source: trunk/openjdk/hotspot/src/os/windows/vm/os_windows.cpp @ 320

Last change on this file since 320 was 320, checked in by dmik, 9 years ago

Port Windows-specific b24 changes to OS/2.

File size: 159.4 KB
RevLine 
[2]1/*
[309]2 * CopyrighT (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
[2]3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
[278]19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
[2]22 *
23 */
24
25#ifdef _WIN64
26// Must be at least Windows 2000 or XP to use VectoredExceptions
27#define _WIN32_WINNT 0x500
28#endif
29
[320]30#ifdef __WIN32OS2__
31#include <os2wrap2.h>
32#endif
33
[309]34// no precompiled headers
35#include "classfile/classLoader.hpp"
36#include "classfile/systemDictionary.hpp"
37#include "classfile/vmSymbols.hpp"
38#include "code/icBuffer.hpp"
39#include "code/vtableStubs.hpp"
40#include "compiler/compileBroker.hpp"
41#include "interpreter/interpreter.hpp"
42#include "jvm_windows.h"
43#include "memory/allocation.inline.hpp"
44#include "memory/filemap.hpp"
45#include "mutex_windows.inline.hpp"
46#include "oops/oop.inline.hpp"
47#include "os_share_windows.hpp"
48#include "prims/jniFastGetField.hpp"
49#include "prims/jvm.h"
50#include "prims/jvm_misc.hpp"
51#include "runtime/arguments.hpp"
52#include "runtime/extendedPC.hpp"
53#include "runtime/globals.hpp"
54#include "runtime/interfaceSupport.hpp"
55#include "runtime/java.hpp"
56#include "runtime/javaCalls.hpp"
57#include "runtime/mutexLocker.hpp"
58#include "runtime/objectMonitor.hpp"
59#include "runtime/osThread.hpp"
60#include "runtime/perfMemory.hpp"
61#include "runtime/sharedRuntime.hpp"
62#include "runtime/statSampler.hpp"
63#include "runtime/stubRoutines.hpp"
64#include "runtime/threadCritical.hpp"
65#include "runtime/timer.hpp"
66#include "services/attachListener.hpp"
67#include "services/runtimeService.hpp"
68#include "thread_windows.inline.hpp"
69#include "utilities/decoder.hpp"
70#include "utilities/defaultStream.hpp"
71#include "utilities/events.hpp"
72#include "utilities/growableArray.hpp"
73#include "utilities/vmError.hpp"
74#ifdef TARGET_ARCH_x86
75# include "assembler_x86.inline.hpp"
76# include "nativeInst_x86.hpp"
77#endif
78#ifdef COMPILER1
79#include "c1/c1_Runtime1.hpp"
80#endif
81#ifdef COMPILER2
82#include "opto/runtime.hpp"
83#endif
[2]84
[139]85#if defined(_DEBUG) && !defined(__WIN32OS2__)
[2]86#include <crtdbg.h>
87#endif
88
89
90#include <windows.h>
91#include <sys/types.h>
92#include <sys/stat.h>
93#include <sys/timeb.h>
94#include <objidl.h>
95#include <shlobj.h>
96
97#include <malloc.h>
98#include <signal.h>
99#include <direct.h>
100#include <errno.h>
101#include <fcntl.h>
102#include <io.h>
103#include <process.h>              // For _beginthreadex(), _endthreadex()
104#include <imagehlp.h>             // For os::dll_address_to_function_name
105
106/* for enumerating dll libraries */
107#include <tlhelp32.h>
108#include <vdmdbg.h>
109
[320]110#ifdef __EMX__
111
[58]112#ifdef __WIN32OS2__
113#include <mmsystem.h>
114#include <wincon.h>
115#include <basetsd.h>
[320]116#include <winsock.h>
[58]117#define _M_IX86
118#endif
119
[320]120#define _stati64 stat
121#define _fstati64 fstat
122#define _lseeki64 lseek
123
124#endif /* EMX */
125
[2]126// for timer info max values which include all bits
127#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
128
129// For DLL loading/load error detection
130// Values of PE COFF
131#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
132#define IMAGE_FILE_SIGNATURE_LENGTH 4
133
134static HANDLE main_process;
135static HANDLE main_thread;
136static int    main_thread_id;
137
138static FILETIME process_creation_time;
139static FILETIME process_exit_time;
140static FILETIME process_user_time;
141static FILETIME process_kernel_time;
142
143#ifdef _WIN64
144PVOID  topLevelVectoredExceptionHandler = NULL;
145#endif
146
147#ifdef _M_IA64
148#define __CPU__ ia64
149#elif _M_AMD64
150#define __CPU__ amd64
151#else
152#define __CPU__ i486
153#endif
154
155// save DLL module handle, used by GetModuleFileName
156
157HINSTANCE vm_lib_handle;
158static int getLastErrorString(char *buf, size_t len);
159
[64]160#ifdef __WIN32OS2__
161extern "C"
162#endif
[2]163BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
164  switch (reason) {
165    case DLL_PROCESS_ATTACH:
166      vm_lib_handle = hinst;
167      if(ForceTimeHighResolution)
168        timeBeginPeriod(1L);
169      break;
170    case DLL_PROCESS_DETACH:
171      if(ForceTimeHighResolution)
172        timeEndPeriod(1L);
173#ifdef _WIN64
174      if (topLevelVectoredExceptionHandler != NULL) {
175        RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
176        topLevelVectoredExceptionHandler = NULL;
177      }
178#endif
179      break;
180    default:
181      break;
182  }
183  return true;
184}
185
186static inline double fileTimeAsDouble(FILETIME* time) {
187  const double high  = (double) ((unsigned int) ~0);
188  const double split = 10000000.0;
189  double result = (time->dwLowDateTime / split) +
190                   time->dwHighDateTime * (high/split);
191  return result;
192}
193
194// Implementation of os
195
196bool os::getenv(const char* name, char* buffer, int len) {
197 int result = GetEnvironmentVariable(name, buffer, len);
198 return result > 0 && result < len;
199}
200
201
202// No setuid programs under Windows.
203bool os::have_special_privileges() {
204  return false;
205}
206
207
208// This method is  a periodic task to check for misbehaving JNI applications
209// under CheckJNI, we can add any periodic checks here.
