1 | % This is pdfTeX, Version 3.14159265-2.6-1.40.18 (MiKTeX 2.9.6350)
|
---|
2 | % LaTeX2e <2017-04-15>
|
---|
3 |
|
---|
4 | % Package: amsbsy 1999/11/29 v1.2d Bold Symbols
|
---|
5 | % Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support
|
---|
6 | % Package: amsmath 2017/09/02 v2.17a AMS math features
|
---|
7 | % Package: amsopn 2016/03/08 v2.02 operator names
|
---|
8 | % Package: amstext 2000/06/29 v2.01 AMS text
|
---|
9 | % Package: amsthm 2017/10/31 v2.20.4
|
---|
10 | % Package: bm 2017/01/16 v1.2c Bold Symbol Support (DPC/FMi)
|
---|
11 | % Package: cleveref 2018/03/27 v0.21.4 Intelligent cross-referencing
|
---|
12 | % Package: enumitem 2011/09/28 v3.5.2 Customized lists
|
---|
13 | % Package: expl3 2018-06-01 L3 programming layer (code)
|
---|
14 | % Package: expl3 2018-06-01 L3 programming layer (loader)
|
---|
15 | % Package: graphics 2017/06/25 v1.2c Standard LaTeX Graphics (DPC,SPQR)
|
---|
16 | % Package: graphicx 2017/06/01 v1.1a Enhanced LaTeX Graphics (DPC,SPQR)
|
---|
17 | % Package: hyperref 2018/02/06 v6.86b Hypertext links for LaTeX
|
---|
18 | % Package: ifpdf 2017/03/15 v3.2 Provides the ifpdf switch
|
---|
19 | % Package: ifthen 2014/09/29 v1.1c Standard LaTeX ifthen package (DPC)
|
---|
20 | % Package: keyval 2014/10/28 v1.15 key=value parser (DPC)
|
---|
21 | % Package: mathtools 2018/01/08 v1.21 mathematical typesetting tools
|
---|
22 | % Package: nameref 2016/05/21 v2.44 Cross-referencing by name of section
|
---|
23 | % Package: pgf 2015/08/07 v3.0.1a (rcs-revision 1.15)
|
---|
24 | % Package: scalerel 2016/12/29 v1.8 Routines for constrained scaling and stretchi
|
---|
25 | % Package: showlabels 2015/12/08 v1.7
|
---|
26 | % Package: stix2 2018/04/02 v2.0.0-latex STIX Two fonts support package
|
---|
27 | % Package: thmtools 2014/04/21 v66
|
---|
28 | % Package: tikz 2015/08/07 v3.0.1a (rcs-revision 1.151)
|
---|
29 | % Package: tikz-cd 2014/10/30 v0.9e Commutative diagrams with tikzx
|
---|
30 |
|
---|
31 | % Package: xparse 2018-05-12 L3 Experimental document command parser
|
---|
32 | % Package: xstring 2013/10/13 v1.7c String manipulations (C Tellechea)
|
---|
33 | % Package: xy 2013/10/06 Xy-pic version 3.8.9
|
---|
34 | % Version 2
|
---|
35 | % 1. Define \into
|
---|
36 | % 2. Define m-chart at a point and subchart at a point
|
---|
37 | % 3. Change definition of M-atlas morphism
|
---|
38 | % 3. Change definition of Ck-atlas morphism
|
---|
39 |
|
---|
40 | \documentclass{article}
|
---|
41 | \usepackage{amsmath}
|
---|
42 | %\usepackage{amssymb}
|
---|
43 | \usepackage{amsthm}
|
---|
44 | \usepackage{bm}
|
---|
45 | \usepackage{enumitem}
|
---|
46 | \usepackage{ifthen}
|
---|
47 | %\usepackage{mathrsfs}
|
---|
48 | \usepackage{mathtools}
|
---|
49 | \usepackage{scalerel}
|
---|
50 | \usepackage{stix2}[notext,not1] %reqires XeTeX or luaTeX
|
---|
51 | \usepackage{thmtools}
|
---|
52 | \usepackage{tikz-cd}
|
---|
53 | \usepackage{xparse} % loads expl3
|
---|
54 | %See interface3.pdf
|
---|
55 | \usepackage{xstring}
|
---|
56 |
|
---|
57 | \usepackage[cmtip,all,barr]{xy}
|
---|
58 | %Remove when xybarr.tex bug fixed
|
---|
59 | \newdir_{ (}{{ }*!/-.5em/@_{(}}
|
---|
60 |
|
---|
61 | %Morphisms of category
|
---|
62 | \newcommand \Ar {\mathrm{Ar}}
|
---|
63 |
|
---|
64 | \DeclareMathOperator \arin {\stackrel{\Ar}{\in}}
|
---|
65 |
|
---|
66 | %Category of atlases from E to C
|
---|
67 | %\DeclareMathOperator \Atl {\mathscr{A\!t\!l}}
|
---|
68 | \newcommand \Atl [1] []
|
---|
69 | { \ifthenelse {\equal{#1}{}}
|
---|
70 | {\mathscr{A\!t\!l}}
|
---|
71 | {\mathscr{A\!t\!l}^{\mathrm{#1}}}
|
---|
72 | }
|
---|
73 |
|
---|
74 | \DeclareMathOperator \Atlas {\mathrm{Atlas}}
|
---|
75 |
|
---|
76 | \newcommand \Bun {\mathrm{Bun}}
|
---|
77 |
|
---|
78 | \newcommand \BunProd {\mathrm{Bun}-\mathrm{prod}}
|
---|
79 |
|
---|
80 | \newcommand \C {\mathrm{C}}
|
---|
81 |
|
---|
82 | % Select font for standard categories
|
---|
83 | \newcommand \Cat [1] {\mathbf{#1}}
|
---|
84 |
|
---|
85 | % Select font for categories and sequences of categories
|
---|
86 | \newcommand \catname [1] {\mathscr{#1}}
|
---|
87 | \newcommand \catseqname [1] {\bm{\mathscr{#1}}}
|
---|
88 | % Can't use \bm without stix and XeTeX
|
---|
89 |
|
---|
90 | \newcommand \Ck {\mathrm{C^k}}
|
---|
91 |
|
---|
92 | \newcommand \Classic {\mathrm{Classic}}
|
---|
93 |
|
---|
94 | \DeclareMathOperator \codomain {\mathrm{codomain}}
|
---|
95 |
|
---|
96 | % Extended composition operators for function sequences
|
---|
97 | \newcommand {\compose} [1] [def]
|
---|
98 | { \ifthenelse {\equal{#1}{def}}
|
---|
99 | {\mathbin \circ}
|
---|
100 | {\mathbin{\overset{#1} {\circ}}}
|
---|
101 | }
|
---|
102 |
|
---|
103 | % Compose head
|
---|
104 | \newcommand {\composeh} [1] [def]
|
---|
105 | { \ifthenelse {\equal{#1}{def}}
|
---|
106 | {\mathbin \odot}
|
---|
107 | {\mathbin{\overset{#1} {\odot}}}
|
---|
108 | }
|
---|
109 |
|
---|
110 | % Compose tail
|
---|
111 | \newcommand {\composet} [1] [def]
|
---|
112 | { \ifthenelse {\equal{#1}{def}}
|
---|
113 | {\mathbin \cdot}
|
---|
114 | {\mathbin{\overset{#1} {\cdot}}}
|
---|
115 | }
|
---|
116 |
|
---|
117 | \DeclareMathOperator \defeq {\stackrel{\mathrm{def}}{=}}
|
---|
118 |
|
---|
119 | \DeclareMathOperator \domain {\mathrm{domain}}
|
---|
120 |
|
---|
121 | \DeclareMathOperator \Domain {\seqname{domain}}
|
---|
122 |
|
---|
123 | \newcommand \false {\mathrm{False}}
|
---|
124 |
|
---|
125 | \newcommand \Fib {\mathrm{Fib}}
|
---|
126 |
|
---|
127 | \newcommand \full [2] [] {\underset{\mathrm {{#1}full}}{#2}}
|
---|
128 |
|
---|
129 | \newcommand \fullcref [1]
|
---|
130 | { \ifthenelse {\equal{\nameref{#1}}{}}
|
---|
131 | {\cref{#1}}
|
---|
132 | {\cref{#1} (\nameref{#1})}
|
---|
133 | }
|
---|
134 |
|
---|
135 | % Select font for functions and sequences of functions
|
---|
136 | % \newcommand \funcname [1] {\mathit{#1}}
|
---|
137 | % \newcommand \funcseqname [1] {\bm{#1}}
|
---|
138 |
|
---|
139 | \DeclareMathOperator \Functor {\mathop{\mathscr{F}}}
|
---|
140 |
|
---|
141 | \DeclareMathOperator \head {\mathrm{head}}
|
---|
142 |
|
---|
143 | \DeclareMathOperator \Hom {\mathrm{Hom}}
|
---|
144 |
|
---|
145 | \DeclareMathOperator \Id {\mathrm{Id}}
|
---|
146 |
|
---|
147 | \DeclareMathOperator \ID {\mathbf{Id}}
|
---|
148 |
|
---|
149 | \newcommand \into {\negthickspace\mon}
|
---|
150 |
|
---|
151 | %Propositional function isCk_{f,A}(x,y,...)
|
---|
152 | \DeclareMathOperator \isCk {\mathrm{isCk}}
|
---|
153 |
|
---|
154 | %Propositional function isAtl(A,E,C)
|
---|
155 | \newcommand \isAtl [1] []
|
---|
156 | { \ifthenelse {\equal{#1}{}}
|
---|
157 | {\mathrm{isAtl}}
|
---|
158 | {\mathrm{isAtl}^{\mathrm{#1}}}
|
---|
159 | }
|
---|
160 |
|
---|
161 | %Propositional function isLCS(L, M, A, F, Sigma)
|
---|
162 | \DeclareMathOperator \isLCS {\mathrm{isLCS}}
|
---|
163 |
|
---|
164 | \DeclareMathOperator \iso {\stackrel{\sim}{=}}
|
---|
165 |
|
---|
166 | % Join two tuples
|
---|
167 | \DeclareMathOperator \join {\mathrm{join}}
|
---|
168 |
|
---|
169 | %Category of M-Sigma local coordinate spaces
|
---|
170 | \newcommand \LCS {\mathrm{LCS}}
|
---|
171 |
|
---|
172 | \DeclareMathOperator \length {\mathrm{length}}
|
---|
173 |
|
---|
174 | \DeclareMathOperator \lengtho {\mathrm length0}
|
---|
175 |
|
---|
176 | \newcommand \M {\mathrm{M}}
|
---|
177 |
|
---|
178 | \newcommand \Man {\mathrm{Man}}
|
---|
179 |
|
---|
180 | % Adjust : spacing for f maps a to b
|
---|
181 | \newcommand \maps {\!\colon}
|
---|
182 |
|
---|
183 | %Set long names upright, short names italic
|
---|
184 | \newcommand{\mathvarname}[1]{%
|
---|
185 | \begingroup\noexpandarg
|
---|
186 | \StrLen{#1}[\temp]%
|
---|
187 | \ifnum\temp>1
|
---|
188 | \mathrm{#1}%
|
---|
189 | \else
|
---|
190 | #1%
|
---|
191 | \fi
|
---|
192 | \endgroup
|
---|
193 | }
|
---|
194 |
|
---|
195 | \newcommand \maxfull [2] [] {\underset{\mathrm {{#1}max-full}}{#2}}
|
---|
196 | \newcommand \maximal [2] [] {\underset{\mathrm {{#1}max}}{#2}}
|
---|
197 |
|
---|
198 | \newcommand \minimal [2] [] {\underset{{#1}\mathrm {min}}{#2}}
|
---|
199 |
|
---|
200 | %Model category
|
---|
201 | \newcommand \Mod {\mathrm{Mod}}
|
---|
202 |
|
---|
203 | %Morphisms between two objects
|
---|
204 | \newcommand \Mor {\mathrm{Mor}}
|
---|
205 |
|
---|
206 | % Morphism of category
|
---|
207 | \DeclareMathOperator \morphin {\stackrel{\Ar}{\in}}
|
---|
208 |
|
---|
209 | %Object of category
|
---|
210 | \newcommand \Ob {\mathrm{Ob}}
|
---|
211 | \DeclareMathOperator \objin {\stackrel{\Ob}{\in}}
|
---|
212 |
|
---|
213 | \newcommand \onto {\epi}
|
---|
214 |
|
---|
215 | % All non-null open sets
|
---|
216 | \newcommand \op [2] [] {\underset{{#1}\mathrm {op}}{#2}}
|
---|
217 |
|
---|
218 | \newcommand \optriv [2] [] {\underset{{#1}\mathrm {op-triv}}{#2}}
|
---|
219 |
|
---|
220 | \newcommand \pagecref [1]
|
---|
221 | { \ifthenelse {\equal{\nameref{#1}}{}}
|
---|
222 | {\cref{#1} on \cpageref{#1}}
|
---|
223 | {\cref{#1} (\nameref{#1}) on \cpageref{#1}\!}
|
---|
224 | }
|
---|
225 |
|
---|
226 | \newcommand \Pagecref [1]
|
---|
227 | { \ifthenelse {\equal{\nameref{#1}}{}}
|
---|
228 | {\Cref{#1} on \cpageref{#1}}
|
---|
229 | {\Cref{#1} (\nameref{#1}) on \cpageref{#1}}
|
---|
230 | }
|
---|
231 |
|
---|
232 | \DeclareMathOperator \range {\mathrm{range}}
|
---|
233 |
|
---|
234 | \DeclareMathOperator \Range {\seqname{range}}
|
---|
235 |
|
---|
236 | \newcommand \restrictto {\!\restriction}
|
---|
237 |
|
---|
238 | \DeclareMathOperator \seqeq {\stackrel{()}{=}}
|
---|
239 |
|
---|
240 | \DeclareMathOperator \seqin {\stackrel{()}{\in}}
|
---|
241 |
|
---|
242 | %Font for sequence
|
---|
243 | %\newcommand \seqname [1] {\bm{\mathit{\mathsf{#1}}}}
|
---|
244 |
|
---|
245 | \newcommand \Set {\mathbf{Set}}
|
---|
246 | %
|
---|
247 | %\newcommand \sing [2] [] {\underset{{#1}\mathrm{Sing}{#2}}
|
---|
248 | %\newcommand \Sing [2] [] {\underset{\bm{{#1}\mathrm{Sing}}{#2}}
|
---|
249 |
|
---|
250 | \newcommand \singcat [2] [] {\underset{{#1}\mathscr{S\!i\!n\!g}}{#2}}
|
---|
251 | \newcommand \Singcat [2] [] {\underset{{#1}\mathscr{S\!i\!n\!g}}{#2}}
|
---|
252 | % Can't use \bm without stix and XeTeX
|
---|
253 |
|
---|
254 | \newcommand \strict [2] [] {\underset{\mathrm {{#1}strict}}{#2}}
|
---|
255 |
|
---|
256 | \newcommand \subcat [1] [] {\overset{\mathrm{{#1}cat}}{\subseteq}}
|
---|
257 | \newcommand \SUBCAT [1] [] {\overset{\mathbf{{#1}cat}}{\subseteq}}
|
---|
258 |
|
---|
259 | \newcommand \submod [1] [] {\overset{\mathrm{{#1}mod}}{\subseteq}}
|
---|
260 |
|
---|
261 | \DeclareMathOperator \SUBSETEQ {\stackrel{()}{\subseteq}}
|
---|
262 |
|
---|
263 | \DeclareMathOperator \tail {\mathrm{tail}}
|
---|
264 |
|
---|
265 | \newcommand \toiso {\,\to/{>}->>/^{\iso}}
|
---|
266 |
|
---|
267 | \newcommand \Top {\mathrm{Top}}
|
---|
268 | \newcommand \Topcat {\mathscr{T\!o\!p}}
|
---|
269 |
|
---|
270 | % Font for topology
|
---|
271 | \newcommand \topname [1] {\mathfrak{#1}}
|
---|
272 |
|
---|
273 | \newcommand \Topology {\mathfrak{Top}}
|
---|
274 |
|
---|
275 | \newcommand \triv [2] [] {\underset{{#1}\mathrm {triv}}{#2}}
|
---|
276 | \newcommand \Triv [2] [] {\underset{{#1}\mathbf {triv}}{#2}}
|
---|
277 |
|
---|
278 | \newcommand \trivcat [2] [] {\underset{{#1}\mathscr{T\!r\!i\!v}}{#2}}
|
---|
279 | \newcommand \Trivcat [2] [] {\underset{{#1}\bm{\mathscr{T\!r\!i\!v}}}{#2}}
|
---|
280 | % Can't use \bm without stix and XeTeX
|
---|
281 |
|
---|
282 | \newcommand \true {\mathrm{True}}
|
---|
283 | % Can't use long name because \mathscr doesn't support lower case.
