 In the dynamic symbol table, the function symbol will have a value
2181 which is address of the function's .opd entry.
2182
2183 Thus, we can not use that dynamic symbol for the EPLT relocation
2184 (if we did, the data in the .opd would reference itself rather
2185 than the actual address of the function). Instead we have to use
2186 a new dynamic symbol which has the same value as the original global
2187 function symbol.
2188
2189 We prefix the original symbol with a "." and use the new symbol in
2190 the EPLT relocation. This new symbol has already been recorded in
2191 the symbol table, we just have to look it up and use it.
2192
2193 We do not have such problems with static functions because we do
2194 not make their addresses in the dynamic symbol table point to
2195 the .opd entry. Ultimately this should be safe since a static
2196 function can not be directly referenced outside of its shared
2197 library.
2198
2199 We do have to play similar games for FPTR relocations in shared
2200 libraries, including those for static symbols. See the FPTR
2201 handling in elf64_hppa_finalize_dynreloc. */
2202 if (eh)
2203 {
2204 char *new_name;
2205 struct elf_link_hash_entry *nh;
2206
2207 new_name = concat (".", eh->root.root.string, NULL);
2208
2209 nh = elf_link_hash_lookup (elf_hash_table (info),
2210 new_name, TRUE, TRUE, FALSE);
2211
2212 /* All we really want from the new symbol is its dynamic
2213 symbol index. */
2214 if (nh)
2215 dynindx = nh->dynindx;
2216 free (new_name);
2217 }
2218
2219 rel.r_addend = 0;
2220 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2221
2222 loc = sopdrel->contents;
2223 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2224 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2225 }
2226 return TRUE;
2227}
2228
2229/* The .dlt section contains addresses for items referenced through the
2230 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2231 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2232
2233static bfd_boolean
2234elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2235{
2236 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2237 struct bfd_link_info *info = (struct bfd_link_info *)data;
2238 struct elf64_hppa_link_hash_table *hppa_info;
2239 asection *sdlt, *sdltrel;
2240
2241 hppa_info = hppa_link_hash_table (info);
2242 if (hppa_info == NULL)
2243 return FALSE;
2244
2245 sdlt = hppa_info->dlt_sec;
2246 sdltrel = hppa_info->dlt_rel_sec;
2247
2248 /* H/DYN_H may refer to a local variable and we know it's
2249 address, so there is no need to create a relocation. Just install
2250 the proper value into the DLT, note this shortcut can not be
2251 skipped when building a shared library. */
2252 if (! bfd_link_pic (info) && hh && hh->want_dlt)
2253 {
2254 bfd_vma value;
2255
2256 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2257 to point to the FPTR entry in the .opd section.
2258
2259 We include the OPD's output offset in this computation as
2260 we are referring to an absolute address in the resulting
2261 object file. */
2262 if (hh->want_opd)
2263 {
2264 value = (hh->opd_offset
2265 + hppa_info->opd_sec->output_offset
2266 + hppa_info->opd_sec->output_section->vma);
2267 }
2268 else if ((eh->root.type == bfd_link_hash_defined
2269 || eh->root.type == bfd_link_hash_defweak)
2270 && eh->root.u.def.section)
2271 {
2272 value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2273 if (eh->root.u.def.section->output_section)
2274 value += eh->root.u.def.section->output_section->vma;
2275 else
2276 value += eh->root.u.def.section->vma;
2277 }
2278 else
2279 /* We have an undefined function reference. */
2280 value = 0;
2281
2282 /* We do not need to include the output offset of the DLT section
2283 here because we are modifying the in-memory contents. */
2284 bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2285 }
2286
2287 /* Create a relocation for the DLT entry associated with this symbol.
2288 When building a shared library the symbol does not have to be dynamic. */
2289 if (hh->want_dlt
2290 && (elf64_hppa_dynamic_symbol_p (eh, info) || bfd_link_pic (info)))
2291 {
2292 Elf_Internal_Rela rel;
2293 bfd_byte *loc;
2294 int dynindx;
2295
2296 /* We may need to do a relocation against a local symbol, in
2297 which case we have to look up it's dynamic symbol index off
2298 the local symbol hash table. */
2299 if (eh && eh->dynindx != -1)
2300 dynindx = eh->dynindx;
2301 else
2302 dynindx
2303 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2304 hh->sym_indx);
2305
2306 /* Create a dynamic relocation for this entry. Do include the output
2307 offset of the DLT entry since we need an absolute address in the
2308 resulting object file. */
2309 rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2310 + sdlt->output_section->vma);
2311 if (eh && eh->type == STT_FUNC)
2312 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2313 else
2314 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2315 rel.r_addend = 0;
2316
2317 loc = sdltrel->contents;
2318 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2319 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2320 }
2321 return TRUE;
2322}
2323
2324/* Finalize the dynamic relocations. Specifically the FPTR relocations
2325 for dynamic functions used to initialize static data. */
2326
2327static bfd_boolean
2328elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2329 void *data)
2330{
2331 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2332 struct bfd_link_info *info = (struct bfd_link_info *)data;
2333 struct elf64_hppa_link_hash_table *hppa_info;
2334 int dynamic_symbol;
2335
2336 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2337
2338 if (!dynamic_symbol && !bfd_link_pic (info))
2339 return TRUE;
2340
2341 if (hh->reloc_entries)
2342 {
2343 struct elf64_hppa_dyn_reloc_entry *rent;
2344 int dynindx;
2345
2346 hppa_info = hppa_link_hash_table (info);
2347 if (hppa_info == NULL)
2348 return FALSE;
2349
2350 /* We may need to do a relocation against a local symbol, in
2351 which case we have to look up it's dynamic symbol index off
2352 the local symbol hash table. */
2353 if (eh->dynindx != -1)
2354 dynindx = eh->dynindx;
2355 else
2356 dynindx
2357 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2358 hh->sym_indx);
2359
2360 for (rent = hh->reloc_entries; rent; rent = rent->next)
2361 {
2362 Elf_Internal_Rela rel;
2363 bfd_byte *loc;
2364
2365 /* Allocate one iff we are building a shared library, the relocation
2366 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2367 if (!bfd_link_pic (info)
2368 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2369 continue;
2370
2371 /* Create a dynamic relocation for this entry.
2372
2373 We need the output offset for the reloc's section because
2374 we are creating an absolute address in the resulting object
2375 file. */
2376 rel.r_offset = (rent->offset + rent->sec->output_offset
2377 + rent->sec->output_section->vma);
2378
2379 /* An FPTR64 relocation implies that we took the address of
2380 a function and that the function has an entry in the .opd
2381 section. We want the FPTR64 relocation to reference the
2382 entry in .opd.
2383
2384 We could munge the symbol value in the dynamic symbol table
2385 (in fact we already do for functions with global scope) to point
2386 to the .opd entry. Then we could use that dynamic symbol in
2387 this relocation.
2388
2389 Or we could do something sensible, not munge the symbol's
2390 address and instead just use a different symbol to reference
2391 the .opd entry. At least that seems sensible until you
2392 realize there's no local dynamic symbols we can use for that
2393 purpose. Thus the hair in the check_relocs routine.