210// For Windows at the moment does nothing
211void os::run_periodic_checks() {
212  return;
213}
214
215#ifndef _WIN64
216// previous UnhandledExceptionFilter, if there is one
217static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
218
219LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
220#endif
[252]221
222#ifdef __WIN32OS2__
223const char *getLibPath(); // defined in os_os2.cpp
224#endif
225
[2]226void os::init_system_properties_values() {
227  /* sysclasspath, java_home, dll_dir */
228  {
229      char *home_path;
230      char *dll_path;
231      char *pslash;
232      char *bin = "\\bin";
233      char home_dir[MAX_PATH];
234
235      if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
236          os::jvm_path(home_dir, sizeof(home_dir));
237          // Found the full path to jvm[_g].dll.
238          // Now cut the path to <java_home>/jre if we can.
239          *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
240          pslash = strrchr(home_dir, '\\');
241          if (pslash != NULL) {
242              *pslash = '\0';                 /* get rid of \{client|server} */
243              pslash = strrchr(home_dir, '\\');
244              if (pslash != NULL)
245                  *pslash = '\0';             /* get rid of \bin */
246          }
247      }
248
249      home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
250      if (home_path == NULL)
251          return;
252      strcpy(home_path, home_dir);
253      Arguments::set_java_home(home_path);
254
255      dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
256      if (dll_path == NULL)
257          return;
258      strcpy(dll_path, home_dir);
259      strcat(dll_path, bin);
260      Arguments::set_dll_dir(dll_path);
261
262      if (!set_boot_path('\\', ';'))
263          return;
264  }
265
266  /* library_path */
267  #define EXT_DIR "\\lib\\ext"
268  #define BIN_DIR "\\bin"
269  #define PACKAGE_DIR "\\Sun\\Java"
270  {
271    /* Win32 library search order (See the documentation for LoadLibrary):
272     *
273     * 1. The directory from which application is loaded.
274     * 2. The current directory
275     * 3. The system wide Java Extensions directory (Java only)
276     * 4. System directory (GetSystemDirectory)
277     * 5. Windows directory (GetWindowsDirectory)
278     * 6. The PATH environment variable
279     */
280
281    char *library_path;
282    char tmp[MAX_PATH];
[252]283
284#ifdef __WIN32OS2__
285    /* On OS/2, LIBPATH is used for DLL searching insetad of PATH */
286    const char *path_str = getLibPath();
287#else
[2]288    char *path_str = ::getenv("PATH");
[252]289#endif
[2]290
291    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
292        sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
293
294    library_path[0] = '\0';
295
296    GetModuleFileName(NULL, tmp, sizeof(tmp));
297    *(strrchr(tmp, '\\')) = '\0';
298    strcat(library_path, tmp);
299
300    strcat(library_path, ";.");
301
302    GetWindowsDirectory(tmp, sizeof(tmp));
303    strcat(library_path, ";");
304    strcat(library_path, tmp);
305    strcat(library_path, PACKAGE_DIR BIN_DIR);
306
307    GetSystemDirectory(tmp, sizeof(tmp));
308    strcat(library_path, ";");
309    strcat(library_path, tmp);
310
311    GetWindowsDirectory(tmp, sizeof(tmp));
312    strcat(library_path, ";");
313    strcat(library_path, tmp);
314
315    if (path_str) {
316        strcat(library_path, ";");
317        strcat(library_path, path_str);
318    }
319
320    Arguments::set_library_path(library_path);
321    FREE_C_HEAP_ARRAY(char, library_path);
322  }
323
324  /* Default extensions directory */
325  {
326    char path[MAX_PATH];
327    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
328    GetWindowsDirectory(path, MAX_PATH);
329    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
330        path, PACKAGE_DIR, EXT_DIR);
331    Arguments::set_ext_dirs(buf);
332  }
333  #undef EXT_DIR
334  #undef BIN_DIR
335  #undef PACKAGE_DIR
336
337  /* Default endorsed standards directory. */
338  {
339    #define ENDORSED_DIR "\\lib\\endorsed"
340    size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
341    char * buf = NEW_C_HEAP_ARRAY(char, len);
342    sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
343    Arguments::set_endorsed_dirs(buf);
344    #undef ENDORSED_DIR
345  }
346
347#ifndef _WIN64
348  // set our UnhandledExceptionFilter and save any previous one
349  prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
350#endif
351
352  // Done
353  return;
354}
355
356void os::breakpoint() {
357  DebugBreak();
358}
359
360// Invoked from the BREAKPOINT Macro
361extern "C" void breakpoint() {
362  os::breakpoint();
363}
364
365// Returns an estimate of the current stack pointer. Result must be guaranteed
366// to point into the calling threads stack, and be no lower than the current
367// stack pointer.
368
369address os::current_stack_pointer() {
370  int dummy;
371  address sp = (address)&dummy;
372  return sp;
373}
374
375// os::current_stack_base()
376//
377//   Returns the base of the stack, which is the stack's
378//   starting address.  This function must be called
379//   while running on the stack of the thread being queried.
380
381address os::current_stack_base() {
382  MEMORY_BASIC_INFORMATION minfo;
383  address stack_bottom;
384  size_t stack_size;
385
386  VirtualQuery(&minfo, &minfo, sizeof(minfo));
387  stack_bottom =  (address)minfo.AllocationBase;
388  stack_size = minfo.RegionSize;
389
390  // Add up the sizes of all the regions with the same
391  // AllocationBase.
392  while( 1 )
393  {
394    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
395    if ( stack_bottom == (address)minfo.AllocationBase )
396      stack_size += minfo.RegionSize;
397    else
398      break;
399  }
400
401#ifdef _M_IA64
402  // IA64 has memory and register stacks
403  stack_size = stack_size / 2;
404#endif
405  return stack_bottom + stack_size;
406}
407
408size_t os::current_stack_size() {
409  size_t sz;
410  MEMORY_BASIC_INFORMATION minfo;
411  VirtualQuery(&minfo, &minfo, sizeof(minfo));
412  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
413  return sz;
414}
415
416struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
417  const struct tm* time_struct_ptr = localtime(clock);
418  if (time_struct_ptr != NULL) {
419    *res = *time_struct_ptr;
420    return res;
421  }
422  return NULL;
423}
424
425LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
426
427// Thread start routine for all new Java threads
428static unsigned __stdcall java_start(Thread* thread) {
429  // Try to randomize the cache line index of hot stack frames.
430  // This helps when threads of the same stack traces evict each other's
431  // cache lines. The threads can be either from the same JVM instance, or
432  // from different JVM instances. The benefit is especially true for
433  // processors with hyperthreading technology.