|
---|
284 | \newcommand \truthcat {\mathscr{T}}
|
---|
285 | \newcommand \truthset {\mathbb{T}}
|
---|
286 | \newcommand \truthspace {\mathrm{Truthspace}}
|
---|
287 | \newcommand \truthtop {\mathfrak{Truthtop}}
|
---|
288 |
|
---|
289 | \newcommand \unioncat [1] [] {\overset{\mathrm{{#1}cat}}{\cup}}
|
---|
290 | \newcommand \UNIONCAT [1] [] {\overset{\mathbf{{#1}cat}}{\cup}}
|
---|
291 |
|
---|
292 | % Existential and universal quamtifiers
|
---|
293 | % Set former
|
---|
294 | % Union and intersection
|
---|
295 |
|
---|
296 | % --------------------------------------------------------------------
|
---|
297 | % | From here to closing --- belongs in package |
|
---|
298 | % | |
|
---|
299 |
|
---|
300 | % Copyright 2016 Shmuel (Seymour J.) Metz
|
---|
301 | % I grant permission to the AMS, arXiv.org, the LATEX3 project and the
|
---|
302 | % TeX users group to incorporate these commands in any LaTeX package
|
---|
303 | % that may be freely redistributed, provided that they attribute the
|
---|
304 | % source.
|
---|
305 |
|
---|
306 | % These commands are intended to allow semantic markup for some
|
---|
307 | % common mathermtical constructs:
|
---|
308 | % \equant{variables}{proposition} Existential qunatifier
|
---|
309 | % \uquant{variables}{proposition} Universal quantifier
|
---|
310 | % \union[indices]{set} Union
|
---|
311 | % \intersection[indices]{set} Intersection
|
---|
312 | % \set {elements}[propositions] Set of
|
---|
313 | % \set{elements}[propositions]* Set of, split
|
---|
314 | % \setupquant{optionstring} Style of \equant, \uquant
|
---|
315 | % \setupset{optionstring} Style of \set, \union, \intersection
|
---|
316 | % \seqname{name} Render sequence/set/tuple name
|
---|
317 |
|
---|
318 | % Because LaTeX has problems with parameters containg \\, the \set command
|
---|
319 | % has code to split the line between the elements and the proposition if
|
---|
320 | % the invocation is \set* and the environment is multline.
|
---|
321 |
|
---|
322 | % Surround individual indices in \intersection, individual variables in
|
---|
323 | % quantifiers, individual propositions in \set and individual indices in
|
---|
324 | % \union with braces, e.g., \equant {{x \in X},{y \in Y}}{P(x,y)},
|
---|
325 | % \set{x}[{P(x)}, {Q(x)}], \union[{i \in I},{j \in J}]{O(i.j)}.
|
---|
326 |
|
---|
327 | % Setup keywords for \equant, \uquant
|
---|
328 | % subscript =none Default
|
---|
329 | % \exists var1 ... \exists varn prop
|
---|
330 | % stacked \exists_\substack{var1 \\ ... varn} prop
|
---|
331 | % multiple \exists_{var1,...,varn} prop
|
---|
332 | % parentheses=none Default
|
---|
333 | % single (\exists var1 ... \exists varn) prop
|
---|
334 | % multiple (\exists var1) ... (\exists varn) prop
|
---|
335 | % separator= Default {}
|
---|
336 |
|
---|
337 | % Setup keywords for \intersection, \set, \union
|
---|
338 | % subscript =none \bigcap ix1, ..., ixn set
|
---|
339 | % stacked Default
|
---|
340 | % \bigcap__\substack{ix1 \\ ... ixn} set
|
---|
341 | % multiple \bigcap_{ix1,...,ixn} set
|
---|
342 | % separator= Default {\mid}
|
---|
343 | % {elements separator prop1 ^ ... propn}
|
---|
344 |
|
---|
345 | \ExplSyntaxOn
|
---|
346 |
|
---|
347 | \int_gzero_new:N \g_style_quant_parens_int
|
---|
348 | \int_gzero_new:N \g_style_quant_subscr_int
|
---|
349 | \int_gzero_new:N \g_style_set_subscr_int
|
---|
350 |
|
---|
351 | \NewDocumentCommand{\equant}{mm}
|
---|
352 | {
|
---|
353 | \quant:nnn {\exists} {#1} {#2}
|
---|
354 | }
|
---|
355 |
|
---|
356 | \NewDocumentCommand{\uquant}{mm}
|
---|
357 | {
|
---|
358 | \quant:nnn {\forall} {#1} {#2}
|
---|
359 | }
|
---|
360 |
|
---|
361 | \NewDocumentCommand \setupquant {m}
|
---|
362 | {
|
---|
363 | \keys_set:nn {shmuel / quant} {#1}
|
---|
364 | }
|
---|
365 |
|
---|
366 | \keys_define:nn {shmuel / quant}
|
---|
367 | {
|
---|
368 | subscript .choices:nn =
|
---|
369 | {
|
---|
370 | {
|
---|
371 | none,
|
---|
372 | stacked,
|
---|
373 | multiple
|
---|
374 | }
|
---|
375 | {
|
---|
376 | \int_gset:Nn \g_style_quant_subscr_int {\l_keys_choice_int-1}
|
---|
377 | }
|
---|
378 | },
|
---|
379 | subscript .default:n = multiple,
|
---|
380 | subscript .initial:n = none,
|
---|
381 | parentheses .choices:nn =
|
---|
382 | {
|
---|
383 | {
|
---|
384 | none,
|
---|
385 | single,
|
---|
386 | multiple
|
---|
387 | }
|
---|
388 | {
|
---|
389 | \int_gset:Nn \g_style_quant_parens_int {\l_keys_choice_int - 1}
|
---|
390 | }
|
---|
391 | },
|
---|
392 | parentheses .default:n = multiple,
|
---|
393 | parentheses .initial:n = none,
|
---|
394 | separater .tl_set:N = \g_style_quant_sep_tl,
|
---|
395 | separater .default:n = {.},
|
---|
396 | separater .initial:n = {}
|
---|
397 | }
|
---|
398 |
|
---|
399 | \cs_new:Npn \quant:nnn #1 #2 #3
|
---|
400 | {
|
---|
401 | %\int_show:N \g_style_quant_parens_int
|
---|
402 | %\int_show:N \g_style_quant_subscr_int
|
---|
403 | % g_style_quant_parens_int \ \int_use:N \g_style_quant_parens_int \
|
---|
404 | % g_style_quant_subscr_int \ \int_use:N \g_style_quant_subscr_int \
|
---|
405 | \clist_set:Nn \l_tmpa_clist {#2}
|
---|
406 | \int_case:nn
|
---|
407 | {\g_style_quant_subscr_int}
|
---|
408 | {
|
---|
409 | {0}
|
---|
410 | {
|
---|
411 | % No subscript
|
---|
412 | % Set separater to ) ( quantifier or just quantifier
|
---|
413 | \int_compare:nTF {\g_style_quant_parens_int = 2}
|
---|
414 | {\tl_set:Nn \l_tmpa_tl {\right ) \left ( #1}}
|
---|
415 | {\tl_set:Nn \l_tmpa_tl {#1}}
|
---|
416 | \int_compare:nT {\g_style_quant_parens_int > 0} {\left (}
|
---|
417 | #1
|
---|
418 | \clist_use:Nn \l_tmpa_clist {\l_tmpa_tl}
|
---|
419 | \int_compare:nT {\g_style_quant_parens_int > 0} {\right )}
|
---|
420 | \g_style_quant_sep_tl #3
|
---|
421 | }
|
---|
422 | {1}
|
---|
423 | {
|
---|
424 | % Stacked subscript on single quantifier
|
---|
425 | \fp_set:Nn
|
---|
426 | \l_tmpa_fp
|
---|
427 | {ceil{\clist_count:N{\l_tmpa_clist} - 1} * .1 + 1}
|
---|
428 | \int_compare:nT {\g_style_quant_parens_int > 0} {\left (}
|
---|
429 | \scaleobj{\fp_to_decimal:N \l_tmpa_fp}{#1} \sb
|
---|
430 | { \substack { \clist_use:Nn \l_tmpa_clist { \\ } } }
|
---|
431 | \int_compare:nT {\g_style_quant_parens_int > 0} {\right )}
|
---|
432 | #3
|
---|
433 | }
|
---|
434 | {2}
|
---|
435 | {
|
---|
436 | % Subscripts on separate quantifiers
|
---|
437 | \clist_map_inline:Nn
|
---|
438 | \l_tmpa_clist
|
---|
439 | {
|
---|
440 | % (quantifier \sb predicate) or quantifier \sb predicate
|
---|
441 | {
|
---|
442 | \int_compare:nT
|
---|
443 | {\g_style_quant_parens_int > 0}
|
---|
444 | {\left (}
|
---|
445 | \scaleobj{1.2}{#1} \sb
|
---|
446 | {##1}
|
---|
447 | \int_compare:nT
|
---|
448 | {\g_style_quant_parens_int > 0}
|
---|
449 | {\right )}
|
---|
450 | }
|
---|
451 | }
|
---|
452 | #3
|
---|
453 | }
|
---|
454 | }
|
---|
455 | }
|
---|
456 |
|
---|
457 | \NewDocumentCommand{\set}{mos}
|
---|
458 | {
|
---|
459 | \IfBooleanTF {#3}
|
---|
460 | {
|
---|
461 | % \msg_term:n {set with star}
|
---|
462 | % \msg_term:n{{P1 #1}}
|
---|
463 | % \msg_term:n{{P2 #2}}
|
---|
464 | \bool_set_true:N \l_tmpa_bool
|
---|
465 | % \bool_show:N \l_tmpa_bool
|
---|
466 | }
|
---|
467 | {
|
---|
468 | \bool_set_false:N \l_tmpa_bool
|
---|
469 | }
|
---|
470 | \set_of:nnn {#1} {#2} {\l_tmpa_bool}
|
---|
471 | }
|
---|
472 |
|
---|
473 | %\tl_new:N \g_style_set_sep_tl
|
---|
474 | %\tl_gset:Nn \g_style_set_sep_tl {\mid}
|
---|
475 |
|
---|
476 | \NewDocumentCommand \setupset {m}
|
---|
477 | {
|
---|
478 | \keys_set:nn {shmuel / set} {#1}
|
---|
479 | }
|
---|
480 |
|
---|
481 | \keys_define:nn {shmuel / set}
|
---|
482 | {
|
---|
483 | separater .tl_set:N = \g_style_set_sep_tl,
|
---|
484 | subscript .choices:nn =
|
---|
485 | {
|
---|
486 | {
|
---|
487 | stacked,
|
---|
488 | multiple
|
---|
489 | }
|
---|
490 | {
|
---|
491 | \int_gset:Nn \g_style_set_subscr_int {\l_keys_choice_int-1}
|
---|
492 | }
|
---|
493 | },
|
---|
494 | separater .initial:n = {\mid},
|
---|
495 | subscript .initial:n = stacked
|
---|
496 | }
|
---|
497 |
|
---|
498 | \cs_new:Npn \set_of:nnn #1 #2 #3
|
---|
499 | {
|
---|
500 | \IfValueTF {#2}
|
---|
501 | {
|
---|
502 | % \msg_term:n {set_of:nn \ has \ predicates \ #2}
|
---|
503 | }
|
---|
504 | {
|
---|
505 | % \msg_term:n {set_of:nn \ has \ no \ predicates}
|
---|
506 | }
|
---|
507 | \clist_set:Nn \l_tmpa_clist {#2}
|
---|
508 | % \msg_term:n {l_tmpa_clist \ set}
|
---|
509 | \tl_gset:Nn \g_tmpa_tl {\clist_use:Nn \l_tmpa_clist {\land}}
|
---|
510 | % \msg_term:n {g_tmpa_tl \ set \ to \ \g_tmpa_tl}
|
---|
511 | \IfValueTF {#2}
|
---|
512 | {
|
---|
513 | \bool_if:nTF {#3}
|
---|
514 | {
|
---|
515 | \scalerel*{\{}{#1\g_tmpa_tl}
|
---|
516 | #1
|
---|
517 | % \msg_term:n {scalerel returns \scalerel{\g_style_set_sep_tl}{\g_tmpa_tl}}
|
---|
518 | \clist_set:Nn \l_tmpa_clist {#2}
|
---|
519 | \scalerel*{\mathbin{\g_style_set_sep_tl}}{#1\g_tmpa_tl}
|
---|
520 | \\
|
---|
521 | \clist_set:Nn \l_tmpa_clist {#2}
|
---|
522 | \g_tmpa_tl
|
---|
523 | % \tl_show:N \g_tmpa_tl
|
---|
524 | \clist_set:Nn \l_tmpa_clist {#2}
|
---|
525 | \scalerel*{\}}{#1\g_tmpa_tl}
|
---|
526 | }
|
---|
527 | {
|
---|
528 | \left \{
|
---|
529 | #1
|
---|
530 | \clist_set:Nn \l_tmpa_clist {#2}
|
---|
531 | \scalerel*{\mathbin{\g_style_set_sep_tl}}{#1\g_tmpa_tl}
|
---|
532 | \g_tmpa_tl
|
---|
533 | \right \}
|
---|
534 | }
|
---|
535 | }
|
---|
536 | {
|
---|
537 | \left \{ #1 \right \}
|
---|
538 | }
|
---|
539 | }
|