2394
2395 We use a section symbol recorded by check_relocs as the
2396 base symbol for the relocation. The addend is the difference
2397 between the section symbol and the address of the .opd entry. */
2398 if (bfd_link_pic (info)
2399 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2400 {
2401 bfd_vma value, value2;
2402
2403 /* First compute the address of the opd entry for this symbol. */
2404 value = (hh->opd_offset
2405 + hppa_info->opd_sec->output_section->vma
2406 + hppa_info->opd_sec->output_offset);
2407
2408 /* Compute the value of the start of the section with
2409 the relocation. */
2410 value2 = (rent->sec->output_section->vma
2411 + rent->sec->output_offset);
2412
2413 /* Compute the difference between the start of the section
2414 with the relocation and the opd entry. */
2415 value -= value2;
2416
2417 /* The result becomes the addend of the relocation. */
2418 rel.r_addend = value;
2419
2420 /* The section symbol becomes the symbol for the dynamic
2421 relocation. */
2422 dynindx
2423 = _bfd_elf_link_lookup_local_dynindx (info,
2424 rent->sec->owner,
2425 rent->sec_symndx);
2426 }
2427 else
2428 rel.r_addend = rent->addend;
2429
2430 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2431
2432 loc = hppa_info->other_rel_sec->contents;
2433 loc += (hppa_info->other_rel_sec->reloc_count++
2434 * sizeof (Elf64_External_Rela));
2435 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2436 &rel, loc);
2437 }
2438 }
2439
2440 return TRUE;
2441}
2442
2443/* Used to decide how to sort relocs in an optimal manner for the
2444 dynamic linker, before writing them out. */
2445
2446static enum elf_reloc_type_class
2447elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2448 const asection *rel_sec ATTRIBUTE_UNUSED,
2449 const Elf_Internal_Rela *rela)
2450{
2451 if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2452 return reloc_class_relative;
2453
2454 switch ((int) ELF64_R_TYPE (rela->r_info))
2455 {
2456 case R_PARISC_IPLT:
2457 return reloc_class_plt;
2458 case R_PARISC_COPY:
2459 return reloc_class_copy;
2460 default:
2461 return reloc_class_normal;
2462 }
2463}
2464
2465/* Finish up the dynamic sections. */
2466
2467static bfd_boolean
2468elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2469 struct bfd_link_info *info)
2470{
2471 bfd *dynobj;
2472 asection *sdyn;
2473 struct elf64_hppa_link_hash_table *hppa_info;
2474
2475 hppa_info = hppa_link_hash_table (info);
2476 if (hppa_info == NULL)
2477 return FALSE;
2478
2479 /* Finalize the contents of the .opd section. */
2480 elf_link_hash_traverse (elf_hash_table (info),
2481 elf64_hppa_finalize_opd,
2482 info);
2483
2484 elf_link_hash_traverse (elf_hash_table (info),
2485 elf64_hppa_finalize_dynreloc,
2486 info);
2487
2488 /* Finalize the contents of the .dlt section. */
2489 dynobj = elf_hash_table (info)->dynobj;
2490 /* Finalize the contents of the .dlt section. */
2491 elf_link_hash_traverse (elf_hash_table (info),
2492 elf64_hppa_finalize_dlt,
2493 info);
2494
2495 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2496
2497 if (elf_hash_table (info)->dynamic_sections_created)
2498 {
2499 Elf64_External_Dyn *dyncon, *dynconend;
2500
2501 BFD_ASSERT (sdyn != NULL);
2502
2503 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2504 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2505 for (; dyncon < dynconend; dyncon++)
2506 {
2507 Elf_Internal_Dyn dyn;
2508 asection *s;
2509
2510 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2511
2512 switch (dyn.d_tag)
2513 {
2514 default:
2515 break;
2516
2517 case DT_HP_LOAD_MAP:
2518 /* Compute the absolute address of 16byte scratchpad area
2519 for the dynamic linker.
2520
2521 By convention the linker script will allocate the scratchpad
2522 area at the start of the .data section. So all we have to
2523 to is find the start of the .data section. */
2524 s = bfd_get_section_by_name (output_bfd, ".data");
2525 if (!s)
2526 return FALSE;
2527 dyn.d_un.d_ptr = s->vma;
2528 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2529 break;
2530
2531 case DT_PLTGOT:
2532 /* HP's use PLTGOT to set the GOT register. */
2533 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2534 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2535 break;
2536
2537 case DT_JMPREL:
2538 s = hppa_info->plt_rel_sec;
2539 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2540 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2541 break;
2542
2543 case DT_PLTRELSZ:
2544 s = hppa_info->plt_rel_sec;
2545 dyn.d_un.d_val = s->size;
2546 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2547 break;
2548
2549 case DT_RELA:
2550 s = hppa_info->other_rel_sec;
2551 if (! s || ! s->size)
2552 s = hppa_info->dlt_rel_sec;
2553 if (! s || ! s->size)
2554 s = hppa_info->opd_rel_sec;
2555 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2556 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2557 break;
2558
2559 case DT_RELASZ:
2560 s = hppa_info->other_rel_sec;
2561 dyn.d_un.d_val = s->size;
2562 s = hppa_info->dlt_rel_sec;
2563 dyn.d_un.d_val += s->size;
2564 s = hppa_info->opd_rel_sec;
2565 dyn.d_un.d_val += s->size;
2566 /* There is some question about whether or not the size of
2567 the PLT relocs should be included here. HP's tools do
2568 it, so we'll emulate them. */
2569 s = hppa_info->plt_rel_sec;
2570 dyn.d_un.d_val += s->size;
2571 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2572 break;
2573
2574 }
2575 }
2576 }
2577
2578 return TRUE;
2579}
2580
2581/* Support for core dump NOTE sections. */
2582
2583static bfd_boolean
2584elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2585{
2586 int offset;
2587 size_t size;
2588
2589 switch (note->descsz)
2590 {
2591 default:
2592 return FALSE;
2593
2594 case 760: /* Linux/hppa */
2595 /* pr_cursig */
2596 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2597
2598 /* pr_pid */
2599 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2600
2601 /* pr_reg */
2602 offset = 112;
2603 size = 640;
2604
2605 break;
2606 }
2607
2608 /* Make a ".reg/999" section. */
2609 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2610 size, note->descpos + offset);
2611}
2612
2613static bfd_boolean
2614elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2615{
2616 char * command;
2617 int n;
2618
2619 switch (note->descsz)
2620 {
2621 default:
2622 return FALSE;
2623
2624 case 136: /* Linux/hppa elf_prpsinfo. */
2625 elf_tdata (abfd)->core->program
2626 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2627 elf_tdata (abfd)->core->command
2628 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2629 }
2630
2631 /* Note that for some reason, a spurious space is tacked
2632 onto the end of the args in some (at least one anyway)
2633 implementations, so strip it off if it exists. */
2634 command = elf_tdata (abfd)->core->command;
2635 n = strlen (command);
2636
2637 if (0 < n && command[n - 1] == ' ')
2638 command[n - 1] = '\0';
2639
2640 return TRUE;
2641}
2642
2643/* Return the number of additional phdrs we will need.
2644
2645 The generic ELF code only creates PT_PHDRs for executables. The HP
2646 dynamic linker requires PT_PHDRs for dynamic libraries too.
2647
2648 This routine indicates that the backend needs one additional program
2649 header for that case.
2650
2651 Note we do not have access to the link info structure here, so we have
2652 to guess whether or not we are building a shared library based on the
2653 existence of a .interp section. */
2654
2655static int
2656elf64_hppa_additional_program_headers (bfd *abfd,
2657 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2658{
2659 asection *s;
2660
2661 /* If we are creating a shared library, then we have to create a
2662 PT_PHDR segment. HP's dynamic linker chokes without it. */
2663 s = bfd_get_section_by_name (abfd, ".interp");
2664 if (! s)
2665 return 1;
2666 return 0;
2667}
2668
2669/* Allocate and initialize any program headers required by this
2670 specific backend.
2671
2672 The generic ELF code only creates PT_PHDRs for executables. The HP
2673 dynamic linker requires PT_PHDRs for dynamic libraries too.
2674
2675 This allocates the PT_PHDR and initializes it in a manner suitable
2676 for the HP linker.