434  static int counter = 0;
435  int pid = os::current_process_id();
436  _alloca(((pid ^ counter++) & 7) * 128);
437
438  OSThread* osthr = thread->osthread();
439  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
440
441  if (UseNUMA) {
442    int lgrp_id = os::numa_get_group_id();
443    if (lgrp_id != -1) {
444      thread->set_lgrp_id(lgrp_id);
445    }
446  }
447
448
449  if (UseVectoredExceptions) {
450    // If we are using vectored exception we don't need to set a SEH
451    thread->run();
452  }
453  else {
454    // Install a win32 structured exception handler around every thread created
455    // by VM, so VM can genrate error dump when an exception occurred in non-
456    // Java thread (e.g. VM thread).
457    __try {
458       thread->run();
459    } __except(topLevelExceptionFilter(
460               (_EXCEPTION_POINTERS*)_exception_info())) {
461        // Nothing to do.
462    }
463  }
464
465  // One less thread is executing
466  // When the VMThread gets here, the main thread may have already exited
467  // which frees the CodeHeap containing the Atomic::add code
468  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
469    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
470  }
471
472  return 0;
473}
474
475static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
476  // Allocate the OSThread object
477  OSThread* osthread = new OSThread(NULL, NULL);
478  if (osthread == NULL) return NULL;
479
480  // Initialize support for Java interrupts
481  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
482  if (interrupt_event == NULL) {
483    delete osthread;
484    return NULL;
485  }
486  osthread->set_interrupt_event(interrupt_event);
487
488  // Store info on the Win32 thread into the OSThread
489  osthread->set_thread_handle(thread_handle);
490  osthread->set_thread_id(thread_id);
491
492  if (UseNUMA) {
493    int lgrp_id = os::numa_get_group_id();
494    if (lgrp_id != -1) {
495      thread->set_lgrp_id(lgrp_id);
496    }
497  }
498
499  // Initial thread state is INITIALIZED, not SUSPENDED
500  osthread->set_state(INITIALIZED);
501
502  return osthread;
503}
504
505
506bool os::create_attached_thread(JavaThread* thread) {
507#ifdef ASSERT
508  thread->verify_not_published();
509#endif
510  HANDLE thread_h;
511  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
512                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
513    fatal("DuplicateHandle failed\n");
514  }
515  OSThread* osthread = create_os_thread(thread, thread_h,
516                                        (int)current_thread_id());
517  if (osthread == NULL) {
518     return false;
519  }
520
521  // Initial thread state is RUNNABLE
522  osthread->set_state(RUNNABLE);
523
524  thread->set_osthread(osthread);
525  return true;
526}
527
528bool os::create_main_thread(JavaThread* thread) {
529#ifdef ASSERT
530  thread->verify_not_published();
531#endif
532  if (_starting_thread == NULL) {
533    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
534     if (_starting_thread == NULL) {
535        return false;
536     }
537  }
538
539  // The primordial thread is runnable from the start)
540  _starting_thread->set_state(RUNNABLE);
541
542  thread->set_osthread(_starting_thread);
543  return true;
544}
545
546// Allocate and initialize a new OSThread
547bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
548  unsigned thread_id;
549
550  // Allocate the OSThread object
551  OSThread* osthread = new OSThread(NULL, NULL);
552  if (osthread == NULL) {
553    return false;
554  }
555
556  // Initialize support for Java interrupts
557  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
558  if (interrupt_event == NULL) {
559    delete osthread;
560    return NULL;
561  }
562  osthread->set_interrupt_event(interrupt_event);
563  osthread->set_interrupted(false);
564
565  thread->set_osthread(osthread);
566
567  if (stack_size == 0) {
568    switch (thr_type) {
569    case os::java_thread:
570      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
571      if (JavaThread::stack_size_at_create() > 0)
572        stack_size = JavaThread::stack_size_at_create();
573      break;
574    case os::compiler_thread:
575      if (CompilerThreadStackSize > 0) {
576        stack_size = (size_t)(CompilerThreadStackSize * K);
577        break;
578      } // else fall through:
579        // use VMThreadStackSize if CompilerThreadStackSize is not defined
580    case os::vm_thread:
581    case os::pgc_thread:
582    case os::cgc_thread:
583    case os::watcher_thread:
584      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
585      break;
586    }
587  }
588
589  // Create the Win32 thread
590  //
591  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
592  // does not specify stack size. Instead, it specifies the size of
593  // initially committed space. The stack size is determined by
594  // PE header in the executable. If the committed "stack_size" is larger
595  // than default value in the PE header, the stack is rounded up to the
596  // nearest multiple of 1MB. For example if the launcher has default
597  // stack size of 320k, specifying any size less than 320k does not
598  // affect the actual stack size at all, it only affects the initial
599  // commitment. On the other hand, specifying 'stack_size' larger than
600  // default value may cause significant increase in memory usage, because
601  // not only the stack space will be rounded up to MB, but also the
602  // entire space is committed upfront.
603  //
604  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
605  // for CreateThread() that can treat 'stack_size' as stack size. However we
606  // are not supposed to call CreateThread() directly according to MSDN
607  // document because JVM uses C runtime library. The good news is that the
608  // flag appears to work with _beginthredex() as well.
609
610#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
611#define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
612#endif
613
614  HANDLE thread_handle =
[58]615#ifdef __WIN32OS2__
616    // @todo probably need to cause some per-thread LIBC initialization routine
617    CreateThread(NULL,
618                 stack_size,
619                 (LPTHREAD_START_ROUTINE) java_start,
620                 thread,
621                 CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
622                 (LPDWORD)&thread_id);
623#else
[2]624    (HANDLE)_beginthreadex(NULL,
625                           (unsigned)stack_size,
626                           (unsigned (__stdcall *)(void*)) java_start,
627                           thread,
628                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
[58]629                           (PDWORD)&thread_id);
[64]630#endif
[2]631  if (thread_handle == NULL) {
632    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
633    // without the flag.