---|
540 |
|
---|
541 | \NewDocumentCommand{\funcname}{m}
|
---|
542 | {
|
---|
543 | \funcname:n {#1}
|
---|
544 | }
|
---|
545 |
|
---|
546 | \cs_new:Npn \funcname:n #1
|
---|
547 | {
|
---|
548 | %code here \tl_count:n
|
---|
549 | \int_compare:nTF {\tl_count:n{#1} > 1}
|
---|
550 | {
|
---|
551 | {\mathrm{#1}}
|
---|
552 | }
|
---|
553 | {
|
---|
554 | {\mathit{#1}}
|
---|
555 | }
|
---|
556 | }
|
---|
557 |
|
---|
558 | \NewDocumentCommand{\funcseqname}{m}
|
---|
559 | {
|
---|
560 | \funcseqname:n {#1}
|
---|
561 | }
|
---|
562 |
|
---|
563 | \cs_new:Npn \funcseqname:n #1
|
---|
564 | {
|
---|
565 | %code here \tl_count:n
|
---|
566 | \int_compare:nTF {\tl_count:n{#1} > 1}
|
---|
567 | {
|
---|
568 | {\bm{\mathrm{#1}}}
|
---|
569 | }
|
---|
570 | {
|
---|
571 | {\bm {\mathit{#1}}}
|
---|
572 | }
|
---|
573 | }
|
---|
574 |
|
---|
575 | \NewDocumentCommand{\seqname}{m}
|
---|
576 | {
|
---|
577 | \seqname:n {#1}
|
---|
578 | }
|
---|
579 |
|
---|
580 | \cs_new:Npn \seqname:n #1
|
---|
581 | {
|
---|
582 | %code here \tl_count:n
|
---|
583 | \int_compare:nTF {\tl_count:n{#1} > 1}
|
---|
584 | {
|
---|
585 | {\mathbf{#1}}
|
---|
586 | }
|
---|
587 | {
|
---|
588 | {\mathbfit{#1}}
|
---|
589 | }
|
---|
590 | }
|
---|
591 |
|
---|
592 | \NewDocumentCommand{\intersection}{om}
|
---|
593 | {
|
---|
594 | \unint_of:nnn \bigcap {#1} {#2}
|
---|
595 | }
|
---|
596 |
|
---|
597 | \NewDocumentCommand{\union}{om}
|
---|
598 | {
|
---|
599 | \unint_of:nnn \bigcup {#1} {#2}
|
---|
600 | }
|
---|
601 |
|
---|
602 | \cs_new:Npn \unint_of:nnn #1 #2 #3
|
---|
603 | {
|
---|
604 | \IfValueTF {#2}
|
---|
605 | {
|
---|
606 | % \int_show:N \g_style_set_subscr_int
|
---|
607 | \clist_set:Nn \l_tmpa_clist {#2}
|
---|
608 | \int_case:nn
|
---|
609 | {\g_style_set_subscr_int}
|
---|
610 | {
|
---|
611 | {0}
|
---|
612 | {
|
---|
613 | % Stacked subscript
|
---|
614 | % \msg_term:n {\clist_count:N{\l_tmpa_clist} \ tokens \ stacked}
|
---|
615 | % \clist_show:N \l_tmpa_clist
|
---|
616 | \fp_set:Nn
|
---|
617 | \l_tmpa_fp
|
---|
618 | {ceil{\clist_count:N{\l_tmpa_clist} - 1} * .1 + 1}
|
---|
619 | \scaleobj{\fp_to_decimal:N \l_tmpa_fp}{#1} \sb
|
---|
620 | {\substack { \clist_use:Nn \l_tmpa_clist { \\ } }}
|
---|
621 | #3
|
---|
622 | }
|
---|
623 | {1}
|
---|
624 | {
|
---|
625 | % Subscripts comma separated
|
---|
626 | % \msg_term:n {\clist_count:N{\l_tmpa_clist} \ tokens \ comma \ separated}
|
---|
627 | % \clist_show:N \l_tmpa_clist
|
---|
628 | #1 \sb
|
---|
629 | {\clist_use:Nn \l_tmpa_clist {,}}
|
---|
630 | #3
|
---|
631 | }
|
---|
632 | }
|
---|
633 | }
|
---|
634 | {
|
---|
635 | % No subscript
|
---|
636 | % \msg_term:n {No~subscript}
|
---|
637 | % \clist_show:N \l_tmpa_clist
|
---|
638 | #1 #3
|
---|
639 | }
|
---|
640 | }
|
---|
641 |
|
---|
642 | \ExplSyntaxOff
|
---|
643 |
|
---|
644 | % | |
|
---|
645 | % | From opening to here --- belongs in package |
|
---|
646 | % --------------------------------------------------------------------
|
---|
647 |
|
---|
648 |
|
---|
649 | \newtheorem{theorem}{Theorem}[section]
|
---|
650 | \newtheorem{lemma}[theorem]{Lemma}
|
---|
651 | \def\lemmaautorefname{Lemma} % Needed for \autoref
|
---|
652 | \newtheorem{corollary}[theorem]{Corollary}
|
---|
653 | \def\corollaryautorefname{Corollary} % Needed for \autoref
|
---|
654 |
|
---|
655 | \theoremstyle{definition}
|
---|
656 | \newtheorem{definition}[theorem]{Definition}
|
---|
657 | \def\definitionutorefname{Definition} % Needed for \autoref
|
---|
658 | \newtheorem{example}[theorem]{Example}
|
---|
659 | \newtheorem{xca}[theorem]{Exercise}
|
---|
660 |
|
---|
661 | \theoremstyle{remark}
|
---|
662 | \newtheorem{remark}[theorem]{Remark}
|
---|
663 |
|
---|
664 | \numberwithin{equation}{section}
|
---|
665 |
|
---|
666 | \newcommand \Alpha A
|
---|
667 | \newcommand \Beta B
|
---|
668 | \newcommand \Epsilon E
|
---|
669 | \newcommand \Zeta Z
|
---|
670 | \newcommand \Eta H
|
---|
671 | \newcommand \Iota I
|
---|
672 | \newcommand \Kappa K
|
---|
673 | \newcommand \Mu M
|
---|
674 | \newcommand \Nu N
|
---|
675 | \newcommand \Omicron O
|
---|
676 | \newcommand \Rho P
|
---|
677 | \newcommand \Tau T
|
---|
678 | \newcommand \Chi S
|
---|
679 |
|
---|
680 | \usepackage[colorlinks,hidelinks,draft=false]{hyperref}
|
---|
681 |
|
---|
682 | \usepackage{cleveref}
|
---|
683 | \def\corollaryautorefname{Corollary} % Needed for \autoref
|
---|
684 | \def\definitionutorefname{Definition} % Needed for \autoref
|
---|
685 | \def\lemmaautorefname{Lemma} % Needed for \autoref
|
---|
686 | \hypersetup {
|
---|
687 | bookmarksnumbered=true,
|
---|
688 | colorlinks,
|
---|
689 | pdfinfo={
|
---|
690 | Author={Shmuel (Seymour J.) Metz},
|
---|
691 | Keywords={fiber bundles,manifolds},
|
---|
692 | Subject={Topology},
|
---|
693 | Title={Local Coordinate Spaces: a proposed unification of manifolds with fiber bundles, and associated machinery}
|
---|
694 | }
|
---|
695 | }
|
---|
696 | \def\corollaryautorefname{Corollary} % Needed for \autoref
|
---|
697 | \def\definitionutorefname{Definition} % Needed for \autoref
|
---|
698 | \def\lemmaautorefname{Lemma} % Needed for \autoref
|
---|
699 | % \usepackage[final]{showlabels}
|
---|
700 | \usepackage[draft]{showlabels}
|
---|
701 | \showlabels{cite}
|
---|
702 | \showlabels{cref}
|
---|
703 | \showlabels{crefrange}
|
---|
704 |
|
---|
705 | %\DeclareMathAlphabet{\mathbdit}{T1}{\itdefault}{\mddefault}{\sldefault}
|
---|
706 | %\SetMathAlphabet{\mathbdit}{bold}{T1}{\itdefault}{\bfdefault}{\sldefault}
|
---|
707 | %
|
---|
708 | %\DeclareMathAlphabet{\mathsfbd}{T1}{\sfdefault}{\mddefault}{\sldefault}
|
---|
709 | %\SetMathAlphabet{\mathsfbd}{bold}{T1}{\sfdefault}{\bfdefault}{\sldefault}
|
---|
710 | %
|
---|
711 | %\DeclareMathAlphabet{\mathsfit}{T1}{\sfdefault}{}{\sldefault}
|
---|
712 | %\SetMathAlphabet{\mathsfit}{normal}{T1}{\sfdefault}{}{\sldefault}
|
---|
713 | %
|
---|
714 | %\DeclareMathAlphabet{\mathsfbdit}{T1}{\sfdefault}{\mddefault}{\sldefault}
|
---|
715 | %\SetMathAlphabet{\mathsfbdit}{bold}{T1}{\sfdefault}{\bfdefault}{\sldefault}
|
---|
716 |
|
---|
717 | \begin{document}
|
---|
718 | \hyphenation{near pres-en-ta-tion}
|
---|
719 |
|
---|
720 | \title%
|
---|
721 | {%
|
---|
722 | Local Coordinate Spaces:
|
---|
723 | a proposed unification of manifolds and fiber bundles,
|
---|
724 | and associated machinery\thanks%
|
---|
725 | {
|
---|
726 | I wish to gratefully thank Walter Hoffman (z"l),
|
---|
727 | Milton Parnes, Dr. Stanley H. Levy, the Mathematics department of
|
---|
728 | Wayne State University, the Mathematics department of the State
|
---|
729 | University of New York at Buffalo and others who guided my education.
|
---|
730 | }
|
---|
731 | }
|
---|
732 | \author{Shmuel (Seymour J.) Metz
|
---|
733 | }
|
---|
734 | \maketitle
|
---|
735 |
|
---|
736 | % \address{4963 Oriskany Drive\\Annandale, VA 22003-5141}
|
---|
737 | % \email{smetz3@gmu.edu}
|
---|
738 | % \urladdr{http://mason.gmu.edu/~smetz3}
|
---|
739 |
|
---|
740 | % \subjclass[2010]{Primary 18F15; Secondary 55R65,57N99,58A05}
|
---|
741 | % 18F15 Abstract manifolds and fiber bundles
|
---|
742 | % 32Qxx Complex manifolds
|
---|
743 | % 53- Differential geometry
|
---|
744 | % 53Axx Classical differential geometry
|
---|
745 | % 53A99 None of the above, but in this section
|
---|
746 | % 55Rxx Fiber spaces and bundles
|
---|
747 | % 55R10 Fiber bundles
|
---|
748 | % 55R65 Generalizations of fiber spaces and bundles
|
---|
749 | % 57Nxx Topological manifolds
|
---|
750 | % 57N99 None of the above, but in this section
|
---|
751 | % 57Rxx Differential topology
|
---|
752 | % 58Axx General theory of differentiable manifolds
|
---|
753 | % 58A05 Differentiable manifolds, foundations
|
---|
754 | % 58Bxx Infinite-dimensional manifolds
|
---|
755 |
|
---|
756 | % Primary 18F15 Abstract manifolds and fiber bundles
|
---|
757 | % Secondary 55R65,57N99,58A05
|
---|
758 | % \keywords{fiber bundles,manifolds}
|
---|
759 |
|
---|
760 | \begin{abstract}
|
---|
761 | This paper presents a unified view of manifolds and fiber bundles,
|
---|
762 | which, while superficially different, have strong parallels. It
|
---|
763 | introduces the notions of an m-atlas and of a local coordinate space,
|
---|
764 | and shows that special cases are equivalent to fiber bundles and
|
---|
765 | manifolds. Along the way it defines some convenient notation, defines
|
---|
766 | categories of atlases, and constructs potentially useful functors.
|
---|
767 | \end{abstract}
|
---|
768 |
|
---|
769 | \setupquant {parentheses=multiple,subscript=stacked}
|
---|
770 | \setupset {}
|
---|
771 |
|
---|
772 | \tikzset{
|
---|
773 | rot90/.style={anchor=south, rotate=90, inner sep=.2mm}
|
---|
774 | }
|
---|
775 |
|
---|
776 | \part {Introduction}
|
---|
777 | \label{part;intro}
|
---|
778 |
|
---|
779 | Historically, the concept of pseudo-groups allowed unifying manifolds
|
---|
780 | and manifolds with boundary. The definitions of fiber bundles and
|
---|
781 | manifolds have strong parallels, and can be unified in a similar fashion;
|
---|
782 | there are several ways to do so. The central part of this paper,
|
---|
783 | \pagecref{part;lcs}\negmedspace, defines an approach using categories and
|
---|
784 | commutative diagrams that is designed for easy exposition at the possible
|
---|
785 | expense of abstractness and generality. In particular, I have chosen to
|
---|
786 | assume the Axiom of Choice (AOC).