2677
2678 Note we do not have access to the link info structure here, so we have
2679 to guess whether or not we are building a shared library based on the
2680 existence of a .interp section. */
2681
2682static bfd_boolean
2683elf64_hppa_modify_segment_map (bfd *abfd,
2684 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2685{
2686 struct elf_segment_map *m;
2687 asection *s;
2688
2689 s = bfd_get_section_by_name (abfd, ".interp");
2690 if (! s)
2691 {
2692 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
2693 if (m->p_type == PT_PHDR)
2694 break;
2695 if (m == NULL)
2696 {
2697 m = ((struct elf_segment_map *)
2698 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2699 if (m == NULL)
2700 return FALSE;
2701
2702 m->p_type = PT_PHDR;
2703 m->p_flags = PF_R | PF_X;
2704 m->p_flags_valid = 1;
2705 m->p_paddr_valid = 1;
2706 m->includes_phdrs = 1;
2707
2708 m->next = elf_seg_map (abfd);
2709 elf_seg_map (abfd) = m;
2710 }
2711 }
2712
2713 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
2714 if (m->p_type == PT_LOAD)
2715 {
2716 unsigned int i;
2717
2718 for (i = 0; i < m->count; i++)
2719 {
2720 /* The code "hint" is not really a hint. It is a requirement
2721 for certain versions of the HP dynamic linker. Worse yet,
2722 it must be set even if the shared library does not have
2723 any code in its "text" segment (thus the check for .hash
2724 to catch this situation). */
2725 if (m->sections[i]->flags & SEC_CODE
2726 || (strcmp (m->sections[i]->name, ".hash") == 0))
2727 m->p_flags |= (PF_X | PF_HP_CODE);
2728 }
2729 }
2730
2731 return TRUE;
2732}
2733
2734/* Called when writing out an object file to decide the type of a
2735 symbol. */
2736static int
2737elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2738 int type)
2739{
2740 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2741 return STT_PARISC_MILLI;
2742 else
2743 return type;
2744}
2745
2746/* Support HP specific sections for core files. */
2747
2748static bfd_boolean
2749elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2750 const char *typename)
2751{
2752 if (hdr->p_type == PT_HP_CORE_KERNEL)
2753 {
2754 asection *sect;
2755
2756 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2757 return FALSE;
2758
2759 sect = bfd_make_section_anyway (abfd, ".kernel");
2760 if (sect == NULL)
2761 return FALSE;
2762 sect->size = hdr->p_filesz;
2763 sect->filepos = hdr->p_offset;
2764 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2765 return TRUE;
2766 }
2767
2768 if (hdr->p_type == PT_HP_CORE_PROC)
2769 {
2770 int sig;
2771
2772 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2773 return FALSE;
2774 if (bfd_bread (&sig, 4, abfd) != 4)
2775 return FALSE;
2776
2777 elf_tdata (abfd)->core->signal = sig;
2778
2779 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2780 return FALSE;
2781
2782 /* GDB uses the ".reg" section to read register contents. */
2783 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2784 hdr->p_offset);
2785 }
2786
2787 if (hdr->p_type == PT_HP_CORE_LOADABLE
2788 || hdr->p_type == PT_HP_CORE_STACK
2789 || hdr->p_type == PT_HP_CORE_MMF)
2790 hdr->p_type = PT_LOAD;
2791
2792 return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2793}
2794
2795/* Hook called by the linker routine which adds symbols from an object
2796 file. HP's libraries define symbols with HP specific section
2797 indices, which we have to handle. */
2798
2799static bfd_boolean
2800elf_hppa_add_symbol_hook (bfd *abfd,
2801 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2802 Elf_Internal_Sym *sym,
2803 const char **namep ATTRIBUTE_UNUSED,
2804 flagword *flagsp ATTRIBUTE_UNUSED,
2805 asection **secp,
2806 bfd_vma *valp)
2807{
2808 unsigned int sec_index = sym->st_shndx;
2809
2810 switch (sec_index)
2811 {
2812 case SHN_PARISC_ANSI_COMMON:
2813 *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2814 (*secp)->flags |= SEC_IS_COMMON;
2815 *valp = sym->st_size;
2816 break;
2817
2818 case SHN_PARISC_HUGE_COMMON:
2819 *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2820 (*secp)->flags |= SEC_IS_COMMON;
2821 *valp = sym->st_size;
2822 break;
2823 }
2824
2825 return TRUE;
2826}
2827
2828static bfd_boolean
2829elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2830 void *data)
2831{
2832 struct bfd_link_info *info = data;
2833
2834 /* If we are not creating a shared library, and this symbol is
2835 referenced by a shared library but is not defined anywhere, then
2836 the generic code will warn that it is undefined.
2837
2838 This behavior is undesirable on HPs since the standard shared
2839 libraries contain references to undefined symbols.
2840
2841 So we twiddle the flags associated with such symbols so that they
2842 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2843
2844 Ultimately we should have better controls over the generic ELF BFD
2845 linker code. */
2846 if (! bfd_link_relocatable (info)
2847 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2848 && h->root.type == bfd_link_hash_undefined
2849 && h->ref_dynamic
2850 && !h->ref_regular)
2851 {
2852 h->ref_dynamic = 0;
2853 h->pointer_equality_needed = 1;
2854 }
2855
2856 return TRUE;
2857}
2858
2859static bfd_boolean
2860elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2861 void *data)
2862{
2863 struct bfd_link_info *info = data;
2864
2865 /* If we are not creating a shared library, and this symbol is
2866 referenced by a shared library but is not defined anywhere, then
2867 the generic code will warn that it is undefined.
2868
2869 This behavior is undesirable on HPs since the standard shared
2870 libraries contain references to undefined symbols.
2871
2872 So we twiddle the flags associated with such symbols so that they
2873 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2874
2875 Ultimately we should have better controls over the generic ELF BFD
2876 linker code. */
2877 if (! bfd_link_relocatable (info)
2878 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2879 && h->root.type == bfd_link_hash_undefined
2880 && !h->ref_dynamic
2881 && !h->ref_regular
2882 && h->pointer_equality_needed)
2883 {
2884 h->ref_dynamic = 1;
2885 h->pointer_equality_needed = 0;
2886 }
2887
2888 return TRUE;
2889}
2890
2891static bfd_boolean
2892elf_hppa_is_dynamic_loader_symbol (const char *name)
2893{
2894 return (! strcmp (name, "__CPU_REVISION")
2895 || ! strcmp (name, "__CPU_KEYBITS_1")
2896 || ! strcmp (name, "__SYSTEM_ID_D")
2897 || ! strcmp (name, "__FPU_MODEL")
2898 || ! strcmp (name, "__FPU_REVISION")
2899 || ! strcmp (name, "__ARGC")
2900 || ! strcmp (name, "__ARGV")
2901 || ! strcmp (name, "__ENVP")
2902 || ! strcmp (name, "__TLS_SIZE_D")
2903 || ! strcmp (name, "__LOAD_INFO")
2904 || ! strcmp (name, "__systab"));
2905}
2906
2907/* Record the lowest address for the data and text segments. */
2908static void
2909elf_hppa_record_segment_addrs (bfd *abfd,
2910 asection *section,
2911 void *data)
2912{
2913 struct elf64_hppa_link_hash_table *hppa_info = data;
2914
2915 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2916 {
2917 bfd_vma value;
2918 Elf_Internal_Phdr *p;
2919
2920 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2921 BFD_ASSERT (p != NULL);
2922 value = p->p_vaddr;
2923
2924 if (section->flags & SEC_READONLY)
2925 {
2926 if (value < hppa_info->text_segment_base)
2927 hppa_info->text_segment_base = value;
2928 }
2929 else
2930 {
2931 if (value < hppa_info->data_segment_base)
2932 hppa_info->data_segment_base = value;
2933 }
2934 }
2935}
2936
2937/* Called after we have seen all the input files/sections, but before
2938 final symbol resolution and section placement has been determined.
2939
2940 We use this hook to (possibly) provide a value for __gp, then we
2941 fall back to the generic ELF final link routine. */
2942
2943static bfd_boolean
2944elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2945{
2946 struct stat buf;
2947 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2948
2949 if (hppa_info == NULL)
2950 return FALSE;
2951
2952 if (! bfd_link_relocatable (info))
2953 {
2954 struct elf_link_hash_entry *gp;
2955 bfd_vma gp_val;
2956
2957 /* The linker script defines a value for __gp iff it was referenced
2958 by one of the objects being linked. First try to find the symbol
2959 in the hash table. If that fails, just compute the value __gp
2960 should have had. */
2961 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2962 FALSE, FALSE);
2963
2964 if (gp)
2965 {
2966
2967 /* Adjust the value of __gp as we may want to slide it into the
2968 .plt section so that the stubs can access PLT entries without
2969 using an addil sequence. */
2970 gp->root.u.def.value += hppa_info->gp_offset;
2971
2972 gp_val = (gp->root.u.def.section->output_section->vma
2973 + gp->root.u.def.section->output_offset
2974 + gp->root.u.def.value);
2975 }
2976 else
2977 {
2978 asection *sec;
2979
2980 /* First look for a .plt section. If found, then __gp is the
2981 address of the .plt + gp_offset.
2982
2983 If no .plt is found, then look for .dlt, .opd and .data (in
2984 that order) and set __gp to the base address of whichever
2985 section is found first. */
2986
2987 sec = hppa_info->plt_sec;
2988 if (sec && ! (sec->flags & SEC_EXCLUDE))
2989 gp_val = (sec->output_offset
2990 + sec->output_section->vma
2991 + hppa_info->gp_offset);
2992 else
2993 {
2994 sec = hppa_info->dlt_sec;
2995 if (!sec || (sec->flags & SEC_EXCLUDE))
2996 sec = hppa_info->opd_sec;
2997 if (!sec || (sec->flags & SEC_EXCLUDE))
2998 sec = bfd_get_section_by_name (abfd, ".data");
2999 if (!sec || (sec->flags & SEC_EXCLUDE))
3000 gp_val = 0;
3001 else
3002 gp_val = sec->output_offset + sec->output_section->vma;
3003 }
3004 }
3005
3006 /* Install whatever value we found/computed for __gp. */
3007 _bfd_set_gp_value (abfd, gp_val);
3008 }
3009
3010 /* We need to know the base of the text and data segments so that we
3011 can perform SEGREL relocations. We will record the base addresses
3012 when we encounter the first SEGREL relocation. */
3013 hppa_info->text_segment_base = (bfd_vma)-1;
3014 hppa_info->data_segment_base = (bfd_vma)-1;
3015
3016 /* HP's shared libraries have references to symbols that are not
3017 defined anywhere. The generic ELF BFD linker code will complain
3018 about such symbols.