634    thread_handle =
[58]635#ifdef __WIN32OS2__
636    // @todo probably need to cause some per-thread LIBC initialization routine
637    CreateThread(NULL,
638                 stack_size,
639                 (LPTHREAD_START_ROUTINE) java_start,
640                 thread,
641                 CREATE_SUSPENDED,
642                 (LPDWORD)&thread_id);
643#else
[2]644    (HANDLE)_beginthreadex(NULL,
645                           (unsigned)stack_size,
646                           (unsigned (__stdcall *)(void*)) java_start,
647                           thread,
648                           CREATE_SUSPENDED,
649                           &thread_id);
[64]650#endif
[2]651  }
652  if (thread_handle == NULL) {
653    // Need to clean up stuff we've allocated so far
654    CloseHandle(osthread->interrupt_event());
655    thread->set_osthread(NULL);
656    delete osthread;
657    return NULL;
658  }
659
660  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
661
662  // Store info on the Win32 thread into the OSThread
663  osthread->set_thread_handle(thread_handle);
664  osthread->set_thread_id(thread_id);
665
666  // Initial thread state is INITIALIZED, not SUSPENDED
667  osthread->set_state(INITIALIZED);
668
669  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
670  return true;
671}
672
673
674// Free Win32 resources related to the OSThread
675void os::free_thread(OSThread* osthread) {
676  assert(osthread != NULL, "osthread not set");
677  CloseHandle(osthread->thread_handle());
678  CloseHandle(osthread->interrupt_event());
679  delete osthread;
680}
681
682
683static int    has_performance_count = 0;
684static jlong first_filetime;
685static jlong initial_performance_count;
686static jlong performance_frequency;
687
688
689jlong as_long(LARGE_INTEGER x) {
690  jlong result = 0; // initialization to avoid warning
691  set_high(&result, x.HighPart);
692  set_low(&result,  x.LowPart);
693  return result;
694}
695
696
697jlong os::elapsed_counter() {
698  LARGE_INTEGER count;
699  if (has_performance_count) {
700    QueryPerformanceCounter(&count);
701    return as_long(count) - initial_performance_count;
702  } else {
703    FILETIME wt;
704    GetSystemTimeAsFileTime(&wt);
705    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
706  }
707}
708
709
710jlong os::elapsed_frequency() {
711  if (has_performance_count) {
712    return performance_frequency;
713  } else {
714   // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
715   return 10000000;
716  }
717}
718
719
720julong os::available_memory() {
721  return win32::available_memory();
722}
723
724julong os::win32::available_memory() {
[58]725#ifdef __WIN32OS2__
726  MEMORYSTATUS ms;
727  ms.dwLength = sizeof(ms);
728  GlobalMemoryStatus(&ms);
729
730  return ms.dwAvailPhys;
[64]731#else
[2]732  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
733  // value if total memory is larger than 4GB
734  MEMORYSTATUSEX ms;
735  ms.dwLength = sizeof(ms);
736  GlobalMemoryStatusEx(&ms);
737
738  return (julong)ms.ullAvailPhys;
[58]739#endif
[2]740}
741
742julong os::physical_memory() {
743  return win32::physical_memory();
744}
745
[228]746#ifndef __WIN32OS2__
[2]747julong os::allocatable_physical_memory(julong size) {
748#ifdef _LP64
749  return size;
750#else
751  // Limit to 1400m because of the 2gb address space wall
752  return MIN2(size, (julong)1400*M);
753#endif
754}
[228]755#endif
[2]756
757// VC6 lacks DWORD_PTR
[58]758#ifndef __WIN32OS2__
[2]759#if _MSC_VER < 1300
760typedef UINT_PTR DWORD_PTR;
761#endif
[58]762#endif
[2]763
764int os::active_processor_count() {
765  DWORD_PTR lpProcessAffinityMask = 0;
766  DWORD_PTR lpSystemAffinityMask = 0;
767  int proc_count = processor_count();
768  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
769      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
770    // Nof active processors is number of bits in process affinity mask
771    int bitcount = 0;
772    while (lpProcessAffinityMask != 0) {
773      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
774      bitcount++;
775    }
776    return bitcount;
777  } else {
778    return proc_count;
779  }
780}
781
782bool os::distribute_processes(uint length, uint* distribution) {
783  // Not yet implemented.
784  return false;
785}
786
787bool os::bind_to_processor(uint processor_id) {
788  // Not yet implemented.
789  return false;
790}
791
792static void initialize_performance_counter() {
793  LARGE_INTEGER count;
794  if (QueryPerformanceFrequency(&count)) {
795    has_performance_count = 1;
796    performance_frequency = as_long(count);
797    QueryPerformanceCounter(&count);
798    initial_performance_count = as_long(count);
799  } else {
800    has_performance_count = 0;
801    FILETIME wt;
802    GetSystemTimeAsFileTime(&wt);
803    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
804  }
805}
806
807
808double os::elapsedTime() {
809  return (double) elapsed_counter() / (double) elapsed_frequency();
810}
811
812
813// Windows format:
814//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
815// Java format:
816//   Java standards require the number of milliseconds since 1/1/1970
817
818// Constant offset - calculated using offset()
[58]819static jlong  _offset   = 116444736000000000LL;
[2]820// Fake time counter for reproducible results when debugging
821static jlong  fake_time = 0;
822
823#ifdef ASSERT
824// Just to be safe, recalculate the offset in debug mode
825static jlong _calculated_offset = 0;
826static int   _has_calculated_offset = 0;
827
828jlong offset() {
829  if (_has_calculated_offset) return _calculated_offset;
830  SYSTEMTIME java_origin;
831  java_origin.wYear          = 1970;
832  java_origin.wMonth         = 1;
833  java_origin.wDayOfWeek     = 0; // ignored
834  java_origin.wDay           = 1;
835  java_origin.wHour          = 0;
836  java_origin.wMinute        = 0;
837  java_origin.wSecond        = 0;
838  java_origin.wMilliseconds  = 0;
839  FILETIME jot;
840  if (!SystemTimeToFileTime(&java_origin, &jot)) {
[278]841    fatal(err_msg("Error = %d\nWindows error", GetLastError()));
[2]842  }
843  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
844  _has_calculated_offset = 1;
845  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
846  return _calculated_offset;
847}
848#else
849jlong offset() {
850  return _offset;
851}
852#endif
853
854jlong windows_to_java_time(FILETIME wt) {
855  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
856  return (a - offset()) / 10000;
857}
858
859FILETIME java_to_windows_time(jlong l) {
860  jlong a = (l * 10000) + offset();
861  FILETIME result;
862  result.dwHighDateTime = high(a);
863  result.dwLowDateTime  = low(a);
864  return result;
865}
866
867// For now, we say that Windows does not support vtime.  I have no idea
868// whether it can actually be made to (DLD, 9/13/05).