|
---|
787 |
|
---|
788 | This paper treats atlases as objects of interest in their own right,
|
---|
789 | although it does not give them primacy. It introduces notions that
|
---|
790 | are convenient for use here and others that, while not used here, may be
|
---|
791 | useful for future work. It defines the new notions of
|
---|
792 | \hyperref[def:model]{model space}\negmedspace
|
---|
793 | \footnote{The phrase has been used before, but with a different
|
---|
794 | meaning.},
|
---|
795 | \hyperref[def:m-atlas]{m-atlas}
|
---|
796 | and of \hyperref[def:M-ATLmorph]{m-atlas morphism}.
|
---|
797 | Informally, a model space is a topological space with a category
|
---|
798 | specifying a family of open sets and functions satisfying specified
|
---|
799 | conditions.
|
---|
800 |
|
---|
801 | Although this paper incidentally defines partial equivalents to
|
---|
802 | manifolds and fiber bundles using model spaces and model atlases, it
|
---|
803 | proposes the more general
|
---|
804 | \hyperref[def:LCS]{Local Coordinate Space (LCS)} in order to explicitly
|
---|
805 | reflect the role of the group in fiber bundles.
|
---|
806 |
|
---|
807 | A local coordinate space (LCS) is a space (total space) with some
|
---|
808 | additional structure, including a coordinate model space and an atlas
|
---|
809 | whose transition functions are restricted to morphisms of the coordinate
|
---|
810 | model space; one can impose, e.g., differentiability restrictions, by
|
---|
811 | appropriate choice of the coordinate category. There is an equivalent
|
---|
812 | paradigm that avoids explicit mention of the total space by imposing
|
---|
813 | compatibility conditions on the transition functions, but that approach
|
---|
814 | is beyond the scope of this paper.
|
---|
815 |
|
---|
816 | This paper defines functors among categories of atlases, categories of
|
---|
817 | model spaces, categories of local coordinate spaces, categories of
|
---|
818 | manifolds and categories of fiber bundles; it constructs more machinery
|
---|
819 | than is customary in order to facilitate the presentation of those
|
---|
820 | categories and functors.
|
---|
821 |
|
---|
822 | \Crefrange{part;conv}{part;pre} present nomenclature and give basic
|
---|
823 | results.
|
---|
824 | \Cref{part;m-charts} defines m-atlases, m-atlas morphisms and categories
|
---|
825 | of them; \cref{lem:ATLiscat} proves that the defined categories are
|
---|
826 | indeed categories.
|
---|
827 | \Cref{part;lcs} defines local coordinate spaces and
|
---|
828 | categories of them; \pagecref{the:LCSiscat} proves that the defined
|
---|
829 | categories are indeed categories.
|
---|
830 |
|
---|
831 | \Pagecref{Examples} gives some examples of structures that can be
|
---|
832 | represented as local coordinate spaces; \pagecref{part;man} and
|
---|
833 | \pagecref{part;bun} present two of the examples in detail, showing the
|
---|
834 | equivalence of manifolds and fiber bundles with special cases of local
|
---|
835 | coordinate spaces by explicitly exhibiting functors to and from local
|
---|
836 | coordinate spaces.
|
---|
837 | \begin{remark}
|
---|
838 | The unconventional definitions of manifold and fiber bundle are intended
|
---|
839 | to make their relationship to local coordinate spaces more natural.
|
---|
840 | \end{remark}
|
---|
841 |
|
---|
842 | Most of the lemmata, theorems and corollaries in this paper should be
|
---|
843 | substantially identical to results that are familiar to the reader. What
|
---|
844 | is novel is the perspective and the material directly related to local
|
---|
845 | coordinate spaces. The presentation assumes only a basic knowledge of
|
---|
846 | Category Theory, such as may be found in the first chapter of
|
---|
847 | \cite{CftWM} or
|
---|
848 | {
|
---|
849 | \showlabelsinline
|
---|
850 | \cite{JoyCat}.
|
---|
851 | }
|
---|
852 |
|
---|
853 | \section{New concepts and notation}
|
---|
854 | \label{sec:new}
|
---|
855 | This paper introduces a significant number of new concepts and some
|
---|
856 | modifications of the definitions for some conventional concepts. It also
|
---|
857 | introduces some notation of lesser importance. The following are the
|
---|
858 | most important.
|
---|
859 |
|
---|
860 | \begin{enumerate}
|
---|
861 | \item \hyperref[def:NCD]{Nearly commutative diagram (NCD)}, NCD at a point,
|
---|
862 | locally NCD and special cases with related nomenclature
|
---|
863 | \item \hyperref[def:model]{Model space} and related concepts
|
---|
864 | \item \hyperref[def:ModTop]{Model topology} and
|
---|
865 | \hyperref[def:M-para]{M-paracompactness}
|
---|
866 | \item \hyperref[sec:sig]{Signature},
|
---|
867 | \hyperref[def:Sigmacomm]{$\Sigma$-commutation} and related concepts
|
---|
868 | \item
|
---|
869 | \hyperref[def:LCS]{Local Coordinate Space (LCS)} and related concepts
|
---|
870 | \item
|
---|
871 | \hyperref[def:lin]{Linear space and related concepts}
|
---|
872 | \item
|
---|
873 | \hyperref[def:trivck]{Trivial $\Ck$ linear model space} and related
|
---|
874 | concepts
|
---|
875 | \item \hyperref[def:BunAtl]{$G$-$\rho$ bundle atlas}
|
---|
876 | \footnote{Similar to coordinate bundles}
|
---|
877 | and related concepts
|
---|
878 | \end{enumerate}
|
---|
879 |
|
---|
880 | \part {Conventions}
|
---|
881 | \label{part;conv}
|
---|
882 | An arrow with an Equal-Tilde ($A \toiso_\phi B$) represents an
|
---|
883 | isomorphism. One with a hook ($A \underset{i}{\hookrightarrow} B$)
|
---|
884 | represents an inclusion map. One with a tail ($A \into_i B$) represents
|
---|
885 | a monomorphism. One with a double head ($A \onto_\pi B$) represents a
|
---|
886 | surjection.
|
---|
887 |
|
---|
888 | When a superscript ends in $-1$, e.g., $\funcname{f}^{i-1}$, it is to be
|
---|
889 | taken as function inverse rather than subtraction of 1.
|
---|
890 |
|
---|
891 | All diagrams shown are commutative; none are exact.
|
---|
892 |
|
---|
893 | A definition of a base term several more restrictive terms may
|
---|
894 | specify the modifiers in parenthese in the base definition and then
|
---|
895 | give the restrictions for each modifier, e.g., if
|
---|
896 | "$\funcseqname{f}$ is a (semi-strict, strict) prestructure morphism
|
---|
897 | of $\seqname{P}^1$ to $\seqname{P}^2$ iff" is followed by the
|
---|
898 | definition of prestructure morphism, then the restrictions for
|
---|
899 | strict and semi-strict prestructure morphisms.
|
---|
900 |
|
---|
901 | When a definition defines a base propositional function and variant
|
---|
902 | propositional functions with a qualifier given as a superscript,
|
---|
903 | then the form $\mathrm{base}^{(qualifiers)}$ will refer to
|
---|
904 | either $\mathrm{base}^{\mathrm{qualifer}}$
|
---|
905 | or $\mathrm{base}$, e.g.,
|
---|
906 | $\strict[semi-]{\isAtl[(classic,near)]_\Ar}$ refers to either
|
---|
907 | $\strict[semi-]{\isAtl[classic]_\Ar}$,
|
---|
908 | $\strict[semi-]{\isAtl[near]_\Ar}$
|
---|
909 | or $\strict[semi-]{\isAtl_\Ar}$.
|
---|
910 |
|
---|
911 | Alternatively, a definition may specify a numbered list of alternatives,
|
---|
912 | and subsequently specify additional numbered lists with items
|
---|
913 | corresponding to those in the first list, e.g.,
|
---|
914 | $\funcseqname{f}$ is also a
|
---|
915 | \begin{enumerate}
|
---|
916 | \item full
|
---|
917 | \item semi-maximal
|
---|
918 | \item maximal
|
---|
919 | \item full semi-maximal
|
---|
920 | \item full maximal
|
---|
921 | \end{enumerate}
|
---|
922 | $E^1$-$E^2$ $\Ck$ near morphism of
|
---|
923 | $\seqname{A}^1$ to $\seqname{A}^2$ in the coordinate spaces $C^1$,
|
---|
924 | $C^2$, abbreviated as
|
---|
925 | \begin{enumerate}
|
---|
926 | \item abbreviation for full
|
---|
927 | \item abbreviation for semi-maximal
|
---|
928 | \item abbreviation for maximal
|
---|
929 | \item abbreviation for full semi-maximal
|
---|
930 | \item abbreviation for full maximal
|
---|
931 | \end{enumerate}
|
---|
932 | iff
|
---|
933 | \begin{enumerate}
|
---|
934 | \item definition for full
|
---|
935 | \item definition for semi-maximal
|
---|
936 | \item definition for maximal
|
---|
937 | \item definition for full semi-maximal
|
---|
938 | \item definition for full maximal
|
---|
939 | \end{enumerate}
|
---|
940 |
|
---|
941 | A Corollary, Lemma or Theorem that applies to related terms defined
|
---|
942 | with the above convention will specify the modifiers in parentheses
|
---|
943 | to indicate that it applies to the base term and to the more
|
---|
944 | restrictive terms, e.g., "a (semi-strict, strict)
|
---|
945 | $\seqname{E}^i$-$\seqname{E}^{i+1}$ m-atlas morphism" If it applies
|
---|
946 | only to more restrictive terms them it will specify the first
|
---|
947 | relevant modifier followed by the remaining relevant modifiers in
|
---|
948 | parentheses, e.g., "If $\catname{S}^i \SUBCAT[full-]
|
---|
949 | \catname{S}'^i$ and $\funcseqname{f}^i$ is a semi-strict (strict)
|
---|
950 | prestructure morphism".
|
---|
951 |
|
---|
952 | Blackboard bold upper case will denote specific sets, e.g., the
|
---|
953 | Naturals.
|
---|
954 |
|
---|
955 | Bold lower case italic letters will refer to sets, sequences and tuples
|
---|
956 | of functions, e.g.,
|
---|
957 | $\funcseqname{f} \defeq (\funcname{f}_1, \funcname{f}_2)$.
|
---|
958 |
|
---|
959 | Bold lower case Latin letters will refer to sequence valued functions of
|
---|
960 | sequences and tuple valued functions of tuples, e.g., $\Range$ yields
|
---|
961 | the sequence of ranges of a sequence of functions.
|
---|
962 |
|
---|
963 | Bold upper case italic letters will refer to sequences or tuples, e.g.,
|
---|
964 | $\seqname{A}=(x,y,z)$, to sets of them, to sets of topological spaces or
|
---|
965 | to sets of open sets.
|
---|
966 |
|
---|
967 | Bold upper case script letters will refer to
|
---|
968 | sequences of categories, e.g.,
|
---|
969 | $\catseqname{A} \defeq (\catname{A}_\alpha, \alpha \in \Alpha)$.
|
---|
970 |
|
---|
971 | Fraktur will refer to topologies and to topology-valued functions, e.g.,
|
---|
972 | $\Topology$.
|
---|
973 |
|
---|
974 | Functions have a range, domain and relation, not just a relation. Unless
|
---|
975 | otherwise stated, they are assumed to be continuous.
|
---|
976 |
|
---|
977 | Groups are assumed to be topological groups. The ambiguous notation
|
---|
978 | $x^{-1}$ will be used when it is obvious from context what the group
|
---|
979 | operation $\star$ and the group identity $\mathbf{1}_G$ are.
|
---|
980 |
|
---|
981 | Lower case Greek letters other than $\pi$, $\rho$, $\sigma$, $\phi$ and
|
---|
982 | $\psi$ will refer to ordinals, possibly transfinite, and to formal
|
---|
983 | labels. A letter with a Greek superscript and a letter with a Latin or
|
---|
984 | numeric superscript always refer to distinct variables.
|
---|
985 |
|
---|
986 | Lower case $\pi$ will refer to a projection operator
|
---|
987 |
|
---|
988 | Lower case $\rho$ will refer to a continuous effective group action,
|
---|
989 | i.e., a continuous representation of a group in a homeomorphism group.
|
---|
990 |
|
---|
991 | Lower case $\sigma$ will refer to a sequence of ordinals, referred to as
|
---|
992 | a signature.
|
---|
993 |
|
---|
994 | Lower case $\phi$ will refer to a coordinate function.
|
---|
995 |
|
---|
996 | Lower case italic and Latin letters will refer to
|
---|
997 | \begin{enumerate}
|
---|
998 | \item elements of a set or sequence
|
---|
999 | \item functions
|
---|
1000 | \item morphisms of a category
|
---|
1001 | \item natural numbers
|
---|
1002 | \item objects of a category
|
---|
1003 | \item ordinal numbers
|
---|
1004 | \end{enumerate}
|
---|
1005 |
|
---|
1006 | Upper case Greek letters other than $\Sigma$ may refer to
|
---|
1007 | \begin{enumerate}
|
---|
1008 | \item ordinal used as the limit of a sequence of consecutive ordinals,
|
---|
1009 | e.g., $x_\alpha, \alpha \preceq \Alpha$
|
---|
1010 | \item ordinal used as the order type of a sequence of consecutive
|
---|
1011 | ordinals, e.g., $x_\alpha, \alpha \prec \Alpha$
|
---|
1012 | \end{enumerate}
|
---|
1013 |
|
---|
1014 | Upper case $\Sigma$ will refer to a sequence of signatures
|
---|
1015 |
|
---|
1016 | Upper case Latin letters will refer to
|
---|
1017 | \begin{enumerate}
|
---|
1018 | \item Natural numbers
|
---|
1019 | \item Topological spaces
|
---|
1020 | \item Open sets
|
---|
1021 | \item Elements of a sequence or tuple of functions, e.g.,
|
---|
1022 | $\funcname{f}_E$ might be $\funcname{f}_0 \maps E_1 \to E_2$.
|
---|
1023 | \end{enumerate}
|
---|
1024 |
|
---|
1025 | Upper case Script Latin letters will refer to categories and functors.
|
---|
1026 |
|
---|
1027 | Upright Latin letters will be used for long names.