3019
3020 So we detect the losing case and arrange for the flags on the symbol
3021 to indicate that it was never referenced. This keeps the generic
3022 ELF BFD link code happy and appears to not create any secondary
3023 problems. Ultimately we need a way to control the behavior of the
3024 generic ELF BFD link code better. */
3025 elf_link_hash_traverse (elf_hash_table (info),
3026 elf_hppa_unmark_useless_dynamic_symbols,
3027 info);
3028
3029 /* Invoke the regular ELF backend linker to do all the work. */
3030 if (!bfd_elf_final_link (abfd, info))
3031 return FALSE;
3032
3033 elf_link_hash_traverse (elf_hash_table (info),
3034 elf_hppa_remark_useless_dynamic_symbols,
3035 info);
3036
3037 /* If we're producing a final executable, sort the contents of the
3038 unwind section. */
3039 if (bfd_link_relocatable (info))
3040 return TRUE;
3041
3042 /* Do not attempt to sort non-regular files. This is here
3043 especially for configure scripts and kernel builds which run
3044 tests with "ld [...] -o /dev/null". */
3045 if (stat (abfd->filename, &buf) != 0
3046 || !S_ISREG(buf.st_mode))
3047 return TRUE;
3048
3049 return elf_hppa_sort_unwind (abfd);
3050}
3051
3052/* Relocate the given INSN. VALUE should be the actual value we want
3053 to insert into the instruction, ie by this point we should not be
3054 concerned with computing an offset relative to the DLT, PC, etc.
3055 Instead this routine is meant to handle the bit manipulations needed
3056 to insert the relocation into the given instruction. */
3057
3058static int
3059elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3060{
3061 switch (r_type)
3062 {
3063 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to
3064 the "B" instruction. */
3065 case R_PARISC_PCREL22F:
3066 case R_PARISC_PCREL22C:
3067 return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3068
3069 /* This is any 12 bit branch. */
3070 case R_PARISC_PCREL12F:
3071 return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3072
3073 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds
3074 to the "B" instruction as well as BE. */
3075 case R_PARISC_PCREL17F:
3076 case R_PARISC_DIR17F:
3077 case R_PARISC_DIR17R:
3078 case R_PARISC_PCREL17C:
3079 case R_PARISC_PCREL17R:
3080 return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3081
3082 /* ADDIL or LDIL instructions. */
3083 case R_PARISC_DLTREL21L:
3084 case R_PARISC_DLTIND21L:
3085 case R_PARISC_LTOFF_FPTR21L:
3086 case R_PARISC_PCREL21L:
3087 case R_PARISC_LTOFF_TP21L:
3088 case R_PARISC_DPREL21L:
3089 case R_PARISC_PLTOFF21L:
3090 case R_PARISC_DIR21L:
3091 return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3092
3093 /* LDO and integer loads/stores with 14 bit displacements. */
3094 case R_PARISC_DLTREL14R:
3095 case R_PARISC_DLTREL14F:
3096 case R_PARISC_DLTIND14R:
3097 case R_PARISC_DLTIND14F:
3098 case R_PARISC_LTOFF_FPTR14R:
3099 case R_PARISC_PCREL14R:
3100 case R_PARISC_PCREL14F:
3101 case R_PARISC_LTOFF_TP14R:
3102 case R_PARISC_LTOFF_TP14F:
3103 case R_PARISC_DPREL14R:
3104 case R_PARISC_DPREL14F:
3105 case R_PARISC_PLTOFF14R:
3106 case R_PARISC_PLTOFF14F:
3107 case R_PARISC_DIR14R:
3108 case R_PARISC_DIR14F:
3109 return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3110
3111 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
3112 case R_PARISC_LTOFF_FPTR16F:
3113 case R_PARISC_PCREL16F:
3114 case R_PARISC_LTOFF_TP16F:
3115 case R_PARISC_GPREL16F:
3116 case R_PARISC_PLTOFF16F:
3117 case R_PARISC_DIR16F:
3118 case R_PARISC_LTOFF16F:
3119 return (insn & ~0xffff) | re_assemble_16 (sym_value);
3120
3121 /* Doubleword loads and stores with a 14 bit displacement. */
3122 case R_PARISC_DLTREL14DR:
3123 case R_PARISC_DLTIND14DR:
3124 case R_PARISC_LTOFF_FPTR14DR:
3125 case R_PARISC_LTOFF_FPTR16DF:
3126 case R_PARISC_PCREL14DR:
3127 case R_PARISC_PCREL16DF:
3128 case R_PARISC_LTOFF_TP14DR:
3129 case R_PARISC_LTOFF_TP16DF:
3130 case R_PARISC_DPREL14DR:
3131 case R_PARISC_GPREL16DF:
3132 case R_PARISC_PLTOFF14DR:
3133 case R_PARISC_PLTOFF16DF:
3134 case R_PARISC_DIR14DR:
3135 case R_PARISC_DIR16DF:
3136 case R_PARISC_LTOFF16DF:
3137 return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3138 | ((sym_value & 0x1ff8) << 1));
3139
3140 /* Floating point single word load/store instructions. */
3141 case R_PARISC_DLTREL14WR:
3142 case R_PARISC_DLTIND14WR:
3143 case R_PARISC_LTOFF_FPTR14WR:
3144 case R_PARISC_LTOFF_FPTR16WF:
3145 case R_PARISC_PCREL14WR:
3146 case R_PARISC_PCREL16WF:
3147 case R_PARISC_LTOFF_TP14WR:
3148 case R_PARISC_LTOFF_TP16WF:
3149 case R_PARISC_DPREL14WR:
3150 case R_PARISC_GPREL16WF:
3151 case R_PARISC_PLTOFF14WR:
3152 case R_PARISC_PLTOFF16WF:
3153 case R_PARISC_DIR16WF:
3154 case R_PARISC_DIR14WR:
3155 case R_PARISC_LTOFF16WF:
3156 return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3157 | ((sym_value & 0x1ffc) << 1));
3158
3159 default:
3160 return insn;
3161 }
3162}
3163
3164/* Compute the value for a relocation (REL) during a final link stage,
3165 then insert the value into the proper location in CONTENTS.
3166
3167 VALUE is a tentative value for the relocation and may be overridden
3168 and modified here based on the specific relocation to be performed.
3169
3170 For example we do conversions for PC-relative branches in this routine
3171 or redirection of calls to external routines to stubs.
3172
3173 The work of actually applying the relocation is left to a helper
3174 routine in an attempt to reduce the complexity and size of this
3175 function. */
3176
3177static bfd_reloc_status_type
3178elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3179 bfd *input_bfd,
3180 bfd *output_bfd,
3181 asection *input_section,
3182 bfd_byte *contents,
3183 bfd_vma value,
3184 struct bfd_link_info *info,
3185 asection *sym_sec,
3186 struct elf_link_hash_entry *eh)
3187{
3188 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3189 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3190 bfd_vma *local_offsets;
3191 Elf_Internal_Shdr *symtab_hdr;
3192 int insn;
3193 bfd_vma max_branch_offset = 0;
3194 bfd_vma offset = rel->r_offset;
3195 bfd_signed_vma addend = rel->r_addend;
3196 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3197 unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3198 unsigned int r_type = howto->type;
3199 bfd_byte *hit_data = contents + offset;
3200
3201 if (hppa_info == NULL)
3202 return bfd_reloc_notsupported;
3203
3204 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3205 local_offsets = elf_local_got_offsets (input_bfd);
3206 insn = bfd_get_32 (input_bfd, hit_data);
3207
3208 switch (r_type)
3209 {
3210 case R_PARISC_NONE:
3211 break;
3212
3213 /* Basic function call support.