869
870bool os::supports_vtime() { return false; }
871bool os::enable_vtime() { return false; }
872bool os::vtime_enabled() { return false; }
873double os::elapsedVTime() {
874  // better than nothing, but not much
875  return elapsedTime();
876}
877
878jlong os::javaTimeMillis() {
879  if (UseFakeTimers) {
880    return fake_time++;
881  } else {
882    FILETIME wt;
883    GetSystemTimeAsFileTime(&wt);
884    return windows_to_java_time(wt);
885  }
886}
887
888#define NANOS_PER_SEC         CONST64(1000000000)
889#define NANOS_PER_MILLISEC    1000000
890jlong os::javaTimeNanos() {
891  if (!has_performance_count) {
892    return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
893  } else {
894    LARGE_INTEGER current_count;
895    QueryPerformanceCounter(&current_count);
896    double current = as_long(current_count);
897    double freq = performance_frequency;
898    jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
899    return time;
900  }
901}
902
903void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
904  if (!has_performance_count) {
905    // javaTimeMillis() doesn't have much percision,
906    // but it is not going to wrap -- so all 64 bits
907    info_ptr->max_value = ALL_64_BITS;
908
909    // this is a wall clock timer, so may skip
910    info_ptr->may_skip_backward = true;
911    info_ptr->may_skip_forward = true;
912  } else {
913    jlong freq = performance_frequency;
914    if (freq < NANOS_PER_SEC) {
915      // the performance counter is 64 bits and we will
916      // be multiplying it -- so no wrap in 64 bits
917      info_ptr->max_value = ALL_64_BITS;
918    } else if (freq > NANOS_PER_SEC) {
919      // use the max value the counter can reach to
920      // determine the max value which could be returned
921      julong max_counter = (julong)ALL_64_BITS;
922      info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
923    } else {
924      // the performance counter is 64 bits and we will
925      // be using it directly -- so no wrap in 64 bits
926      info_ptr->max_value = ALL_64_BITS;
927    }
928
929    // using a counter, so no skipping
930    info_ptr->may_skip_backward = false;
931    info_ptr->may_skip_forward = false;
932  }
933  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
934}
935
936char* os::local_time_string(char *buf, size_t buflen) {
937  SYSTEMTIME st;
938  GetLocalTime(&st);
939  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
940               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
941  return buf;
942}
943
944bool os::getTimesSecs(double* process_real_time,
945                     double* process_user_time,
946                     double* process_system_time) {
947  HANDLE h_process = GetCurrentProcess();
948  FILETIME create_time, exit_time, kernel_time, user_time;
949  BOOL result = GetProcessTimes(h_process,
950                               &create_time,
951                               &exit_time,
952                               &kernel_time,
953                               &user_time);
954  if (result != 0) {
955    FILETIME wt;
956    GetSystemTimeAsFileTime(&wt);
957    jlong rtc_millis = windows_to_java_time(wt);
958    jlong user_millis = windows_to_java_time(user_time);
959    jlong system_millis = windows_to_java_time(kernel_time);
960    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
961    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
962    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
963    return true;
964  } else {
965    return false;
966  }
967}
968
969void os::shutdown() {
970
971  // allow PerfMemory to attempt cleanup of any persistent resources
972  perfMemory_exit();
973
974  // flush buffered output, finish log files
975  ostream_abort();
976
977  // Check for abort hook
978  abort_hook_t abort_hook = Arguments::abort_hook();
979  if (abort_hook != NULL) {
980    abort_hook();
981  }
982}
983
984void os::abort(bool dump_core)
985{
986  os::shutdown();
987  // no core dump on Windows
988  ::exit(1);
989}
990
991// Die immediately, no exit hook, no abort hook, no cleanup.
992void os::die() {
993  _exit(-1);
994}
995
996// Directory routines copied from src/win32/native/java/io/dirent_md.c
997//  * dirent_md.c       1.15 00/02/02
998//
999// The declarations for DIR and struct dirent are in jvm_win32.h.
1000
1001/* Caller must have already run dirname through JVM_NativePath, which removes
1002   duplicate slashes and converts all instances of '/' into '\\'. */
1003
1004DIR *
1005os::opendir(const char *dirname)
1006{
1007    assert(dirname != NULL, "just checking");   // hotspot change
1008    DIR *dirp = (DIR *)malloc(sizeof(DIR));
1009    DWORD fattr;                                // hotspot change
1010    char alt_dirname[4] = { 0, 0, 0, 0 };
1011
1012    if (dirp == 0) {
1013        errno = ENOMEM;
1014        return 0;
1015    }
1016
1017    /*
1018     * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1019     * as a directory in FindFirstFile().  We detect this case here and
1020     * prepend the current drive name.
1021     */
1022    if (dirname[1] == '\0' && dirname[0] == '\\') {
1023        alt_dirname[0] = _getdrive() + 'A' - 1;
1024        alt_dirname[1] = ':';
1025        alt_dirname[2] = '\\';
1026        alt_dirname[3] = '\0';
1027        dirname = alt_dirname;
1028    }
1029
1030    dirp->path = (char *)malloc(strlen(dirname) + 5);
1031    if (dirp->path == 0) {
1032        free(dirp);
1033        errno = ENOMEM;
1034        return 0;
1035    }
1036    strcpy(dirp->path, dirname);
1037
1038    fattr = GetFileAttributes(dirp->path);
1039    if (fattr == 0xffffffff) {
1040        free(dirp->path);
1041        free(dirp);
1042        errno = ENOENT;
1043        return 0;
1044    } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1045        free(dirp->path);
1046        free(dirp);
1047        errno = ENOTDIR;
1048        return 0;
1049    }
1050
1051    /* Append "*.*", or possibly "\\*.*", to path */
1052    if (dirp->path[1] == ':'
1053        && (dirp->path[2] == '\0'
1054            || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1055        /* No '\\' needed for cases like "Z:" or "Z:\" */
1056        strcat(dirp->path, "*.*");
1057    } else {
1058        strcat(dirp->path, "\\*.*");
1059    }
1060
1061    dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1062    if (dirp->handle == INVALID_HANDLE_VALUE) {
1063        if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1064            free(dirp->path);
1065            free(dirp);
1066            errno = EACCES;
1067            return 0;
1068        }
1069    }
1070    return dirp;
1071}
1072
1073/* parameter dbuf unused on Windows */
1074
1075struct dirent *
1076os::readdir(DIR *dirp, dirent *dbuf)
1077{
1078    assert(dirp != NULL, "just checking");      // hotspot change
1079    if (dirp->handle == INVALID_HANDLE_VALUE) {
1080        return 0;
1081    }
1082
1083    strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1084
1085    if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1086        if (GetLastError() == ERROR_INVALID_HANDLE) {
1087            errno = EBADF;
1088            return 0;
1089        }
1090        FindClose(dirp->handle);
1091        dirp->handle = INVALID_HANDLE_VALUE;
1092    }
1093
1094    return &dirp->dirent;
1095}
1096
1097int
1098os::closedir(DIR *dirp)
1099{
1100    assert(dirp != NULL, "just checking");      // hotspot change
1101    if (dirp->handle != INVALID_HANDLE_VALUE) {
1102        if (!FindClose(dirp->handle)) {
1103            errno = EBADF;
1104            return -1;
1105        }
1106        dirp->handle = INVALID_HANDLE_VALUE;
1107    }
1108    free(dirp->path);
1109    free(dirp);
1110    return 0;
1111}
1112
[278]1113// This must be hard coded because it's the system's temporary
1114// directory not the java application's temp directory, ala java.io.tmpdir.