|
---|
1028 |
|
---|
1029 | The term $\Ck$ includes $\mathrm{C}^\infty$ (smooth) and
|
---|
1030 | $\mathrm{C}^\omega$ (analytic).
|
---|
1031 |
|
---|
1032 | This paper uses the term morphism in preference to arrow, but uses
|
---|
1033 | the conventional $\Ar$.
|
---|
1034 |
|
---|
1035 | The term sequence without an explicit reference to $\mathbb{N}$
|
---|
1036 | will refer to a general ordinal sequence, possibly transfinite.
|
---|
1037 |
|
---|
1038 | Sequence numbering, unlike tuple numbering, starts at 0 and the
|
---|
1039 | exposition assumes a von Neumann definition of ordinals, so that
|
---|
1040 | $\alpha \in \beta \equiv \alpha \prec \beta$.
|
---|
1041 |
|
---|
1042 | Except where explicitly stated otherwise, all categories mentioned are
|
---|
1043 | small categories with underlying sets, but the morphisms will often not
|
---|
1044 | be set functions between the objects and there will not always be a
|
---|
1045 | forgetful function to $\Set$ or $\Cat{Top}$. By abuse of language no
|
---|
1046 | distinction will be made between a category $\catname{A}$ of topological
|
---|
1047 | spaces and the concrete category $(\catname{A},\catname{U})$ over
|
---|
1048 | $\Cat{Top}$. Similarly, no distinction will be made among the object $U
|
---|
1049 | \in \Ob(\catname{A})$, the topological space $\catname{U}(U)$ and the
|
---|
1050 | underlying set.
|
---|
1051 |
|
---|
1052 | The notation $G^V$ will refer only to the set of continuous functions
|
---|
1053 | from $V$ to $G$, never to the set of all functions from $V$ to $G$.
|
---|
1054 |
|
---|
1055 | When defining a category, the Ordered pair $(\seqname{O}, \seqname{M})$
|
---|
1056 | refers to the smallest concrete category over $\Set$ or $\Cat{Top}$
|
---|
1057 | whose objects are the elements in $\seqname{O}$, whose morphisms include
|
---|
1058 | all of the elements of $\seqname{M}$ and whose morphisms from
|
---|
1059 | $o^1 \in \seqname{O}$ to $o^2 \in \seqname{O}$ are functions
|
---|
1060 | $\funcname{f} \maps o^1 \to o^2$ and whose composition is function
|
---|
1061 | composition.
|
---|
1062 |
|
---|
1063 | When defining a category, the Ordered triple
|
---|
1064 | $(\seqname{O}, \seqname{M}, C)$ refers to the small category whose
|
---|
1065 | objects are in $\seqname{O}$, whose morphisms are in $\seqname{M}$,
|
---|
1066 | whose $\Hom$ is
|
---|
1067 |
|
---|
1068 | \begin{equation}
|
---|
1069 | \Hom_{(\seqname{O}, \seqname{M}, C)}
|
---|
1070 | (o_1 \in \seqname{O}, o_2 \in \seqname{O})
|
---|
1071 | \defeq
|
---|
1072 | \set
|
---|
1073 | {
|
---|
1074 | (
|
---|
1075 | \funcseqname{f},
|
---|
1076 | o_1,
|
---|
1077 | o_2
|
---|
1078 | )
|
---|
1079 | \in \seqname{M}
|
---|
1080 | }
|
---|
1081 | \end{equation}
|
---|
1082 | and whose composition is C.
|
---|
1083 |
|
---|
1084 | By abuse of language I may write
|
---|
1085 | ``$\catname{S}$'' for $\Ob(\catname{S})$,
|
---|
1086 | ``$A \in \catname{A}$'' for $A \in\ \Ob(\catname{A})$,
|
---|
1087 | ``$A \subset \catname{A}$'' for $A \subset \Ob(\catname{A})$,
|
---|
1088 | ``$A \in \catname{A} \subset B \in \catname{B}$'' for
|
---|
1089 | ``the underlying set of $A$ is contained in the underlying set of $B$
|
---|
1090 | and the inclusion $\funcname{i} \maps x \in A \hookrightarrow x \in B$
|
---|
1091 | is a morphism'' and
|
---|
1092 | ``$\funcname{f} \maps A \to B$'' for
|
---|
1093 | $\funcname{f} \in \Hom_{\catname{C}}(A,B)$, where $\catname{C}$ is
|
---|
1094 | understood by context.
|
---|
1095 |
|
---|
1096 | By abuse of language I shall use the same nomenclature for sequences and
|
---|
1097 | tuples, and will use parentheses around a single expression both for
|
---|
1098 | grouping and for a tuple with a single element; the intent should be
|
---|
1099 | clear from context.
|
---|
1100 |
|
---|
1101 | By abuse of language I will omit parenthese around the operands of
|
---|
1102 | Functors when they can be assumed by context.
|
---|
1103 |
|
---|
1104 | By abuse of language I shall use the $\times$ and $\bigtimes$ symbols
|
---|
1105 | for both Cartesian products of sets and Cartesian products of
|
---|
1106 | functions on those sets.
|
---|
1107 |
|
---|
1108 | By abuse of language, and assuming AOC, I shall refer to some sets as
|
---|
1109 | ordinal sequences, e.g., ``$(C_\alpha, \alpha \in \Alpha)$'' for
|
---|
1110 | ``$\{C_\alpha \mid \alpha \in \Alpha\}$'', in cases where the order is
|
---|
1111 | irrelevant.
|
---|
1112 |
|
---|
1113 | By abuse of language, I may omit universal quantifiers in cases where
|
---|
1114 | the intent is clear.
|
---|
1115 |
|
---|
1116 | In some cases I define a notion similar to a conventional notion and
|
---|
1117 | also need to refer to the conventional notion. In those cases I prefix
|
---|
1118 | a letter or phrase to the term, e.g., m-paracompact versus paracompact.
|
---|
1119 |
|
---|
1120 | \part {General notions}
|
---|
1121 | \label{part;notions}
|
---|
1122 | This section describes nomenclature used throughout the paper. In
|
---|
1123 | some cases this reflects new nomenclature or notions, in others it
|
---|
1124 | simply makes a choice from among the various conventions in the
|
---|
1125 | literature.
|
---|
1126 |
|
---|
1127 | \begin{definition}[Operations on categories]
|
---|
1128 | \label{def:catprop}
|
---|
1129 | If $\catname{C}$ is a category then $x \objin \catname{C}$ iff $x$ is an
|
---|
1130 | object of $\catname{C}$ and $y \arin \catname{C}$ iff $y$ is a morphism
|
---|
1131 | of $\catname{C}$.
|
---|
1132 |
|
---|
1133 | If $\catname{S}$ and $\catname{T}$ are categories then
|
---|
1134 | $\catname{S} \subcat \catname{T}$ iff $S$ is a subcategory of
|
---|
1135 | $\catname{T}$ and $\catname{S} \subcat[full-] \catname{T}$ iff $S$ is a
|
---|
1136 | full subcategory of $\catname{T}$.
|
---|
1137 |
|
---|
1138 | If $\catname{S}$ and $\catname{T}$ are categories then the category
|
---|
1139 | union of $\catname{S}$ and $\catname{T}$, abbreviated
|
---|
1140 | $\catname{S} \unioncat \catname{T}$, is the category whose objects are
|
---|
1141 | in $\catname{S}$ or in $\catname{T}$ and whose morphisms are in
|
---|
1142 | $\catname{S}$ or in $\catname{T}$.
|
---|
1143 | \end{definition}
|
---|
1144 |
|
---|
1145 | \begin{definition}[Identity]
|
---|
1146 | $\Id_S$ is the identity function on the space $S$,
|
---|
1147 |
|
---|
1148 | $\Id_o$ is the
|
---|
1149 | identity morphism for the object $o$\footnote{
|
---|
1150 | The object is often expressed as a tuple, e.g.,
|
---|
1151 | $\Id_{(\seqname{A}, \seqname{B})}$ is the identity morphism for the
|
---|
1152 | object $(\seqname{A}, \seqname{B})$
|
---|
1153 | },
|
---|
1154 |
|
---|
1155 | $\Id_{U,V}$, for $U \subseteq V$, is the inclusion map\footnote{
|
---|
1156 | $U$ and $V$ need not have the same topology.
|
---|
1157 | }.
|
---|
1158 |
|
---|
1159 | $\Id_\catname{C}$ is the identity functor on the category $\catname{C}$.
|
---|
1160 |
|
---|
1161 | $\ID_{\seqname{S}^i}$, $i=1,2$, is the sequence of identity functions
|
---|
1162 | for the elements of the sequence
|
---|
1163 | $\seqname{S}^i \defeq (\seqname{S}^1_\alpha,\ \alpha \prec \Alpha)$. Let
|
---|
1164 | $\seqname{S}^1 \SUBSETEQ \seqname{S}^2$. Then
|
---|
1165 | $\ID_{\seqname{S}^1,\seqname{S}^2}$ is the sequence of inclusion maps
|
---|
1166 | $(\Id_{\seqname{S}^1_\alpha,\seqname{S}^2_\alpha}),\ \alpha \prec \Alpha$
|
---|
1167 | for the elements of the sequences $\seqname{S}^i$.
|
---|
1168 |
|
---|
1169 | The subscript may be omitted
|
---|
1170 | when it is clear from context.
|
---|
1171 | \end{definition}
|
---|
1172 |
|
---|
1173 | \begin{definition}[Images]
|
---|
1174 | $\funcname{f} [U] \defeq \set { {\funcname{f}(x)} }[x \in U]$ is the
|
---|
1175 | image of $U$ under $\funcname{f}$ and
|
---|
1176 | $\funcname{f}^{-1} [V] \defeq \set {x}[\funcname{f}(x) \in V]$ is the
|
---|
1177 | inverse image of $V$ under $\funcname{f}$.
|
---|
1178 |
|
---|
1179 | \begin{remark}
|
---|
1180 | This notation, adopted from \cite{GenTop}, avoids the ambiguity in
|
---|
1181 | the traditional $\funcname{f}(U)$ and $\funcname{f}^{-1}(V)$.
|
---|
1182 | \end{remark}
|
---|
1183 | \end{definition}
|
---|
1184 |
|
---|
1185 | \begin{definition}[Projections]
|
---|
1186 | \label{projections}
|
---|
1187 | $\pi_\alpha$ is the projection function that maps a sequence into
|
---|
1188 | element $\alpha$ of the sequence. $\pi_i$ is also the projection
|
---|
1189 | function that maps a tuple into element $i$ of the tuple.
|
---|
1190 | \end{definition}
|
---|
1191 |
|
---|
1192 | \begin{definition}[Topological category]
|
---|
1193 | \label{def:topcat}
|
---|
1194 | A topological category is a small subcategory of $\Cat{Top}$ or its
|
---|
1195 | concrete category over $\Set$.
|
---|
1196 |
|
---|
1197 | $\catname{T}$ is a full topological category iff it is a topological
|
---|
1198 | category and whenever $U^i,V^i \objin \catname{T}$, $i=1,2$,
|
---|
1199 | $V^i \subseteq U^i$,
|
---|
1200 | $\funcname{f} \maps U^1 \to U^2 \arin \catname{T}$ and
|
---|
1201 | $\funcname{f}[V^1] \subseteq V^2$ then \\
|
---|
1202 | $\funcname{f} \maps V^1 \to V^2 \arin \catname{T}$.
|
---|
1203 | \end{definition}
|
---|
1204 |
|
---|
1205 | \begin{lemma}[Inclusions in topological categories are morphisms]
|
---|
1206 | \label{lem:topInc}
|
---|
1207 | Let $\catname{T}$ be a full topological category,
|
---|
1208 | $S^i \objin \catname{T}$, $i=1,2$, and $S^1 \subseteq S^2$. Then
|
---|
1209 | $\Id_{S^1,S^2}$ is a morphism of $\catname{T}$
|
---|
1210 |
|
---|
1211 | \begin{proof}
|
---|
1212 | $\Id_{S^2} \arin \catname{T}$, $S^1 \subseteq S^2$ by hypothesis and
|
---|
1213 | $S^1 \subseteq S^2$, so $\Id_{S^1,S^2} \arin \catname{T}$ by
|
---|
1214 | \cref{def:topcat}.
|
---|
1215 | \end{proof}
|
---|
1216 | \end{lemma}
|
---|
1217 |
|
---|
1218 | \begin{definition}[Local morphisms]
|
---|
1219 | \label{def:topLocal}
|
---|
1220 | Let $\catname{S}^i$, $i=1,2$, be a full topological category and
|
---|
1221 | $S^i \objin \catname{S}^i$, A continuous function
|
---|
1222 | $\funcname{f} \maps S^1 \to S^2$ is locally a
|
---|
1223 | $\catname{S}^1$-$\catname{S}^2$ morphism of $S^1$ to $S^2$ iff
|
---|
1224 | $\catname{S}^1 \subcat[full-] \catname{S}^2$ and for every
|
---|
1225 | $u \in S^1$ there is an open neighborhood $U_u$ for $u$ and an open
|
---|
1226 | neighborhood $V_u$ for $v \defeq \funcname{f}(u)$ such that
|
---|
1227 | $\funcname{f}[U_u] \subseteq V_u$ and $\funcname{f} \maps U_u \to V_u$
|
---|
1228 | is a morphism of $\catname{S}^2$.
|
---|
1229 |
|
---|
1230 | \begin{remark}
|
---|
1231 | The condition $\funcname{f} \maps U_u \to V_u \arin \catname{S}^2$
|
---|
1232 | ensures that $U_u \objin \catname{S}^1$ and $V_u \objin \catname{S}^2$
|
---|
1233 | \end{remark}
|
---|
1234 |
|
---|
1235 | Let $\catname{T}$ be a full topological category and
|
---|
1236 | $S^i \objin \catname{T}$, $i=1,2$. A continuous function
|
---|
1237 | $\funcname{f} \maps S^1 \to S^2$ is locally a $\catname{T}$ morphism of
|
---|
1238 | $S^1$ to $S^2$ iff it is locally a $\catname{T}$-$\catname{T}$ morphism
|
---|
1239 | of $S^1$ to $S^2$.
|
---|
1240 | \end{definition}
|
---|
1241 |
|
---|
1242 | \begin{lemma}[Local morphisms]
|
---|
1243 | \label{lem:topLocal}
|
---|
1244 | Let $\catname{T}^i$, $i \in [1,3]$, be a full topological category,
|
---|
1245 | $S^i \objin \catname{T}^i$ and
|
---|
1246 | $\catname{T}^i \subcat[full-] \catname{T}^{i+1}$.