3214
3215 Note for a call to a function defined in another dynamic library
3216 we want to redirect the call to a stub. */
3217
3218 /* PC relative relocs without an implicit offset. */
3219 case R_PARISC_PCREL21L:
3220 case R_PARISC_PCREL14R:
3221 case R_PARISC_PCREL14F:
3222 case R_PARISC_PCREL14WR:
3223 case R_PARISC_PCREL14DR:
3224 case R_PARISC_PCREL16F:
3225 case R_PARISC_PCREL16WF:
3226 case R_PARISC_PCREL16DF:
3227 {
3228 /* If this is a call to a function defined in another dynamic
3229 library, then redirect the call to the local stub for this
3230 function. */
3231 if (sym_sec == NULL || sym_sec->output_section == NULL)
3232 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3233 + hppa_info->stub_sec->output_section->vma);
3234
3235 /* Turn VALUE into a proper PC relative address. */
3236 value -= (offset + input_section->output_offset
3237 + input_section->output_section->vma);
3238
3239 /* Adjust for any field selectors. */
3240 if (r_type == R_PARISC_PCREL21L)
3241 value = hppa_field_adjust (value, -8 + addend, e_lsel);
3242 else if (r_type == R_PARISC_PCREL14F
3243 || r_type == R_PARISC_PCREL16F
3244 || r_type == R_PARISC_PCREL16WF
3245 || r_type == R_PARISC_PCREL16DF)
3246 value = hppa_field_adjust (value, -8 + addend, e_fsel);
3247 else
3248 value = hppa_field_adjust (value, -8 + addend, e_rsel);
3249
3250 /* Apply the relocation to the given instruction. */
3251 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3252 break;
3253 }
3254
3255 case R_PARISC_PCREL12F:
3256 case R_PARISC_PCREL22F:
3257 case R_PARISC_PCREL17F:
3258 case R_PARISC_PCREL22C:
3259 case R_PARISC_PCREL17C:
3260 case R_PARISC_PCREL17R:
3261 {
3262 /* If this is a call to a function defined in another dynamic
3263 library, then redirect the call to the local stub for this
3264 function. */
3265 if (sym_sec == NULL || sym_sec->output_section == NULL)
3266 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3267 + hppa_info->stub_sec->output_section->vma);
3268
3269 /* Turn VALUE into a proper PC relative address. */
3270 value -= (offset + input_section->output_offset
3271 + input_section->output_section->vma);
3272 addend -= 8;
3273
3274 if (r_type == (unsigned int) R_PARISC_PCREL22F)
3275 max_branch_offset = (1 << (22-1)) << 2;
3276 else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3277 max_branch_offset = (1 << (17-1)) << 2;
3278 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3279 max_branch_offset = (1 << (12-1)) << 2;
3280
3281 /* Make sure we can reach the branch target. */
3282 if (max_branch_offset != 0
3283 && value + addend + max_branch_offset >= 2*max_branch_offset)
3284 {
3285 (*_bfd_error_handler)
3286 (_("%B(%A+0x%" BFD_VMA_FMT "x): cannot reach %s"),
3287 input_bfd,
3288 input_section,
3289 offset,
3290 eh ? eh->root.root.string : "unknown");
3291 bfd_set_error (bfd_error_bad_value);
3292 return bfd_reloc_overflow;
3293 }
3294
3295 /* Adjust for any field selectors. */
3296 if (r_type == R_PARISC_PCREL17R)
3297 value = hppa_field_adjust (value, addend, e_rsel);
3298 else
3299 value = hppa_field_adjust (value, addend, e_fsel);
3300
3301 /* All branches are implicitly shifted by 2 places. */
3302 value >>= 2;
3303
3304 /* Apply the relocation to the given instruction. */
3305 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3306 break;
3307 }
3308
3309 /* Indirect references to data through the DLT. */
3310 case R_PARISC_DLTIND14R:
3311 case R_PARISC_DLTIND14F:
3312 case R_PARISC_DLTIND14DR:
3313 case R_PARISC_DLTIND14WR:
3314 case R_PARISC_DLTIND21L:
3315 case R_PARISC_LTOFF_FPTR14R:
3316 case R_PARISC_LTOFF_FPTR14DR:
3317 case R_PARISC_LTOFF_FPTR14WR:
3318 case R_PARISC_LTOFF_FPTR21L:
3319 case R_PARISC_LTOFF_FPTR16F:
3320 case R_PARISC_LTOFF_FPTR16WF:
3321 case R_PARISC_LTOFF_FPTR16DF:
3322 case R_PARISC_LTOFF_TP21L:
3323 case R_PARISC_LTOFF_TP14R:
3324 case R_PARISC_LTOFF_TP14F:
3325 case R_PARISC_LTOFF_TP14WR:
3326 case R_PARISC_LTOFF_TP14DR:
3327 case R_PARISC_LTOFF_TP16F:
3328 case R_PARISC_LTOFF_TP16WF:
3329 case R_PARISC_LTOFF_TP16DF:
3330 case R_PARISC_LTOFF16F:
3331 case R_PARISC_LTOFF16WF:
3332 case R_PARISC_LTOFF16DF:
3333 {
3334 bfd_vma off;
3335
3336 /* If this relocation was against a local symbol, then we still
3337 have not set up the DLT entry (it's not convenient to do so
3338 in the "finalize_dlt" routine because it is difficult to get
3339 to the local symbol's value).
3340
3341 So, if this is a local symbol (h == NULL), then we need to
3342 fill in its DLT entry.
3343
3344 Similarly we may still need to set up an entry in .opd for
3345 a local function which had its address taken. */
3346 if (hh == NULL)
3347 {
3348 bfd_vma *local_opd_offsets, *local_dlt_offsets;
3349
3350 if (local_offsets == NULL)
3351 abort ();
3352
3353 /* Now do .opd creation if needed. */
3354 if (r_type == R_PARISC_LTOFF_FPTR14R
3355 || r_type == R_PARISC_LTOFF_FPTR14DR
3356 || r_type == R_PARISC_LTOFF_FPTR14WR
3357 || r_type == R_PARISC_LTOFF_FPTR21L
3358 || r_type == R_PARISC_LTOFF_FPTR16F
3359 || r_type == R_PARISC_LTOFF_FPTR16WF
3360 || r_type == R_PARISC_LTOFF_FPTR16DF)
3361 {
3362 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3363 off = local_opd_offsets[r_symndx];
3364
3365 /* The last bit records whether we've already initialised
3366 this local .opd entry. */
3367 if ((off & 1) != 0)
3368 {
3369 BFD_ASSERT (off != (bfd_vma) -1);
3370 off &= ~1;
3371 }
3372 else
3373 {
3374 local_opd_offsets[r_symndx] |= 1;
3375
3376 /* The first two words of an .opd entry are zero. */
3377 memset (hppa_info->opd_sec->contents + off, 0, 16);
3378
3379 /* The next word is the address of the function. */
3380 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3381 (hppa_info->opd_sec->contents + off + 16));
3382
3383 /* The last word is our local __gp value. */
3384 value = _bfd_get_gp_value
3385 (hppa_info->opd_sec->output_section->owner);
3386 bfd_put_64 (hppa_info->opd_sec->owner, value,
3387 (hppa_info->opd_sec->contents + off + 24));
3388 }
3389
3390 /* The DLT value is the address of the .opd entry. */
3391 value = (off
3392 + hppa_info->opd_sec->output_offset
3393 + hppa_info->opd_sec->output_section->vma);
3394 addend = 0;
3395 }
3396
3397 local_dlt_offsets = local_offsets;
3398 off = local_dlt_offsets[r_symndx];
3399
3400 if ((off & 1) != 0)
3401 {
3402 BFD_ASSERT (off != (bfd_vma) -1);
3403 off &= ~1;
3404 }
3405 else
3406 {
3407 local_dlt_offsets[r_symndx] |= 1;
3408 bfd_put_64 (hppa_info->dlt_sec->owner,
3409 value + addend,
3410 hppa_info->dlt_sec->contents + off);
3411 }
3412 }
3413 else
3414 off = hh->dlt_offset;
3415
3416 /* We want the value of the DLT offset for this symbol, not
3417 the symbol's actual address. Note that __gp may not point
3418 to the start of the DLT, so we have to compute the absolute
3419 address, then subtract out the value of __gp. */
3420 value = (off
3421 + hppa_info->dlt_sec->output_offset
3422 + hppa_info->dlt_sec->output_section->vma);
3423 value -= _bfd_get_gp_value (output_bfd);
3424
3425 /* All DLTIND relocations are basically the same at this point,
3426 except that we need different field selectors for the 21bit
3427 version vs the 14bit versions. */
3428 if (r_type == R_PARISC_DLTIND21L
3429 || r_type == R_PARISC_LTOFF_FPTR21L
3430 || r_type == R_PARISC_LTOFF_TP21L)
3431 value = hppa_field_adjust (value, 0, e_lsel);
3432 else if (r_type == R_PARISC_DLTIND14F
3433 || r_type == R_PARISC_LTOFF_FPTR16F
3434 || r_type == R_PARISC_LTOFF_FPTR16WF