1115const char* os::get_temp_directory() {
1116  static char path_buf[MAX_PATH];
1117  if (GetTempPath(MAX_PATH, path_buf)>0)
1118    return path_buf;
1119  else{
1120    path_buf[0]='\0';
1121    return path_buf;
1122  }
[2]1123}
1124
1125static bool file_exists(const char* filename) {
1126  if (filename == NULL || strlen(filename) == 0) {
1127    return false;
1128  }
1129  return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1130}
1131
1132void os::dll_build_name(char *buffer, size_t buflen,
1133                        const char* pname, const char* fname) {
1134  const size_t pnamelen = pname ? strlen(pname) : 0;
1135  const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1136
1137  // Quietly truncates on buffer overflow. Should be an error.
1138  if (pnamelen + strlen(fname) + 10 > buflen) {
1139    *buffer = '\0';
1140    return;
1141  }
1142
1143  if (pnamelen == 0) {
1144    jio_snprintf(buffer, buflen, "%s.dll", fname);
1145  } else if (c == ':' || c == '\\') {
1146    jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1147  } else if (strchr(pname, *os::path_separator()) != NULL) {
1148    int n;
1149    char** pelements = split_path(pname, &n);
1150    for (int i = 0 ; i < n ; i++) {
1151      char* path = pelements[i];
1152      // Really shouldn't be NULL, but check can't hurt
1153      size_t plen = (path == NULL) ? 0 : strlen(path);
1154      if (plen == 0) {
1155        continue; // skip the empty path values
1156      }
1157      const char lastchar = path[plen - 1];
1158      if (lastchar == ':' || lastchar == '\\') {
1159        jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1160      } else {
1161        jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1162      }
1163      if (file_exists(buffer)) {
1164        break;
1165      }
1166    }
1167    // release the storage
1168    for (int i = 0 ; i < n ; i++) {
1169      if (pelements[i] != NULL) {
1170        FREE_C_HEAP_ARRAY(char, pelements[i]);
1171      }
1172    }
1173    if (pelements != NULL) {
1174      FREE_C_HEAP_ARRAY(char*, pelements);
1175    }
1176  } else {
1177    jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1178  }
1179}
1180
1181// Needs to be in os specific directory because windows requires another
1182// header file <direct.h>
1183const char* os::get_current_directory(char *buf, int buflen) {
1184  return _getcwd(buf, buflen);
1185}
1186
[113]1187#ifndef __WIN32OS2__
1188
[2]1189//-----------------------------------------------------------
1190// Helper functions for fatal error handler
1191
1192// The following library functions are resolved dynamically at runtime:
1193
1194// PSAPI functions, for Windows NT, 2000, XP
1195
1196// psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
1197// SDK from Microsoft.  Here are the definitions copied from psapi.h
1198typedef struct _MODULEINFO {
1199    LPVOID lpBaseOfDll;
1200    DWORD SizeOfImage;
1201    LPVOID EntryPoint;
1202} MODULEINFO, *LPMODULEINFO;
1203
1204static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
1205static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
1206static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
1207
1208// ToolHelp Functions, for Windows 95, 98 and ME
1209
1210static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
1211static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
1212static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
1213
1214bool _has_psapi;
1215bool _psapi_init = false;
1216bool _has_toolhelp;
1217
1218static bool _init_psapi() {
1219  HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
1220  if( psapi == NULL ) return false ;
1221
1222  _EnumProcessModules = CAST_TO_FN_PTR(
1223      BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
1224      GetProcAddress(psapi, "EnumProcessModules")) ;
1225  _GetModuleFileNameEx = CAST_TO_FN_PTR(
1226      DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
1227      GetProcAddress(psapi, "GetModuleFileNameExA"));
1228  _GetModuleInformation = CAST_TO_FN_PTR(
1229      BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
1230      GetProcAddress(psapi, "GetModuleInformation"));
1231
1232  _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
1233  _psapi_init = true;
1234  return _has_psapi;
1235}
1236
1237static bool _init_toolhelp() {
1238  HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
1239  if (kernel32 == NULL) return false ;
1240
1241  _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
1242      HANDLE(WINAPI *)(DWORD,DWORD),
1243      GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
1244  _Module32First = CAST_TO_FN_PTR(
1245      BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1246      GetProcAddress(kernel32, "Module32First" ));
1247  _Module32Next = CAST_TO_FN_PTR(
1248      BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1249      GetProcAddress(kernel32, "Module32Next" ));
1250
1251  _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
1252  return _has_toolhelp;
1253}
1254
1255#ifdef _WIN64
1256// Helper routine which returns true if address in
1257// within the NTDLL address space.
1258//
1259static bool _addr_in_ntdll( address addr )
1260{
1261  HMODULE hmod;
1262  MODULEINFO minfo;
1263
1264  hmod = GetModuleHandle("NTDLL.DLL");
1265  if ( hmod == NULL ) return false;
1266  if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
1267                               &minfo, sizeof(MODULEINFO)) )
1268    return false;
1269
1270  if ( (addr >= minfo.lpBaseOfDll) &&
1271       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1272    return true;
1273  else
1274    return false;
1275}
1276#endif
1277
1278
1279// Enumerate all modules for a given process ID
1280//
1281// Notice that Windows 95/98/Me and Windows NT/2000/XP have
1282// different API for doing this. We use PSAPI.DLL on NT based
1283// Windows and ToolHelp on 95/98/Me.
1284
1285// Callback function that is called by enumerate_modules() on
1286// every DLL module.