|
---|
1247 |
|
---|
1248 | If $\funcname{f}^i \maps S^i \to S^{i+1} \arin \catname{T}^{i+1}$ then
|
---|
1249 | $\funcname{f}^i$ is locally a $\catname{T}^i$-$\catname{T}^{i+1}$
|
---|
1250 | morphism of $S^i$ to $S^{i+1}$.
|
---|
1251 |
|
---|
1252 | \begin{proof}
|
---|
1253 | Let $u \in S^i$ and $v \defeq \funcname{f}^i(u) \in S^{i+1}$. $S^i$ is
|
---|
1254 | an open for $u$, $S^{i+1}$ is an open neighborhood for $v$ and
|
---|
1255 | $\funcname{f}^i \maps S^i \to S^{i+1} \arin \catname{T}^{i+1}$ by
|
---|
1256 | hypothesis.
|
---|
1257 | \end{proof}
|
---|
1258 |
|
---|
1259 | If each $\funcname{f}^i \maps S^i \to S^{i+1}$, is locally a
|
---|
1260 | $\catname{T}^i$-$\catname{T}^{i+1}$ morphism of $S^i$ to
|
---|
1261 | $S^{i+1}$ then
|
---|
1262 | $\funcname{f}^2 \compose \funcname{f}^1 \maps S^1 \to S^3$ is locally a
|
---|
1263 | $\catname{T}^1$-$\catname{T}^3$ morphism of $S^1$ to $S^3$.
|
---|
1264 |
|
---|
1265 | \begin{proof}
|
---|
1266 | Since $\catname{T}^1 \subcat[full-] \catname{T}^2$ and
|
---|
1267 | $\catname{T}^2 \subcat[full-] \catname{T}^3$,
|
---|
1268 | $\catname{T}^1 \subcat[full-] \catname{T}^3$.
|
---|
1269 | Let $u \in S^1$, $v \defeq \funcname{f}^1(u)$ and
|
---|
1270 | $w \defeq \funcname{f}^2(v)$. There exist an open neighborhood $U_u$
|
---|
1271 | for $u$, open neighborhoods $V_u$, $V'_v$ for $v$ and an open
|
---|
1272 | neighborhood $W_v$ of $w$ such that
|
---|
1273 | $\funcname{f}^1[U_u] \subseteq V_u$,
|
---|
1274 | $\funcname{f}^1 \maps U_u \to V_u$ is a morphism of $\catname{T}^2$,
|
---|
1275 | $\funcname{f}^2[V'_v] \subseteq W_v$ and
|
---|
1276 | $\funcname{f}^2 \maps V'_v \to W_v$ is a morphism of $\catname{T}^3$.
|
---|
1277 | Then $\hat{V_u} \defeq V_u \cap V'_v \neq \emptyset$, $\hat{V_u}$ is an
|
---|
1278 | open neighborhood of $v$ and
|
---|
1279 | $\hat{U_u} \defeq \funcname{f}^{i-1}_1[\hat{V_u}]$ is an open
|
---|
1280 | neighborhood for $u$. $\funcname{f}^1 \maps \hat{U_u} \to \hat{V_u}$
|
---|
1281 | and $\funcname{f}^2 \maps \hat{V_u} \to W_v$ are morphisms of
|
---|
1282 | $\catname{T}^3$ by \pagecref{def:topcat} and thus
|
---|
1283 | $\funcname{f}^2 \compose \funcname{f}^1 \maps \hat{U_u} \to W_v$ is a
|
---|
1284 | morphism of $\catname{T}^3$.
|
---|
1285 | \end{proof}
|
---|
1286 | \end{lemma}
|
---|
1287 |
|
---|
1288 | \begin{corollary}[Local morphisms]
|
---|
1289 | \label{cor:topLocal}
|
---|
1290 | Let $\catname{T}^i$, $i=1,2$, be a full topological category,
|
---|
1291 | $\catname{T}^i \subcat[full-] \catname{T}^{i+1}$,
|
---|
1292 | $S^i \objin \catname{T}^i$ and $S^1 \subseteq S^2$. Then $\Id_{S^1,S^2}$
|
---|
1293 | is locally a $\catname{T}^1$-$\catname{T}^2$ morphism of $S^1$ to $S^2$
|
---|
1294 | and $\Id_{S^i}$ is locally a $\catname{T}$ morphism
|
---|
1295 | of $S^i$ to $S^i$.
|
---|
1296 |
|
---|
1297 | \begin{proof}
|
---|
1298 | $S^1 \objin \catname{T}^2$ because $S^1 \objin \catname{T}^1$ and
|
---|
1299 | $\catname{T}^1 \subcat \catname{T}^2$,
|
---|
1300 | $S^2 \objin \catname{T}^2$ by hypothesis and
|
---|
1301 | $S^1 \subseteq S^2$ by hypothesis, so
|
---|
1302 | $\Id_{S^1,S^2} \arin \catname{T}^2$ by \cref{lem:topInc}.
|
---|
1303 |
|
---|
1304 | $\Id_{S^i} \defeq \Id_{S^i,S^i}$.
|
---|
1305 | \end{proof}
|
---|
1306 | \end{corollary}
|
---|
1307 |
|
---|
1308 | \begin{definition}[Sequence functions]
|
---|
1309 | Let $\seqname{S} \defeq (s_\alpha, \alpha \prec \Alpha)$ be a sequence
|
---|
1310 | of functions. Then
|
---|
1311 | \begin{equation}
|
---|
1312 | \Domain(\seqname{S}) \defeq \bigl ( \domain(s_\alpha), \alpha \prec \Alpha \bigr )
|
---|
1313 | \end{equation}
|
---|
1314 | \begin{equation}
|
---|
1315 | \Range(\seqname{S}) \defeq \bigl ( \range(s_\alpha), \alpha \prec \Alpha \bigr )
|
---|
1316 | \end{equation}
|
---|
1317 |
|
---|
1318 | Let $\seqname{T} \defeq (t_\alpha, \alpha \prec \Alpha)$ be a sequence
|
---|
1319 | of functions with $\Range(\seqname{S}) = \Domain(\seqname{T})$. Then
|
---|
1320 | their composition is the sequence
|
---|
1321 | $
|
---|
1322 | \seqname{T} \compose[()] \seqname{S} \defeq
|
---|
1323 | (t_\alpha \compose s_\alpha, \alpha \prec \Alpha)
|
---|
1324 | $,
|
---|
1325 |
|
---|
1326 | Let $\seqname{S} \defeq (s_\gamma, \gamma \preceq \Gamma)$, then these
|
---|
1327 | functions extract information about the sequence:
|
---|
1328 | \begin{equation}
|
---|
1329 | \head(\seqname{S},\Omega) \defeq (s_\gamma, \gamma \prec \Omega)
|
---|
1330 | \end{equation}
|
---|
1331 | \begin{equation}
|
---|
1332 | \head(\seqname{S}) \defeq \head(\seqname{S},\Gamma)
|
---|
1333 | \end{equation}
|
---|
1334 | \begin{equation}
|
---|
1335 | \lengtho(\seqname{S}) \defeq \Gamma
|
---|
1336 | \end{equation}
|
---|
1337 | \begin{equation}
|
---|
1338 | \tail(\seqname{S}) \defeq S_\Gamma
|
---|
1339 | \end{equation}
|
---|
1340 |
|
---|
1341 | Let $\seqname{S} \defeq (s_\gamma, \gamma \prec \Gamma)$, then
|
---|
1342 | \begin{equation}
|
---|
1343 | \length(\seqname{S}) \defeq \Gamma
|
---|
1344 | \end{equation}
|
---|
1345 |
|
---|
1346 | \begin{remark}
|
---|
1347 | If $\lengtho(\seqname{S})$ is defined then
|
---|
1348 | $\length(\seqname{S}) = \lengtho(\seqname{S}) + 1$.
|
---|
1349 | $\lengtho(\seqname{S})$ is the ordinal type of
|
---|
1350 | $\head(\seqname{S})$, not the ordinal type of $\seqname{S}$.
|
---|
1351 | \end{remark}
|
---|
1352 |
|
---|
1353 | Let $\catseqname{S} \defeq (\catname{S}_\alpha, \alpha \prec \Alpha)$
|
---|
1354 | and $\catseqname{T} \defeq (\catname{T}_\alpha, \alpha \prec \Alpha)$ be
|
---|
1355 | sequences of categories. Then $\catseqname{S}$ is a subcategory
|
---|
1356 | sequence of $\catseqname{T}$, abbreviated
|
---|
1357 | $\catseqname{S} \SUBCAT \catseqname{T}$, iff every category in
|
---|
1358 | $\catseqname{S}$ is a subcategory of the corresponding category in
|
---|
1359 | $\catseqname{T}$, i.e.,
|
---|
1360 | $
|
---|
1361 | \uquant%
|
---|
1362 | {\alpha \prec \Alpha}
|
---|
1363 | {\catname{S}_\alpha \subcat \catname{T}_\alpha}
|
---|
1364 | $,
|
---|
1365 | and $\catseqname{S}$ is a full subcategory sequence of $\catseqname{T}$,
|
---|
1366 | abbreviated $\catseqname{S} \SUBCAT[full-] \catseqname{T}$, iff every
|
---|
1367 | category in $\catseqname{S}$ is a full subcategory of the corresponding
|
---|
1368 | category in $\catseqname{T}$, i.e.,
|
---|
1369 | $
|
---|
1370 | \uquant%
|
---|
1371 | {\alpha \prec \Alpha}
|
---|
1372 | {\catname{S}_\alpha \subcat[full-] \catname{T}_\alpha}
|
---|
1373 | $.
|
---|
1374 |
|
---|
1375 | The category sequence union of $\catseqname{S}$ and $\catseqname{T}$,
|
---|
1376 | abbreviated $\catseqname{S} \UNIONCAT \catseqname{T}$, is the sequence
|
---|
1377 | of category unions of corresponding categories in $\catseqname{S}$ and
|
---|
1378 | $\catseqname{T}$, i.e.,
|
---|
1379 | $(\catseqname{S}_\alpha \unioncat \catseqname{T}_\alpha)$.
|
---|
1380 |
|
---|
1381 | \end{definition}
|
---|
1382 |
|
---|
1383 | \begin{lemma}[Sequence functions]
|
---|
1384 | \label{lem:seqfunc}
|
---|
1385 | Let $\funcseqname{f}^i \defeq (\funcname{f}^i_\alpha, \alpha \prec \Alpha)$,
|
---|
1386 | $i \in [1,3]$, be sequences of functions with
|
---|
1387 | $\Domain(\funcseqname{f}^2) = \Range(\funcseqname{f}^1)$ and
|
---|
1388 | $\Domain(\funcseqname{f}^3) = \Range(\funcseqname{f}^2)$. Then
|
---|
1389 | $
|
---|
1390 | (\funcseqname{f}^3 \compose[()] \funcseqname{f}^2) \compose[()] \funcseqname{f}^1 =
|
---|
1391 | \funcseqname{f}^3 \compose[()] (\funcseqname{f}^2 \compose[()] \funcseqname{f}^1)
|
---|
1392 | $.
|
---|
1393 | \begin{proof}
|
---|
1394 | \begin{equation*}
|
---|
1395 | \begin{split}
|
---|
1396 | (\funcseqname{f}^3 \compose[()] \funcseqname{f}^2) \compose[()] \funcseqname{f}^1
|
---|
1397 | & =
|
---|
1398 | \bigl ( (\funcname{f}^3_\alpha \compose \funcname{f}^2_\alpha) \compose \funcname{f}^1_\alpha, \alpha \prec A \bigr )
|
---|
1399 | \\*
|
---|
1400 | & =
|
---|
1401 | \bigl ( \funcname{f}^3_\alpha \compose (\funcname{f}^2_\alpha \compose \funcname{f}^1_\alpha), \alpha \prec A \bigr )
|
---|
1402 | \\*
|
---|
1403 | & =
|
---|
1404 | \funcseqname{f}^3 \compose[()] (\funcseqname{f}^2 \compose[()] \funcseqname{f}^1)
|
---|
1405 | \end{split}
|
---|
1406 | \end{equation*}
|
---|
1407 | \end{proof}
|
---|
1408 |
|
---|
1409 | Let $\funcseqname{f} \defeq (\funcname{f}_\alpha, \alpha \prec \Alpha)$
|
---|
1410 | be a sequence of functions, $\seqname{D} = \Domain(\funcseqname{f})$ and
|
---|
1411 | $\seqname{R} = \Range(\funcseqname{f})$. Then $ID_\seqname{R}$ is a left
|
---|
1412 | $\compose[()]$ identity for $\funcseqname{f}$ and $ID_\seqname{D}$ is a
|
---|
1413 | right $\compose[()]$ identity for $\funcseqname{f}$.
|
---|
1414 |
|
---|
1415 | \begin{proof}
|
---|
1416 | \begin{equation*}
|
---|
1417 | \begin{split}
|
---|
1418 | \ID_\seqname{R} \compose[()] \funcseqname{f}
|
---|
1419 | & =
|
---|
1420 | (\Id_{\range(\funcname{f}_\alpha)} \compose \funcname{f}_\alpha, \alpha \prec \Alpha)
|
---|
1421 | \\*
|
---|
1422 | & =
|
---|
1423 | (\funcname{f}_\alpha, \alpha \prec \Alpha)
|
---|
1424 | \\*
|
---|
1425 | & =
|
---|
1426 | \funcseqname{f}
|
---|
1427 | \end{split}
|
---|
1428 | \end{equation*}
|
---|
1429 | \begin{equation*}
|
---|
1430 | \begin{split}
|
---|
1431 | \funcseqname{f} \compose[()] \ID_\seqname{D}
|
---|
1432 | & =
|
---|
1433 | (\funcname{f}_\alpha \compose \Id_{\domain(\funcname{f}_\alpha)}, \alpha \prec \Alpha)
|
---|
1434 | \\*
|
---|
1435 | & =
|
---|
1436 | (\funcname{f}_\alpha, \alpha \prec \Alpha)
|
---|
1437 | \\*
|
---|
1438 | & =
|
---|
1439 | \funcseqname{f}
|
---|
1440 | \end{split}
|
---|
1441 | \end{equation*}
|
---|
1442 | \end{proof}
|
---|
1443 | \end{lemma}
|
---|
1444 |
|
---|
1445 | \begin{definition}[Tuple functions]
|
---|
1446 | Let $\seqname{S} \defeq (s_n, n \in [1,N])$ be a tuple of functions. Then
|
---|
1447 | \begin{equation}
|
---|
1448 | \Domain(\seqname{S}) \defeq \bigl ( \domain(s_n), n \in [1,N] \bigr )
|
---|
1449 | \end{equation}
|
---|
1450 | \begin{equation}
|
---|
1451 | \Range(\seqname{S}) \defeq \bigl ( \range(s_n), n \in [1,N] \bigr )
|
---|
1452 | \end{equation}
|
---|
1453 |
|
---|
1454 | Let $\seqname{T} \defeq (t_n, n \in [1,N])$ be a tuple of functions with
|
---|
1455 | $\Range(\seqname{S})=\Domain(\seqname{T})$,
|
---|
1456 | Then their composition is the tuple
|
---|
1457 | $
|
---|
1458 | \seqname{T} \compose[()] \seqname{S} \defeq
|
---|
1459 | (t_n \compose s_n, n \in [1,N])
|
---|
1460 | $
|
---|
1461 |
|
---|
1462 | Let $\seqname{S} \defeq (s_m, m \in [1,M])$ and
|
---|
1463 | $\seqname{T} \defeq (t_n, n \in [1,N])$ be tuples.