3435 || r_type == R_PARISC_LTOFF_FPTR16DF
3436 || r_type == R_PARISC_LTOFF16F
3437 || r_type == R_PARISC_LTOFF16DF
3438 || r_type == R_PARISC_LTOFF16WF
3439 || r_type == R_PARISC_LTOFF_TP16F
3440 || r_type == R_PARISC_LTOFF_TP16WF
3441 || r_type == R_PARISC_LTOFF_TP16DF)
3442 value = hppa_field_adjust (value, 0, e_fsel);
3443 else
3444 value = hppa_field_adjust (value, 0, e_rsel);
3445
3446 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3447 break;
3448 }
3449
3450 case R_PARISC_DLTREL14R:
3451 case R_PARISC_DLTREL14F:
3452 case R_PARISC_DLTREL14DR:
3453 case R_PARISC_DLTREL14WR:
3454 case R_PARISC_DLTREL21L:
3455 case R_PARISC_DPREL21L:
3456 case R_PARISC_DPREL14WR:
3457 case R_PARISC_DPREL14DR:
3458 case R_PARISC_DPREL14R:
3459 case R_PARISC_DPREL14F:
3460 case R_PARISC_GPREL16F:
3461 case R_PARISC_GPREL16WF:
3462 case R_PARISC_GPREL16DF:
3463 {
3464 /* Subtract out the global pointer value to make value a DLT
3465 relative address. */
3466 value -= _bfd_get_gp_value (output_bfd);
3467
3468 /* All DLTREL relocations are basically the same at this point,
3469 except that we need different field selectors for the 21bit
3470 version vs the 14bit versions. */
3471 if (r_type == R_PARISC_DLTREL21L
3472 || r_type == R_PARISC_DPREL21L)
3473 value = hppa_field_adjust (value, addend, e_lrsel);
3474 else if (r_type == R_PARISC_DLTREL14F
3475 || r_type == R_PARISC_DPREL14F
3476 || r_type == R_PARISC_GPREL16F
3477 || r_type == R_PARISC_GPREL16WF
3478 || r_type == R_PARISC_GPREL16DF)
3479 value = hppa_field_adjust (value, addend, e_fsel);
3480 else
3481 value = hppa_field_adjust (value, addend, e_rrsel);
3482
3483 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3484 break;
3485 }
3486
3487 case R_PARISC_DIR21L:
3488 case R_PARISC_DIR17R:
3489 case R_PARISC_DIR17F:
3490 case R_PARISC_DIR14R:
3491 case R_PARISC_DIR14F:
3492 case R_PARISC_DIR14WR:
3493 case R_PARISC_DIR14DR:
3494 case R_PARISC_DIR16F:
3495 case R_PARISC_DIR16WF:
3496 case R_PARISC_DIR16DF:
3497 {
3498 /* All DIR relocations are basically the same at this point,
3499 except that branch offsets need to be divided by four, and
3500 we need different field selectors. Note that we don't
3501 redirect absolute calls to local stubs. */
3502
3503 if (r_type == R_PARISC_DIR21L)
3504 value = hppa_field_adjust (value, addend, e_lrsel);
3505 else if (r_type == R_PARISC_DIR17F
3506 || r_type == R_PARISC_DIR16F
3507 || r_type == R_PARISC_DIR16WF
3508 || r_type == R_PARISC_DIR16DF
3509 || r_type == R_PARISC_DIR14F)
3510 value = hppa_field_adjust (value, addend, e_fsel);
3511 else
3512 value = hppa_field_adjust (value, addend, e_rrsel);
3513
3514 if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3515 /* All branches are implicitly shifted by 2 places. */
3516 value >>= 2;
3517
3518 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3519 break;
3520 }
3521
3522 case R_PARISC_PLTOFF21L:
3523 case R_PARISC_PLTOFF14R:
3524 case R_PARISC_PLTOFF14F:
3525 case R_PARISC_PLTOFF14WR:
3526 case R_PARISC_PLTOFF14DR:
3527 case R_PARISC_PLTOFF16F:
3528 case R_PARISC_PLTOFF16WF:
3529 case R_PARISC_PLTOFF16DF:
3530 {
3531 /* We want the value of the PLT offset for this symbol, not
3532 the symbol's actual address. Note that __gp may not point
3533 to the start of the DLT, so we have to compute the absolute
3534 address, then subtract out the value of __gp. */
3535 value = (hh->plt_offset
3536 + hppa_info->plt_sec->output_offset
3537 + hppa_info->plt_sec->output_section->vma);
3538 value -= _bfd_get_gp_value (output_bfd);
3539
3540 /* All PLTOFF relocations are basically the same at this point,
3541 except that we need different field selectors for the 21bit
3542 version vs the 14bit versions. */
3543 if (r_type == R_PARISC_PLTOFF21L)
3544 value = hppa_field_adjust (value, addend, e_lrsel);
3545 else if (r_type == R_PARISC_PLTOFF14F
3546 || r_type == R_PARISC_PLTOFF16F
3547 || r_type == R_PARISC_PLTOFF16WF
3548 || r_type == R_PARISC_PLTOFF16DF)
3549 value = hppa_field_adjust (value, addend, e_fsel);
3550 else
3551 value = hppa_field_adjust (value, addend, e_rrsel);
3552
3553 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3554 break;
3555 }
3556
3557 case R_PARISC_LTOFF_FPTR32:
3558 {
3559 /* We may still need to create the FPTR itself if it was for
3560 a local symbol. */
3561 if (hh == NULL)
3562 {
3563 /* The first two words of an .opd entry are zero. */
3564 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3565
3566 /* The next word is the address of the function. */
3567 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3568 (hppa_info->opd_sec->contents
3569 + hh->opd_offset + 16));
3570
3571 /* The last word is our local __gp value. */
3572 value = _bfd_get_gp_value
3573 (hppa_info->opd_sec->output_section->owner);
3574 bfd_put_64 (hppa_info->opd_sec->owner, value,
3575 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3576
3577 /* The DLT value is the address of the .opd entry. */
3578 value = (hh->opd_offset
3579 + hppa_info->opd_sec->output_offset
3580 + hppa_info->opd_sec->output_section->vma);
3581
3582 bfd_put_64 (hppa_info->dlt_sec->owner,
3583 value,
3584 hppa_info->dlt_sec->contents + hh->dlt_offset);
3585 }
3586
3587 /* We want the value of the DLT offset for this symbol, not
3588 the symbol's actual address. Note that __gp may not point
3589 to the start of the DLT, so we have to compute the absolute
3590 address, then subtract out the value of __gp. */
3591 value = (hh->dlt_offset
3592 + hppa_info->dlt_sec->output_offset
3593 + hppa_info->dlt_sec->output_section->vma);
3594 value -= _bfd_get_gp_value (output_bfd);
3595 bfd_put_32 (input_bfd, value, hit_data);
3596 return bfd_reloc_ok;
3597 }
3598
3599 case R_PARISC_LTOFF_FPTR64:
3600 case R_PARISC_LTOFF_TP64:
3601 {
3602 /* We may still need to create the FPTR itself if it was for
3603 a local symbol. */
3604 if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3605 {
3606 /* The first two words of an .opd entry are zero. */
3607 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3608
3609 /* The next word is the address of the function. */
3610 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3611 (hppa_info->opd_sec->contents
3612 + hh->opd_offset + 16));
3613
3614 /* The last word is our local __gp value. */
3615 value = _bfd_get_gp_value
3616 (hppa_info->opd_sec->output_section->owner);
3617 bfd_put_64 (hppa_info->opd_sec->owner, value,
3618 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3619
3620 /* The DLT value is the address of the .opd entry. */
3621 value = (hh->opd_offset
3622 + hppa_info->opd_sec->output_offset
3623 + hppa_info->opd_sec->output_section->vma);
3624
3625 bfd_put_64 (hppa_info->dlt_sec->owner,
3626 value,
3627 hppa_info->dlt_sec->contents + hh->dlt_offset);
3628 }
3629
3630 /* We want the value of the DLT offset for this symbol, not
3631 the symbol's actual address. Note that __gp may not point
3632 to the start of the DLT, so we have to compute the absolute
3633 address, then subtract out the value of __gp. */
3634 value = (hh->dlt_offset
3635 + hppa_info->dlt_sec->output_offset
3636 + hppa_info->dlt_sec->output_section->vma);
3637 value -= _bfd_get_gp_value (output_bfd);
3638 bfd_put_64 (input_bfd, value, hit_data);
3639 return bfd_reloc_ok;
3640 }
3641
3642 case R_PARISC_DIR32:
3643 bfd_put_32 (input_bfd, value + addend, hit_data);
3644 return bfd_reloc_ok;
3645
3646 case R_PARISC_DIR64:
3647 bfd_put_64 (input_bfd, value + addend, hit_data);