1287// Input parameters:
1288//    int       pid,
1289//    char*     module_file_name,
1290//    address   module_base_addr,
1291//    unsigned  module_size,
1292//    void*     param
1293typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1294
1295// enumerate_modules for Windows NT, using PSAPI
1296static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1297{
1298  HANDLE   hProcess ;
1299
1300# define MAX_NUM_MODULES 128
1301  HMODULE     modules[MAX_NUM_MODULES];
1302  static char filename[ MAX_PATH ];
1303  int         result = 0;
1304
1305  if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
1306
1307  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1308                         FALSE, pid ) ;
1309  if (hProcess == NULL) return 0;
1310
1311  DWORD size_needed;
1312  if (!_EnumProcessModules(hProcess, modules,
1313                           sizeof(modules), &size_needed)) {
1314      CloseHandle( hProcess );
1315      return 0;
1316  }
1317
1318  // number of modules that are currently loaded
1319  int num_modules = size_needed / sizeof(HMODULE);
1320
1321  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1322    // Get Full pathname:
1323    if(!_GetModuleFileNameEx(hProcess, modules[i],
1324                             filename, sizeof(filename))) {
1325        filename[0] = '\0';
1326    }
1327
1328    MODULEINFO modinfo;
1329    if (!_GetModuleInformation(hProcess, modules[i],
1330                               &modinfo, sizeof(modinfo))) {
1331        modinfo.lpBaseOfDll = NULL;
1332        modinfo.SizeOfImage = 0;
1333    }
1334
1335    // Invoke callback function
1336    result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1337                  modinfo.SizeOfImage, param);
1338    if (result) break;
1339  }
1340
1341  CloseHandle( hProcess ) ;
1342  return result;
1343}
1344
1345
1346// enumerate_modules for Windows 95/98/ME, using TOOLHELP
1347static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1348{
1349  HANDLE                hSnapShot ;
1350  static MODULEENTRY32  modentry ;
1351  int                   result = 0;
1352
1353  if (!_has_toolhelp) return 0;
1354
1355  // Get a handle to a Toolhelp snapshot of the system
1356  hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1357  if( hSnapShot == INVALID_HANDLE_VALUE ) {
1358      return FALSE ;
1359  }
1360
1361  // iterate through all modules
1362  modentry.dwSize = sizeof(MODULEENTRY32) ;
1363  bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
1364
1365  while( not_done ) {
1366    // invoke the callback
1367    result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1368                modentry.modBaseSize, param);
1369    if (result) break;
1370
1371    modentry.dwSize = sizeof(MODULEENTRY32) ;
1372    not_done = _Module32Next( hSnapShot, &modentry ) != 0;
1373  }
1374
1375  CloseHandle(hSnapShot);
1376  return result;
1377}
1378
1379int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1380{
1381  // Get current process ID if caller doesn't provide it.
1382  if (!pid) pid = os::current_process_id();
1383
1384  if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1385  else                    return _enumerate_modules_windows(pid, func, param);
1386}
1387
1388struct _modinfo {
1389   address addr;
1390   char*   full_path;   // point to a char buffer
1391   int     buflen;      // size of the buffer
1392   address base_addr;
1393};
1394
1395static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1396                                  unsigned size, void * param) {
1397   struct _modinfo *pmod = (struct _modinfo *)param;
1398   if (!pmod) return -1;
1399
1400   if (base_addr     <= pmod->addr &&
1401       base_addr+size > pmod->addr) {
1402     // if a buffer is provided, copy path name to the buffer
1403     if (pmod->full_path) {
1404       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1405     }
1406     pmod->base_addr = base_addr;
1407     return 1;
1408   }
1409   return 0;
1410}
1411
1412bool os::dll_address_to_library_name(address addr, char* buf,
1413                                     int buflen, int* offset) {
1414// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1415//       return the full path to the DLL file, sometimes it returns path
1416//       to the corresponding PDB file (debug info); sometimes it only
1417//       returns partial path, which makes life painful.
1418
1419   struct _modinfo mi;
1420   mi.addr      = addr;
1421   mi.full_path = buf;
1422   mi.buflen    = buflen;
1423   int pid = os::current_process_id();
1424   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1425      // buf already contains path name
1426      if (offset) *offset = addr - mi.base_addr;
1427      return true;
1428   } else {
1429      if (buf) buf[0] = '\0';
1430      if (offset) *offset = -1;
1431      return false;
1432   }
1433}
1434
[113]1435#endif /* __WIN32OS2__ */
1436
[2]1437bool os::dll_address_to_function_name(address addr, char *buf,
1438                                      int buflen, int *offset) {
[309]1439  if (Decoder::decode(addr, buf, buflen, offset) == Decoder::no_error) {
1440    return true;
1441  }
1442  if (offset != NULL)  *offset  = -1;
1443  if (buf != NULL) buf[0] = '\0';
[2]1444  return false;
1445}
1446
[113]1447#ifndef __WIN32OS2__
1448
[2]1449// save the start and end address of jvm.dll into param[0] and param[1]
1450static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1451                    unsigned size, void * param) {
1452   if (!param) return -1;
1453
1454   if (base_addr     <= (address)_locate_jvm_dll &&
1455       base_addr+size > (address)_locate_jvm_dll) {
1456         ((address*)param)[0] = base_addr;
1457         ((address*)param)[1] = base_addr + size;
1458         return 1;
1459   }
1460   return 0;
1461}
1462
1463address vm_lib_location[2];    // start and end address of jvm.dll
1464
1465// check if addr is inside jvm.dll
1466bool os::address_is_in_vm(address addr) {
1467  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1468    int pid = os::current_process_id();
1469    if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1470      assert(false, "Can't find jvm module.");
1471      return false;
1472    }
1473  }
1474
1475  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1476}
1477
1478// print module info; param is outputStream*
1479static int _print_module(int pid, char* fname, address base,
1480                         unsigned size, void* param) {
1481   if (!param) return -1;
1482
1483   outputStream* st = (outputStream*)param;
1484
1485   address end_addr = base + size;
1486   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1487   return 0;
1488}
1489
[113]1490#endif /* __WIN32OS2__ */
1491
[2]1492// Loads .dll/.so and
1493// in case of error it checks if .dll/.so was built for the
1494// same architecture as Hotspot is running on
1495void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1496{
1497  void * result = LoadLibrary(name);
1498  if (result != NULL)
1499  {
1500    return result;
1501  }
1502
1503  long errcode = GetLastError();
1504  if (errcode == ERROR_MOD_NOT_FOUND) {
1505    strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1506    ebuf[ebuflen-1]='\0';
1507    return NULL;
1508  }
1509
1510  // Parsing dll below
1511  // If we can read dll-info and find that dll was built
1512  // for an architecture other than Hotspot is running in
1513  // - then print to buffer "DLL was built for a different architecture"
1514  // else call getLastErrorString to obtain system error message
1515
1516  // Read system error message into ebuf
1517  // It may or may not be overwritten below (in the for loop and just above)