|
---|
1464 | Then the following are tuple functioms
|
---|
1465 | \begin{equation}
|
---|
1466 | \head(S,I) \defeq (s_m, m \in [1,I])
|
---|
1467 | \end{equation}
|
---|
1468 | \begin{equation}
|
---|
1469 | \head(S) \defeq \head(S,M-1)
|
---|
1470 | \end{equation}
|
---|
1471 | \begin{equation}
|
---|
1472 | \tail(T,I) \defeq (t_n, n \in [I,N])
|
---|
1473 | \end{equation}
|
---|
1474 | \begin{equation}
|
---|
1475 | \tail(T) \defeq t_N
|
---|
1476 | \end{equation}
|
---|
1477 | \begin{equation}
|
---|
1478 | \join(S,T) \defeq (s_1, \dots, s_M, t_1, \dots, t_N)
|
---|
1479 | \end{equation}
|
---|
1480 | \end{definition}
|
---|
1481 |
|
---|
1482 | \begin{lemma}[Tuple functions]
|
---|
1483 | \label{lem:tupfunc}
|
---|
1484 | Let $\funcseqname{f}^i \defeq (\funcname{f}^i_n, n \in [1,N])$,
|
---|
1485 | $i \in [1,3]$, be tuples of functions with
|
---|
1486 | $\Domain(\funcseqname{f}^2) = \Range(\funcseqname{f}^1)$ and
|
---|
1487 | $\Domain(\funcseqname{f}^3) = \Range(\funcseqname{f}^2)$. Then
|
---|
1488 | $
|
---|
1489 | (\funcseqname{f}^3 \compose[()] \funcseqname{f}^2) \compose[()] \funcseqname{f}^1 =
|
---|
1490 | \funcseqname{f}^3 \compose[()] (\funcseqname{f}^2 \compose[()] \funcseqname{f}^1)
|
---|
1491 | $.
|
---|
1492 |
|
---|
1493 | \begin{proof}
|
---|
1494 | \begin{equation*}
|
---|
1495 | \begin{split}
|
---|
1496 | (\funcseqname{f}^3 \compose[()] \funcseqname{f}^2) \compose[()] \funcseqname{f}^1
|
---|
1497 | & =
|
---|
1498 | \bigl ( (\funcname{f}^3_n \compose \funcname{f}^2_n) \compose \funcname{f}^1_n, n \in [1,N] \bigr )
|
---|
1499 | \\*
|
---|
1500 | & =
|
---|
1501 | \bigl ( \funcname{f}^3_n \compose (\funcname{f}^2_n \compose \funcname{f}^1_n), n \in [1,N] \bigr )
|
---|
1502 | \\*
|
---|
1503 | & =
|
---|
1504 | \funcseqname{f}^3 \compose[()] (\funcseqname{f}^2 \compose[()] \funcseqname{f}^1)
|
---|
1505 | \end{split}
|
---|
1506 | \end{equation*}
|
---|
1507 | \end{proof}
|
---|
1508 |
|
---|
1509 | Let $\funcseqname{f} \defeq (\funcname{f}_\alpha, \alpha \prec \Alpha)$
|
---|
1510 | be a sequence of functions,
|
---|
1511 | $\seqname{D} \defeq \Domain(\funcseqname{f})$ and \\*
|
---|
1512 | $\seqname{R} \defeq \Range(\funcseqname{f})$. Then $\ID_\seqname{R}$ is a
|
---|
1513 | left $\compose[()]$ identity for $\funcseqname{f}$ and $\ID_\seqname{D}$
|
---|
1514 | is a right $\compose[()]$ identity for $\funcseqname{f}$.
|
---|
1515 |
|
---|
1516 | \begin{proof}
|
---|
1517 | \begin{equation*}
|
---|
1518 | \begin{split}
|
---|
1519 | \ID_\seqname{R} \compose[()] \funcseqname{f}
|
---|
1520 | & =
|
---|
1521 | (\Id_{\range(\funcname{f}_\alpha)} \compose \funcname{f}_\alpha, \alpha \prec \Alpha)
|
---|
1522 | \\*
|
---|
1523 | & =
|
---|
1524 | (\funcname{f}_\alpha, \alpha \prec \Alpha)
|
---|
1525 | \\*
|
---|
1526 | & =
|
---|
1527 | \funcseqname{f}
|
---|
1528 | \end{split}
|
---|
1529 | \end{equation*}
|
---|
1530 | \begin{equation*}
|
---|
1531 | \begin{split}
|
---|
1532 | \funcseqname{f} \compose[()] \ID_\seqname{D}
|
---|
1533 | & =
|
---|
1534 | (\funcname{f}_\alpha \compose \Id_{\domain(\funcname{f}_\alpha)}, \alpha \prec \Alpha)
|
---|
1535 | \\*
|
---|
1536 | & =
|
---|
1537 | (\funcname{f}_\alpha, \alpha \prec \Alpha)
|
---|
1538 | \\*
|
---|
1539 | & =
|
---|
1540 | \funcseqname{f}
|
---|
1541 | \end{split}
|
---|
1542 | \end{equation*}
|
---|
1543 | \end{proof}
|
---|
1544 | \end{lemma}
|
---|
1545 |
|
---|
1546 | \begin{definition}[Tuple composition for labeled morphisms]
|
---|
1547 | \label{def:labcomp}
|
---|
1548 | Let $\seqname{M}^i \defeq (\funcseqname{f}^i, o^i_1, o^i_2)$, $i=1,2$,
|
---|
1549 | be tuples such that each $\funcseqname{f}^i$ is a sequence of functions
|
---|
1550 | or each $\funcseqname{f}^i$ is a tuple of functions,
|
---|
1551 | $\Range(\funcseqname{f}^1) = \Domain(\funcseqname{f}^2)$ and
|
---|
1552 | $0^1_2=o^2_1$. Then
|
---|
1553 |
|
---|
1554 | \begin{equation}
|
---|
1555 | \seqname{M}^2 \compose[A] \seqname{M}^1 \defeq
|
---|
1556 | \bigl (
|
---|
1557 | \funcseqname{f}^2 \compose[()] \funcseqname{f}^1,
|
---|
1558 | o^1_1,
|
---|
1559 | o^2_2
|
---|
1560 | \bigr )
|
---|
1561 | \end{equation}
|
---|
1562 | \end{definition}
|
---|
1563 |
|
---|
1564 | \begin{lemma}[Tuple composition for labeled morphisms]
|
---|
1565 | \label{lem:labcomp}
|
---|
1566 | Let $\seqname{M}^i \defeq (\funcseqname{f}^i, o^i_1, o^i_2)$,
|
---|
1567 | $i \in [1,3]$,
|
---|
1568 | be a tuple such that $\funcseqname{f}^i$ is a sequence or tuple of
|
---|
1569 | functions,
|
---|
1570 | $\Range(\funcseqname{f}^i) = \Domain(\funcseqname{f}^{i+1})$
|
---|
1571 | and $o^i_2 = o^{i+1}_1$, $i=1,2$.
|
---|
1572 | Then
|
---|
1573 | \begin{equation}
|
---|
1574 | \seqname{M}^3 \compose[A] \bigl ( \seqname{M}^2 \compose[A] \seqname{M}^1 \bigr )
|
---|
1575 | =
|
---|
1576 | \bigl ( \seqname{M}^3 \compose[A] \seqname{M}^2 \bigr ) \compose[A] \seqname{M}^1
|
---|
1577 | \end{equation}
|
---|
1578 |
|
---|
1579 | \begin{proof}
|
---|
1580 | From \fullcref{def:labcomp}\negmedspace, \\
|
---|
1581 | {
|
---|
1582 | \showlabelsinline
|
---|
1583 | \pagecref{lem:seqfunc}
|
---|
1584 | }
|
---|
1585 | and \fullcref{lem:tupfunc}\negmedspace, we have
|
---|
1586 | \begin{equation*}
|
---|
1587 | \begin{split}
|
---|
1588 | \seqname{M}^3 \compose[A] (\seqname{M}^2 \compose[A] \seqname{M}^1)
|
---|
1589 | & =
|
---|
1590 | \seqname{M}^3 \compose[A] (\funcseqname{f}^2 \compose[()] \funcseqname{f}^1, o^1_1, o^2_2)
|
---|
1591 | \\*
|
---|
1592 | & =
|
---|
1593 | (\funcseqname{f}^3 \compose[()] \funcseqname{f}^2 \compose[()] \funcseqname{f}^1, o^1_1, o^3_2)
|
---|
1594 | \\*
|
---|
1595 | & =
|
---|
1596 | (\funcseqname{f}^3 \compose[()] \funcseqname{f}^2, o^2_1, o^3_2) \compose[A] \seqname{M}^1
|
---|
1597 | \\*
|
---|
1598 | & =
|
---|
1599 | (\seqname{M}^3 \compose[A] \seqname{M}^2) \compose[A] \seqname{M}^1
|
---|
1600 | \end{split}
|
---|
1601 | \end{equation*}
|
---|
1602 | \end{proof}
|
---|
1603 |
|
---|
1604 | Let $\seqname{D}^i \defeq \Domain(\funcseqname{f}^i)$ and
|
---|
1605 | $\seqname{R}^i \defeq \Range(\funcseqname{f}^i)$. Then
|
---|
1606 | \begin{equation}
|
---|
1607 | (\ID_{\seqname{R}^i}, o^i_2, o^i_2) \compose[A] \seqname{M}^i =
|
---|
1608 | \seqname{M}^i
|
---|
1609 | \end{equation}
|
---|
1610 | \begin{equation}
|
---|
1611 | \seqname{M}^i \compose[A] (\ID_{\seqname{D}^i}, o^i_1, o^i_1) =
|
---|
1612 | \seqname{M}^i
|
---|
1613 | \end{equation}
|
---|
1614 |
|
---|
1615 | \begin{proof}
|
---|
1616 | \begin{equation*}
|
---|
1617 | \begin{split}
|
---|
1618 | (\ID_{\seqname{R}^i}, o^i_2, o^i_2) \compose[A] \seqname{M}^i
|
---|
1619 | & =
|
---|
1620 | (\ID_{\seqname{R}^i} \compose[()] \funcseqname{f}^i, o^i_1, o^i_2)
|
---|
1621 | \\*
|
---|
1622 | & =
|
---|
1623 | (\funcseqname{f}^i, o^i_1, o^i_2)
|
---|
1624 | \\*
|
---|
1625 | & =
|
---|
1626 | \seqname{M}^i
|
---|
1627 | \end{split}
|
---|
1628 | \end{equation*}
|
---|
1629 | \begin{equation*}
|
---|
1630 | \begin{split}
|
---|
1631 | \seqname{M}^i \compose[A] (\ID_{\seqname{D}^i}, o^i_1, o^i_1)
|
---|
1632 | & =
|
---|
1633 | (\funcseqname{f}^i \compose[()] \ID_{\seqname{D}^i}, o^i_1, o^i_2)
|
---|
1634 | \\*
|
---|
1635 | & =
|
---|
1636 | (\funcseqname{f}^i, o^i_1, o^i_2)
|
---|
1637 | \\*
|
---|
1638 | & =
|
---|
1639 | \seqname{M}^i
|
---|
1640 | \end{split}
|
---|
1641 | \end{equation*}
|
---|
1642 | \end{proof}
|
---|
1643 | \end{lemma}
|
---|
1644 |
|
---|
1645 | \begin{definition}[Cartesian product of sequence]
|
---|
1646 | \label{def:Cart}
|
---|
1647 | Let $\seqname{S}^i \defeq (S^i_\alpha, \alpha \prec \Alpha)$, $i=1,2$,
|
---|
1648 | be a sequence and
|
---|
1649 | $\funcseqname{f} \defeq (\funcname{f}_\alpha \maps S^1_\alpha \to
|
---|
1650 | S^2_\alpha, \alpha \prec \Alpha)$
|
---|
1651 | be a sequence of functions, then
|
---|
1652 | $
|
---|
1653 | \bigtimes \seqname{S}^i \defeq
|
---|
1654 | \bigtimes_{\alpha \prec \Alpha} S^i_\alpha
|
---|
1655 | $
|
---|
1656 | is the generalized Cartesian product of the sequence $\seqname{S}^i$ and
|
---|
1657 | $
|
---|
1658 | \bigtimes \funcseqname{f} \maps \seqname{S}^1 \to \seqname{S}^2
|
---|
1659 | \defeq
|
---|
1660 | \bigtimes_{\alpha \prec \Alpha}\funcname{f}_\alpha
|
---|
1661 | $
|
---|
1662 | is the generalized Cartesian product of the function sequence
|
---|
1663 | $\funcseqname{f}$.