3648 return bfd_reloc_ok;
3649
3650 case R_PARISC_GPREL64:
3651 /* Subtract out the global pointer value to make value a DLT
3652 relative address. */
3653 value -= _bfd_get_gp_value (output_bfd);
3654
3655 bfd_put_64 (input_bfd, value + addend, hit_data);
3656 return bfd_reloc_ok;
3657
3658 case R_PARISC_LTOFF64:
3659 /* We want the value of the DLT offset for this symbol, not
3660 the symbol's actual address. Note that __gp may not point
3661 to the start of the DLT, so we have to compute the absolute
3662 address, then subtract out the value of __gp. */
3663 value = (hh->dlt_offset
3664 + hppa_info->dlt_sec->output_offset
3665 + hppa_info->dlt_sec->output_section->vma);
3666 value -= _bfd_get_gp_value (output_bfd);
3667
3668 bfd_put_64 (input_bfd, value + addend, hit_data);
3669 return bfd_reloc_ok;
3670
3671 case R_PARISC_PCREL32:
3672 {
3673 /* If this is a call to a function defined in another dynamic
3674 library, then redirect the call to the local stub for this
3675 function. */
3676 if (sym_sec == NULL || sym_sec->output_section == NULL)
3677 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3678 + hppa_info->stub_sec->output_section->vma);
3679
3680 /* Turn VALUE into a proper PC relative address. */
3681 value -= (offset + input_section->output_offset
3682 + input_section->output_section->vma);
3683
3684 value += addend;
3685 value -= 8;
3686 bfd_put_32 (input_bfd, value, hit_data);
3687 return bfd_reloc_ok;
3688 }
3689
3690 case R_PARISC_PCREL64:
3691 {
3692 /* If this is a call to a function defined in another dynamic
3693 library, then redirect the call to the local stub for this
3694 function. */
3695 if (sym_sec == NULL || sym_sec->output_section == NULL)
3696 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3697 + hppa_info->stub_sec->output_section->vma);
3698
3699 /* Turn VALUE into a proper PC relative address. */
3700 value -= (offset + input_section->output_offset
3701 + input_section->output_section->vma);
3702
3703 value += addend;
3704 value -= 8;
3705 bfd_put_64 (input_bfd, value, hit_data);
3706 return bfd_reloc_ok;
3707 }
3708
3709 case R_PARISC_FPTR64:
3710 {
3711 bfd_vma off;
3712
3713 /* We may still need to create the FPTR itself if it was for
3714 a local symbol. */
3715 if (hh == NULL)
3716 {
3717 bfd_vma *local_opd_offsets;
3718
3719 if (local_offsets == NULL)
3720 abort ();
3721
3722 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3723 off = local_opd_offsets[r_symndx];
3724
3725 /* The last bit records whether we've already initialised
3726 this local .opd entry. */
3727 if ((off & 1) != 0)
3728 {
3729 BFD_ASSERT (off != (bfd_vma) -1);
3730 off &= ~1;
3731 }
3732 else
3733 {
3734 /* The first two words of an .opd entry are zero. */
3735 memset (hppa_info->opd_sec->contents + off, 0, 16);
3736
3737 /* The next word is the address of the function. */
3738 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3739 (hppa_info->opd_sec->contents + off + 16));
3740
3741 /* The last word is our local __gp value. */
3742 value = _bfd_get_gp_value
3743 (hppa_info->opd_sec->output_section->owner);
3744 bfd_put_64 (hppa_info->opd_sec->owner, value,
3745 hppa_info->opd_sec->contents + off + 24);
3746 }
3747 }
3748 else
3749 off = hh->opd_offset;
3750
3751 if (hh == NULL || hh->want_opd)
3752 /* We want the value of the OPD offset for this symbol. */
3753 value = (off
3754 + hppa_info->opd_sec->output_offset
3755 + hppa_info->opd_sec->output_section->vma);
3756 else
3757 /* We want the address of the symbol. */
3758 value += addend;
3759
3760 bfd_put_64 (input_bfd, value, hit_data);
3761 return bfd_reloc_ok;
3762 }
3763
3764 case R_PARISC_SECREL32:
3765 if (sym_sec)
3766 value -= sym_sec->output_section->vma;
3767 bfd_put_32 (input_bfd, value + addend, hit_data);
3768 return bfd_reloc_ok;
3769
3770 case R_PARISC_SEGREL32:
3771 case R_PARISC_SEGREL64:
3772 {
3773 /* If this is the first SEGREL relocation, then initialize
3774 the segment base values. */
3775 if (hppa_info->text_segment_base == (bfd_vma) -1)
3776 bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3777 hppa_info);
3778
3779 /* VALUE holds the absolute address. We want to include the
3780 addend, then turn it into a segment relative address.
3781
3782 The segment is derived from SYM_SEC. We assume that there are
3783 only two segments of note in the resulting executable/shlib.
3784 A readonly segment (.text) and a readwrite segment (.data). */
3785 value += addend;
3786
3787 if (sym_sec->flags & SEC_CODE)
3788 value -= hppa_info->text_segment_base;
3789 else
3790 value -= hppa_info->data_segment_base;
3791
3792 if (r_type == R_PARISC_SEGREL32)
3793 bfd_put_32 (input_bfd, value, hit_data);
3794 else
3795 bfd_put_64 (input_bfd, value, hit_data);
3796 return bfd_reloc_ok;
3797 }
3798
3799 /* Something we don't know how to handle. */
3800 default:
3801 return bfd_reloc_notsupported;
3802 }
3803
3804 /* Update the instruction word. */
3805 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3806 return bfd_reloc_ok;
3807}
3808
3809/* Relocate an HPPA ELF section. */
3810
3811static bfd_boolean
3812elf64_hppa_relocate_section (bfd *output_bfd,
3813 struct bfd_link_info *info,
3814 bfd *input_bfd,
3815 asection *input_section,
3816 bfd_byte *contents,
3817 Elf_Internal_Rela *relocs,
3818 Elf_Internal_Sym *local_syms,
3819 asection **local_sections)
3820{
3821 Elf_Internal_Shdr *symtab_hdr;
3822 Elf_Internal_Rela *rel;
3823 Elf_Internal_Rela *relend;
3824 struct elf64_hppa_link_hash_table *hppa_info;
3825
3826 hppa_info = hppa_link_hash_table (info);
3827 if (hppa_info == NULL)
3828 return FALSE;
3829
3830 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3831
3832 rel = relocs;
3833 relend = relocs + input_section->reloc_count;
3834 for (; rel < relend; rel++)
3835 {
3836 int r_type;
3837 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3838 unsigned long r_symndx;
3839 struct elf_link_hash_entry *eh;
3840 Elf_Internal_Sym *sym;
3841 asection *sym_sec;
3842 bfd_vma relocation;
3843 bfd_reloc_status_type r;
3844
3845 r_type = ELF_R_TYPE (rel->r_info);
3846 if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3847 {
3848 bfd_set_error (bfd_error_bad_value);
3849 return FALSE;
3850 }
3851 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3852 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3853 continue;
3854
3855 /* This is a final link. */
3856 r_symndx = ELF_R_SYM (rel->r_info);
3857 eh = NULL;
3858 sym = NULL;
3859 sym_sec = NULL;
3860 if (r_symndx < symtab_hdr->sh_info)
3861 {
3862 /* This is a local symbol, hh defaults to NULL. */
3863 sym = local_syms + r_symndx;
3864 sym_sec = local_sections[r_symndx];
3865 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3866 }
3867 else
3868 {
3869 /* This is not a local symbol. */
3870 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3871
3872 /* It seems this can happen with erroneous or unsupported
3873 input (mixing a.out and elf in an archive, for example.) */
3874 if (sym_hashes == NULL)
3875 return FALSE;
3876
3877 eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3878
3879 if (info->wrap_hash != NULL
3880 && (input_section->flags & SEC_DEBUGGING) != 0)
3881 eh = ((struct elf_link_hash_entry *)
3882 unwrap_hash_lookup (info, input_bfd, &eh->root));
3883
3884 while (eh->root.type == bfd_link_hash_indirect
3885 || eh->root.type == bfd_link_hash_warning)
3886 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3887
