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INTRODUCTION

Chromaticity measurements are usually done by changing the energy of the beam
by a known amount and measuring the change in betatron tune with a spectrum analyzer.
The energy change is done by adjusting the RF frequency. The change in RF frequency is
made large enough so that the change in betatron tune can be seen. If synchrotron motion
is present in the beam, then measuring the change in betatron tune can be difficult.

This note will outline a method to measure the change in betatron tune by phase-
modulating the RF and measuring the phase modulated betatron spectrum Extremely
small resolution bandwidths are available on modern vector signal analyzers. A small
resolution bandwidth is equivalent to measuring the chromaticity many times and
averaging the results. This would permit much smaller shifts in betatron tunes to be
measured. The phase-modulated signal consists of sidebands whose amplitudes are given
by Bessel functions. The complication of the Bessel functions can be removed if the
vector signal analyzer is capable of phase demodulation. The sign of the chromaticity can
be determined by observing the modulation spectrum at both betatron sidebands.

THEORY WITHOUT SYNCHROTRON MOTION

This first part of this note will assume a single bunch undergoing betatron
oscillations in a circular accelerator without any synchrotron motion. The azimuthal
location of the bunch in the accelerator is defines as φφr. In one turn around the machine,
the ratio of betatron phase to azimuthal phase is defined as the betatron tune.
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The betatron tune has a nominal value of Qo on the central orbit. For particles with a
different energy than the central orbit, the variation in tune from the nominal tune is
given by the chromaticity:
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The time dependence of the betatron phase averaged over one turn is given as:
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This note will assume that a phase shifter is placed downstream of the frequency
source of the accelerator's RF system. The RF system operates at a harmonic number h.
The controller of the phase shifter will shift the RF phase at a frequency ΩΩmod. The



maximum amplitude of the phase shift is ∆φ∆φrf. The time dependence of the bunch's
azimuthal position is:
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The frequency at which the bunch travels around the accelerator is:
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This note will assume that the revolution frequency of the central orbit is ωωr. The
difference between the bunch's revolution frequency and the revolution frequency of the
central orbit is:
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The energy difference between the bunch and the central orbit is given as:
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Using Equations 2 and 3, the betatron frequency is:
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If:
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then the second order term can be neglected. The betatron frequency becomes:
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The betatron phase is:
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where φφββo is the betatron phase at t=0. The transverse position of the bunch at the pickup
is:



( )βφβ= cosAx pupu (13)

where A is the betatron amplitude of the bunch. If the bunch length is very small, the
difference current available to the pickup is:
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where εεmax is the aperture of the pickup, qb is the charge of the bunch, and φφro is an
arbitrary phase offset. The infinite sum of delta functions in Equation 14 can be expanded
in a Fourier cosine series:
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Using a simple trigonometric identity of the product of cosines, Equation 14 becomes:
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where the + sign indicates the upper betatron sideband and the - sign indicates the lower
betatron sideband. The frequency of the sidebands at revolution harmonic k is:
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Using the Bessel function relationship:
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Equation 17 becomes
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Equation 21 through Equation 24 show that the transverse spectrum will consist of a
family of lines whose amplitude is a function of the chromaticity. One can determine the
chromaticity by measuring the relative amplitude difference of the lines. The J1 Bessel
function and the J0 Bessel functions are shown in Figure 1. By measuring the relative
heights of the J0 and J1 lines at both betatron sidebands, the sign of the chromaticity can
also be determined.

THEORY WITH SYNCHROTRON MOTION

The preceding section neglected the synchrotron motion of the bunch. If the
bunch is also undergoing synchrotron oscillations as well as the phase modulation due to
the RF system and the RF phase modulation frequency is much slower than the
synchrotron frequency, then the azimuthal position of the particle is given as
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where ΩΩs is the synchrotron frequency and ∆φ∆φs is the synchrotron amplitude. If the RF
and the synchrotron modulation is small, i.e.:

1
h

rf

r

mod <<
φ∆

ω
Ω

(26)

1s
r

s <<φ∆
ω
Ω

(27)

Then the betatron phase can be written as:
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The frequency of the upper and lower betatron sidebands becomes
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and the available difference mode current is:
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where:
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Equations 30-32 show that every synchrotron sideband gets modulated with the RF phase
modulation and that the chromaticity can be determined by examining the RF modulation
lines around any synchrotron sideband.

A TEVATRON EXAMPLE

These numbers might be reasonable for the Tevatron at 150 GeV.

χ = 10
h =1113
γt = 18.8
γ =160

k++Q = 1113 x 21 MHz / 53 MHz = 441
k-- Q = 1113 x 21 MHz / 53 MHz = 441

If  φrf = 37 degrees and Ωmod/2π = 20 Hz then:

∆pmax/p = 0.086x10-3

Z+ = -1.8
J0(1.8) = 0.34

J1(1.8) = 0.582



Z- = 2.3
J0(2.3) = 0.056
J1(2.3) = 0.54

Figure 2 shows a measured spectrum using an HP Vector Signal Analyzer of a 25 kHz
carrier signal that is phase modulated at 20 Hz. The amplitude of the phase modulation
was set at 1.75 radians (which would correspond to a Z+/- of 1.75). A very nice feature of
the HP vector signal analyzer is that it can demodulate the phase modulated signal and
show the spectrum of the phase modulation which in this case would be a 20 Hz line with
an amplitude of 1.75 radians (1.23 radians r.m.s). This spectrum is shown in Figure 3.
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Figure 1. Bessel Functions



Figure 2. Spectrum of a phase modulated signal that has a 25 kHz carrier modulated at
rate of 20 Hz with a phase modulation amplitude of 1.75 radians

Figure 3. Demodulated spectrum of the spectrum shown in Figure 2.