|
---|
1664 | \end{definition}
|
---|
1665 |
|
---|
1666 | \begin{definition}[underline]
|
---|
1667 | Let $\seqname{S}^1 \defeq (S^1_\alpha, \alpha \preceq \Alpha)$,
|
---|
1668 | $\seqname{S}^2 \defeq (S^2_\alpha, \alpha \preceq \Alpha)$ be
|
---|
1669 | sequences and
|
---|
1670 | $
|
---|
1671 | \funcseqname{f} \defeq
|
---|
1672 | (
|
---|
1673 | \funcname{f}_\alpha \maps S^1_\alpha \to S^2_\alpha,
|
---|
1674 | \alpha \preceq \Alpha
|
---|
1675 | )
|
---|
1676 | $
|
---|
1677 | be a sequence of functions, then
|
---|
1678 | \begin{equation}
|
---|
1679 | \underline{\funcname{f}} \maps head(S_1) \to head(S_2) \defeq
|
---|
1680 | \bigtimes \head(\funcseqname{f}) =
|
---|
1681 | \bigtimes_{\alpha \prec \Alpha} \funcname{f}_\alpha
|
---|
1682 | \end{equation}
|
---|
1683 | is the function mapping
|
---|
1684 | $(s_\alpha \in S^1_\alpha, \alpha \prec \Alpha)$
|
---|
1685 | into $(\funcname{f}_\alpha(s_\alpha), \alpha \prec \Alpha)$.
|
---|
1686 | \end{definition}
|
---|
1687 |
|
---|
1688 | \begin{definition}[Head and tail compositions]
|
---|
1689 | Let \\
|
---|
1690 | $\funcname{f}^1 \maps (S^1_\alpha, \alpha \prec \Alpha) \to S^1_\Alpha$,
|
---|
1691 | $\funcname{f}^2 \maps (S^2_\alpha, \alpha \prec \Alpha) \to S^2_\Alpha$
|
---|
1692 | and
|
---|
1693 | $
|
---|
1694 | \funcseqname{g} \defeq
|
---|
1695 | (
|
---|
1696 | \funcname{g}_\alpha \maps S^1_\alpha \to S^2_\alpha,
|
---|
1697 | \alpha \preceq \Alpha
|
---|
1698 | )
|
---|
1699 | $.
|
---|
1700 | Then (see \cref{fig:fg,fig:gf})
|
---|
1701 |
|
---|
1702 | \begin{subequations}
|
---|
1703 | \begin{equation}
|
---|
1704 | \funcname{f}^2 \composeh \funcseqname{g} \defeq
|
---|
1705 | \funcname{f}^2 \compose \underline{\funcseqname{g}}
|
---|
1706 | \end{equation}
|
---|
1707 | \begin{equation}
|
---|
1708 | \funcseqname{g} \composet \funcname{f}^1 \defeq
|
---|
1709 | \tail(\funcseqname{g}) \compose \funcname{f}^1
|
---|
1710 | \end{equation}
|
---|
1711 | \end{subequations}
|
---|
1712 | \end{definition}
|
---|
1713 |
|
---|
1714 | \begin{figure}
|
---|
1715 | \[ \bfig
|
---|
1716 | \node s1(0,0)[{\head(S^1)}]
|
---|
1717 | \node s2(0,-1000)[{\head(S^2)}]
|
---|
1718 | \node s2a(1000,-1000)[{S^2_\Alpha}]
|
---|
1719 | \arrow |l|[s1`s2;{\underline{\funcseqname{g}}}]
|
---|
1720 | \arrow |r|[s1`s2a;{\funcseqname{f}^2 \composeh \funcseqname{g}}]
|
---|
1721 | \arrow |b|[s2`s2a;{\funcseqname{f^2}}]
|
---|
1722 | \efig \]
|
---|
1723 | \caption{$\funcname{f}^2 \composeh \funcseqname{g}$}
|
---|
1724 | \label{fig:fg}
|
---|
1725 | \end{figure}
|
---|
1726 |
|
---|
1727 | \begin{figure}
|
---|
1728 | \[ \bfig
|
---|
1729 | \node s1(0,0)[{\head(S^1)}]
|
---|
1730 | \node s1a(0,-1000)[{S^1_\Alpha}]
|
---|
1731 | \node s2a(1000,-1000)[{S^2_\Alpha}]
|
---|
1732 | \arrow |l|[s1`s1a;{\funcname{f}^1}]
|
---|
1733 | \arrow |r|[s1`s2a;{\funcseqname{g} \composet \funcseqname{f}^1}]
|
---|
1734 | \arrow |b|[s1a`s2a;{\tail(\funcseqname{g}) = \funcseqname{g}_\Alpha}]
|
---|
1735 | \efig \]
|
---|
1736 | \caption{$\funcseqname{g} \composet \funcname{f}^1$}
|
---|
1737 | \label{fig:gf}
|
---|
1738 | \end{figure}
|
---|
1739 |
|
---|
1740 | \begin{definition}[Topology functions]
|
---|
1741 | Let $S$ be a topological space and $Y$ a subset. Then \\
|
---|
1742 | \begin{enumerate}
|
---|
1743 | \item $\Topology(S)$ is the topology of $S$.
|
---|
1744 | \item
|
---|
1745 | $\Topology(Y,S) \defeq \set{U \cap Y}[{U \in \Topology(S)}]$
|
---|
1746 | is the relative topology of $Y$.
|
---|
1747 | \item
|
---|
1748 | $\Top(Y,S) \defeq \bigl ( Y, \Topology(Y,S) \bigr )$ is $Y$ with the
|
---|
1749 | relative topology.
|
---|
1750 | \item
|
---|
1751 | $
|
---|
1752 | \op{S} \defeq
|
---|
1753 | \set
|
---|
1754 | {(U, \Topology(U,S))}%
|
---|
1755 | [{{ U \in \Topology(S) \setminus \{ \emptyset \} }}]
|
---|
1756 | $
|
---|
1757 | is the set of all non-null open subspaces of $S$.
|
---|
1758 | \end{enumerate}
|
---|
1759 |
|
---|
1760 | Let $\seqname{S}$ be a set of topological spaces. Then
|
---|
1761 | $\op{\seqname{S}} \defeq \union [{S \in \seqname{S}}] { {\op{S}}}$ is the set
|
---|
1762 | of open subspaces in $\seqname{S}$.
|
---|
1763 |
|
---|
1764 | Let $S$ and $T'$ be spaces, $T \subseteq T'$ be a subspace and
|
---|
1765 | $\funcname{f} \maps S \to T$ a function. Then
|
---|
1766 | $\funcname{f} \maps S \to T' \defeq \Id_{T,T'} \compose \funcname{f}$
|
---|
1767 | is $\funcname{f}$ considered as a function from $S$ to $T'$.
|
---|
1768 |
|
---|
1769 | Let $S'$ and $T'$ be spaces, $S \subseteq S'$, $T \subseteq T'$ be
|
---|
1770 | subspaces and $\funcname{f}' \maps S' \to T'$ a function such that
|
---|
1771 | $\funcname{f}'[S] \subseteq T$. Then $\funcname{f}' \maps S \to T$, also
|
---|
1772 | written $\funcname{f}' \restrictto_{S,T}$, is
|
---|
1773 | $\funcname{f}' \restrictto_S$ considered as a function from $S$ to
|
---|
1774 | $T$.
|
---|
1775 |
|
---|
1776 | Let $\seqname{S}^i \defeq (S^i_\alpha, \alpha \preceq \Alpha)$, $i-1,2$,
|
---|
1777 | be a sequence of spaces, $\seqname{S}^1 \SUBSETEQ \seqname{S}^2$ and \linebreak
|
---|
1778 | $\funcname{f}^2 \maps \head(\seqname{S}^2) \to \tail(\seqname{S}^2)$ a
|
---|
1779 | function.
|
---|
1780 | $
|
---|
1781 | \funcname{f}^2 \restrictto_{\head(\seqname{S}^1)} \defeq
|
---|
1782 | \funcname{f}^2 \restrictto_{\bigtimes \head(\seqname{S}^1)}
|
---|
1783 | $.
|
---|
1784 | If \linebreak
|
---|
1785 | $
|
---|
1786 | \funcname{f}^2 \restrictto_{\head(\seqname{S}^1)}
|
---|
1787 | [\bigtimes \head(\seqname{S}^1)]
|
---|
1788 | \subseteq \tail(\seqname{S}^1)
|
---|
1789 | $
|
---|
1790 | then
|
---|
1791 | $ \funcname{f}^2 \maps \head(\seqname{S}^1) \to \tail(\seqname{S}^1)$,
|
---|
1792 | also written
|
---|
1793 | $
|
---|
1794 | \funcname{f}^2 \restrictto_%
|
---|
1795 | {\head(\seqname{S}^1),\tail(\seqname{S}^1)}
|
---|
1796 | $,
|
---|
1797 | is $\funcname{f}^2 \restrictto_{\head(\seqname{S}^1)}$ considered as a
|
---|
1798 | function from $\bigtimes \head(\seqname{S}^1)$ to $\tail(\seqname{S}^1)$.
|
---|
1799 | \end{definition}
|
---|
1800 |
|
---|
1801 | \begin{definition}[Truth space]
|
---|
1802 | $\false \defeq \emptyset$, $\true \defeq \set{\emptyset}$,
|
---|
1803 | the truth set is \linebreak
|
---|
1804 | $\truthset \defeq \set{\false, \true}$,
|
---|
1805 | $\truthtop \defeq \set {\emptyset,\truthset}$ and the truth space
|
---|
1806 | $\truthspace \defeq (\truthset, \truthtop)$ is $\truthset$
|
---|
1807 | with the indiscrete topology.
|
---|
1808 | \end{definition}
|
---|
1809 |
|
---|
1810 | \begin{definition}[Truth category]
|
---|
1811 | The truth category is
|
---|
1812 | $
|
---|
1813 | \truthcat \defeq \\
|
---|
1814 | \bigl (
|
---|
1815 | \truthspace,
|
---|
1816 | \set{\truthspace \to \truthspace}
|
---|
1817 | \bigr )
|
---|
1818 | $.
|
---|
1819 | The truth model space is \\*
|
---|
1820 | $\seqname{Truthspace} \defeq (\truthspace, \truthcat)$.
|
---|
1821 | \end{definition}
|
---|
1822 |
|
---|
1823 | \begin{definition}[Constraint functions]
|
---|
1824 | A constraint function is a continuous function with range
|
---|
1825 | $\truthspace$ or a model
|
---|
1826 | function with range $\seqname{Truthspace}$.
|
---|
1827 | \end{definition}
|
---|
1828 |
|
---|
1829 | \begin{definition}[Sequence inclusion]
|
---|
1830 | \label{def:seqin}
|
---|
1831 | Let $\seqname{S} \defeq (S_\alpha, \alpha \prec \Alpha)$ and
|
---|
1832 | $\seqname{T} \defeq (T_\alpha, \alpha \prec \Alpha)$ be sequences.
|
---|
1833 | $\seqname{S} \seqin \seqname{T}$ iff
|
---|
1834 | $\uquant{\alpha \prec \Alpha} {S_\alpha \in T_\alpha}$ or
|
---|
1835 | $\uquant{\alpha \prec \Alpha} {S_\alpha \objin T_\alpha}$.
|
---|
1836 | \end{definition}
|
---|
1837 |
|
---|
1838 | \begin{lemma}[Sequence inclusion]
|
---|
1839 | \label{lem:seqin}
|
---|
1840 | Let $\seqname{S} \defeq (S_\alpha, \alpha \prec \Alpha)$
|
---|
1841 | be a sequence,
|
---|
1842 | $
|
---|
1843 | \catseqname{T}^i \defeq \\
|
---|
1844 | (\catname{T}^i_\alpha, \alpha \prec \Alpha)
|
---|
1845 | $,
|
---|
1846 | $i=1,2$, a sequence of
|
---|
1847 | categories, $\catseqname{T}^1 \SUBCAT \catseqname{T}^2$ and
|
---|
1848 | $\seqname{S} \seqin \catseqname{T}^1$ Then
|
---|
1849 | $\seqname{S} \seqin \catseqname{T}^2$.
|
---|
1850 |
|
---|
1851 | \begin{proof}
|
---|
1852 | If
|
---|
1853 | $\uquant{\alpha \prec \Alpha} {S_\alpha \objin \catname{T}^1_\alpha}$
|
---|
1854 | then
|
---|
1855 | $\uquant{\alpha \prec \Alpha} {S_\alpha \objin \catname{T}^2_\alpha}$.
|
---|
1856 | \end{proof}
|
---|
1857 | \end{lemma}
|
---|
1858 |
|
---|
1859 | \begin{thebibliography}{9}
|
---|
1860 |
|
---|
1861 | \bibitem[Ad\'amek, Herrlich, Strecker, 1990] {JoyCat} Ji\v{r}\'i Ad\'amek,
|
---|
1862 | Horst Herrlich,
|
---|
1863 | George E. Strecker.
|
---|
1864 | \textit{Abstract and Concrete Categories The Joy of Cats},
|
---|
1865 | John Wiley and Sons, Inc., 1990.
|
---|
1866 |
|
---|
1867 | \bibitem[Kelley, 1955] {GenTop} John L. Kelley,
|
---|
1868 | \textit{General Topology},
|
---|
1869 | D. Van Nostrand Company (first edition), 1955.
|
---|
1870 |
|
---|
1871 | \bibitem[Kobayashi, 1996] {FoundDiffGeo1} Shoshichi Kobayashi,
|
---|
1872 | Katsumi Nomizu,
|
---|
1873 | \textit{Foundations of Differential Geometry, Volume I},
|
---|
1874 | ISBN 0-471-15733-3, John Wiley and Sons, Inc., 1996.
|
---|
1875 |
|
---|
1876 | %\bibitem[Lee, 2000] {DiffPhys} Jeffrey Marc lee,
|
---|
1877 | %\textit{Differential Geometry},
|
---|
1878 | %Analysis and Physics, 2000.
|
---|
1879 |
|
---|
1880 | \bibitem[Mac Lane, 1998] {CftWM} Saunders Mac Lane,
|
---|
1881 | \textit{Categories for the Working Mathemation, 2nd edition},
|
---|
1882 | ISBN 0-387-98403-8, Springer-Verlag, 1998.
|
---|
1883 |
|
---|
1884 | \bibitem[Steenrod, 1999] {TopFib} Norman Steenrod,
|
---|
1885 | \textit{The Topology Of Fibre Bundles}, ISBN 0-691-00548-6,
|
---|
1886 | Prineton University Press (seventh printing), 1999.
|
---|
1887 |
|
---|
1888 | \end{thebibliography}
|
---|
1889 |
|
---|
1890 | \end{document}
|
---|