3888 relocation = 0;
3889 if (eh->root.type == bfd_link_hash_defined
3890 || eh->root.type == bfd_link_hash_defweak)
3891 {
3892 sym_sec = eh->root.u.def.section;
3893 if (sym_sec != NULL
3894 && sym_sec->output_section != NULL)
3895 relocation = (eh->root.u.def.value
3896 + sym_sec->output_section->vma
3897 + sym_sec->output_offset);
3898 }
3899 else if (eh->root.type == bfd_link_hash_undefweak)
3900 ;
3901 else if (info->unresolved_syms_in_objects == RM_IGNORE
3902 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3903 ;
3904 else if (!bfd_link_relocatable (info)
3905 && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3906 continue;
3907 else if (!bfd_link_relocatable (info))
3908 {
3909 bfd_boolean err;
3910 err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3911 || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3912 (*info->callbacks->undefined_symbol) (info,
3913 eh->root.root.string,
3914 input_bfd,
3915 input_section,
3916 rel->r_offset, err);
3917 }
3918
3919 if (!bfd_link_relocatable (info)
3920 && relocation == 0
3921 && eh->root.type != bfd_link_hash_defined
3922 && eh->root.type != bfd_link_hash_defweak
3923 && eh->root.type != bfd_link_hash_undefweak)
3924 {
3925 if (info->unresolved_syms_in_objects == RM_IGNORE
3926 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3927 && eh->type == STT_PARISC_MILLI)
3928 (*info->callbacks->undefined_symbol)
3929 (info, eh_name (eh), input_bfd,
3930 input_section, rel->r_offset, FALSE);
3931 }
3932 }
3933
3934 if (sym_sec != NULL && discarded_section (sym_sec))
3935 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3936 rel, 1, relend, howto, 0, contents);
3937
3938 if (bfd_link_relocatable (info))
3939 continue;
3940
3941 r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3942 input_section, contents,
3943 relocation, info, sym_sec,
3944 eh);
3945
3946 if (r != bfd_reloc_ok)
3947 {
3948 switch (r)
3949 {
3950 default:
3951 abort ();
3952 case bfd_reloc_overflow:
3953 {
3954 const char *sym_name;
3955
3956 if (eh != NULL)
3957 sym_name = NULL;
3958 else
3959 {
3960 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3961 symtab_hdr->sh_link,
3962 sym->st_name);
3963 if (sym_name == NULL)
3964 return FALSE;
3965 if (*sym_name == '\0')
3966 sym_name = bfd_section_name (input_bfd, sym_sec);
3967 }
3968
3969 (*info->callbacks->reloc_overflow)
3970 (info, (eh ? &eh->root : NULL), sym_name, howto->name,
3971 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3972 }
3973 break;
3974 }
3975 }
3976 }
3977 return TRUE;
3978}
3979
3980static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3981{
3982 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3983 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3984 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3985 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3986 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3987 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3988 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3989 { NULL, 0, 0, 0, 0 }
3990};
3991
3992/* The hash bucket size is the standard one, namely 4. */
3993
3994const struct elf_size_info hppa64_elf_size_info =
3995{
3996 sizeof (Elf64_External_Ehdr),
3997 sizeof (Elf64_External_Phdr),
3998 sizeof (Elf64_External_Shdr),
3999 sizeof (Elf64_External_Rel),
4000 sizeof (Elf64_External_Rela),
4001 sizeof (Elf64_External_Sym),
4002 sizeof (Elf64_External_Dyn),
4003 sizeof (Elf_External_Note),
4004 4,
4005 1,
4006 64, 3,
4007 ELFCLASS64, EV_CURRENT,
4008 bfd_elf64_write_out_phdrs,
4009 bfd_elf64_write_shdrs_and_ehdr,
4010 bfd_elf64_checksum_contents,
4011 bfd_elf64_write_relocs,
4012 bfd_elf64_swap_symbol_in,
4013 bfd_elf64_swap_symbol_out,
4014 bfd_elf64_slurp_reloc_table,
4015 bfd_elf64_slurp_symbol_table,
4016 bfd_elf64_swap_dyn_in,
4017 bfd_elf64_swap_dyn_out,
4018 bfd_elf64_swap_reloc_in,
4019 bfd_elf64_swap_reloc_out,
4020 bfd_elf64_swap_reloca_in,
4021 bfd_elf64_swap_reloca_out
4022};
4023
4024#define TARGET_BIG_SYM hppa_elf64_vec
4025#define TARGET_BIG_NAME "elf64-hppa"
4026#define ELF_ARCH bfd_arch_hppa
4027#define ELF_TARGET_ID HPPA64_ELF_DATA
4028#define ELF_MACHINE_CODE EM_PARISC
4029/* This is not strictly correct. The maximum page size for PA2.0 is
4030 64M. But everything still uses 4k. */
4031#define ELF_MAXPAGESIZE 0x1000
4032#define ELF_OSABI ELFOSABI_HPUX
4033
4034#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4035#define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4036#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
4037#define elf_info_to_howto elf_hppa_info_to_howto
4038#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4039
4040#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
4041#define elf_backend_object_p elf64_hppa_object_p
4042#define elf_backend_final_write_processing \
4043 elf_hppa_final_write_processing
4044#define elf_backend_fake_sections elf_hppa_fake_sections
4045#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
4046
4047#define elf_backend_relocate_section elf_hppa_relocate_section
4048
4049#define bfd_elf64_bfd_final_link elf_hppa_final_link
4050
4051#define elf_backend_create_dynamic_sections \
4052 elf64_hppa_create_dynamic_sections
4053#define elf_backend_post_process_headers elf64_hppa_post_process_headers
4054
4055#define elf_backend_omit_section_dynsym \
4056 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
4057#define elf_backend_adjust_dynamic_symbol \
4058 elf64_hppa_adjust_dynamic_symbol
4059
4060#define elf_backend_size_dynamic_sections \
4061 elf64_hppa_size_dynamic_sections
4062
4063#define elf_backend_finish_dynamic_symbol \
4064 elf64_hppa_finish_dynamic_symbol
4065#define elf_backend_finish_dynamic_sections \
4066 elf64_hppa_finish_dynamic_sections
4067#define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
4068#define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
4069
4070/* Stuff for the BFD linker: */
4071#define bfd_elf64_bfd_link_hash_table_create \
4072 elf64_hppa_hash_table_create
4073
4074#define elf_backend_check_relocs \
4075 elf64_hppa_check_relocs
4076
4077#define elf_backend_size_info \
4078 hppa64_elf_size_info
4079
4080#define elf_backend_additional_program_headers \
4081 elf64_hppa_additional_program_headers
4082
4083#define elf_backend_modify_segment_map \
4084 elf64_hppa_modify_segment_map
4085
4086#define elf_backend_link_output_symbol_hook \
4087 elf64_hppa_link_output_symbol_hook
4088
4089#define elf_backend_want_got_plt 0
4090#define elf_backend_plt_readonly 0
4091#define elf_backend_want_plt_sym 0
4092#define elf_backend_got_header_size 0
4093#define elf_backend_type_change_ok TRUE
4094#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
4095#define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
4096#define elf_backend_rela_normal 1
4097#define elf_backend_special_sections elf64_hppa_special_sections
4098#define elf_backend_action_discarded elf_hppa_action_discarded
4099#define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
4100
4101#define elf64_bed elf64_hppa_hpux_bed
4102
4103#include "elf64-target.h"
4104
4105#undef TARGET_BIG_SYM
4106#define TARGET_BIG_SYM hppa_elf64_linux_vec
4107#undef TARGET_BIG_NAME
4108#define TARGET_BIG_NAME "elf64-hppa-linux"
4109#undef ELF_OSABI
4110#define ELF_OSABI ELFOSABI_GNU
4111#undef elf64_bed
4112#define elf64_bed elf64_hppa_linux_bed
4113
4114#include "elf64-target.h"
Note: See TracBrowser for help on using the repository browser.