1518  getLastErrorString(ebuf, (size_t) ebuflen);
1519  ebuf[ebuflen-1]='\0';
[277]1520
1521  // do not attempt to parse the file under Odin, it's most likely an OS/2 DLL
1522  // that has a different format (and arch is always i386 anyway)
1523#ifndef __WIN32OS2__
[2]1524  int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1525  if (file_descriptor<0)
1526  {
1527    return NULL;
1528  }
1529
1530  uint32_t signature_offset;
1531  uint16_t lib_arch=0;
1532  bool failed_to_get_lib_arch=
1533  (
1534    //Go to position 3c in the dll
1535    (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1536    ||
1537    // Read loacation of signature
1538    (sizeof(signature_offset)!=
1539      (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1540    ||
1541    //Go to COFF File Header in dll
1542    //that is located after"signature" (4 bytes long)
1543    (os::seek_to_file_offset(file_descriptor,
1544      signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1545    ||
1546    //Read field that contains code of architecture
1547    // that dll was build for
1548    (sizeof(lib_arch)!=
1549      (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1550  );
1551
1552  ::close(file_descriptor);
1553  if (failed_to_get_lib_arch)
1554  {
1555    // file i/o error - report getLastErrorString(...) msg
1556    return NULL;
1557  }
1558
1559  typedef struct
1560  {
1561    uint16_t arch_code;
1562    char* arch_name;
1563  } arch_t;
1564
1565  static const arch_t arch_array[]={
1566    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
[58]1567#ifndef __WIN32OS2__
[2]1568    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
[58]1569    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"},
1570#endif
[2]1571  };
1572  #if   (defined _M_IA64)
1573    static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1574  #elif (defined _M_AMD64)
1575    static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1576  #elif (defined _M_IX86)
1577    static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1578  #else
1579    #error Method os::dll_load requires that one of following \
1580           is defined :_M_IA64,_M_AMD64 or _M_IX86
1581  #endif
1582
1583
1584  // Obtain a string for printf operation
1585  // lib_arch_str shall contain string what platform this .dll was built for
1586  // running_arch_str shall string contain what platform Hotspot was built for
1587  char *running_arch_str=NULL,*lib_arch_str=NULL;
1588  for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1589  {
1590    if (lib_arch==arch_array[i].arch_code)
1591      lib_arch_str=arch_array[i].arch_name;
1592    if (running_arch==arch_array[i].arch_code)
1593      running_arch_str=arch_array[i].arch_name;
1594  }
1595
1596  assert(running_arch_str,
1597    "Didn't find runing architecture code in arch_array");
1598
1599  // If the architure is right
1600  // but some other error took place - report getLastErrorString(...) msg
1601  if (lib_arch == running_arch)
1602  {
1603    return NULL;
1604  }
1605
1606  if (lib_arch_str!=NULL)
1607  {
1608    ::_snprintf(ebuf, ebuflen-1,
1609      "Can't load %s-bit .dll on a %s-bit platform",
1610      lib_arch_str,running_arch_str);
1611  }
1612  else
1613  {
1614    // don't know what architecture this dll was build for
1615    ::_snprintf(ebuf, ebuflen-1,
1616      "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1617      lib_arch,running_arch_str);
1618  }
[277]1619#endif
[2]1620
1621  return NULL;
1622}
1623
[113]1624#ifndef __WIN32OS2__
[2]1625
1626void os::print_dll_info(outputStream *st) {
1627   int pid = os::current_process_id();
1628   st->print_cr("Dynamic libraries:");
1629   enumerate_modules(pid, _print_module, (void *)st);
1630}
1631
[113]1632#endif /* __WIN32OS2__ */
1633
[2]1634// function pointer to Windows API "GetNativeSystemInfo".
1635typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
1636static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
1637
1638void os::print_os_info(outputStream* st) {
1639  st->print("OS:");
1640
1641  OSVERSIONINFOEX osvi;
1642  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1643  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1644
1645  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1646    st->print_cr("N/A");
1647    return;
1648  }
1649
1650  int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1651  if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1652    switch (os_vers) {
1653    case 3051: st->print(" Windows NT 3.51"); break;
1654    case 4000: st->print(" Windows NT 4.0"); break;
1655    case 5000: st->print(" Windows 2000"); break;
1656    case 5001: st->print(" Windows XP"); break;
[64]1657#ifndef __WIN32OS2__
[2]1658    case 5002:
1659    case 6000:
1660    case 6001: {
1661      // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1662      // find out whether we are running on 64 bit processor or not.
1663      SYSTEM_INFO si;
1664      ZeroMemory(&si, sizeof(SYSTEM_INFO));
1665      // Check to see if _GetNativeSystemInfo has been initialized.
1666      if (_GetNativeSystemInfo == NULL) {
1667        HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
1668        _GetNativeSystemInfo =
1669            CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
1670                           GetProcAddress(hKernel32,
1671                                          "GetNativeSystemInfo"));
1672        if (_GetNativeSystemInfo == NULL)
1673          GetSystemInfo(&si);
1674      } else {
1675        _GetNativeSystemInfo(&si);
1676      }
1677      if (os_vers == 5002) {
1678        if (osvi.wProductType == VER_NT_WORKSTATION &&
1679            si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1680          st->print(" Windows XP x64 Edition");
1681        else
1682            st->print(" Windows Server 2003 family");
1683      } else if (os_vers == 6000) {
1684        if (osvi.wProductType == VER_NT_WORKSTATION)
1685            st->print(" Windows Vista");
1686        else
1687            st->print(" Windows Server 2008");
1688        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1689            st->print(" , 64 bit");
[278]1690      } else if (os_vers == 6001) {
[2]1691        if (osvi.wProductType == VER_NT_WORKSTATION) {
1692            st->print(" Windows 7");
1693        } else {
1694            st->print(" Windows Server 2008 R2");
1695        }
1696        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1697            st->print(" , 64 bit");
[278]1698      } else { // future os
1699        // Unrecognized windows, print out its major and minor versions
1700        st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1701        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1702            st->print(" , 64 bit");
[2]1703      }
1704      break;
1705    }
[58]1706#endif
[2]1707    default: // future windows, print out its major and minor versions
1708      st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1709    }
1710  } else {
1711    switch (os_vers) {
1712    case 4000: st->print(" Windows 95"); break;
1713    case 4010: st->print(" Windows 98"); break;
1714    case 4090: st->print(" Windows Me"); break;
1715    default: // future windows, print out its major and minor versions
1716      st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1717    }
1718  }
1719  st->print(" Build %d", osvi.dwBuildNumber);
1720  st->print(" %s", osvi.szCSDVersion);           // service pack
1721  st->cr();
1722}
1723
1724void os::print_memory_info(outputStream* st) {
1725  st->print("Memory:");
1726  st->print(" %dk page", os::vm_page_size()>>10);
1727
[58]1728#ifdef __WIN32OS2__
1729  MEMORYSTATUS ms;
1730  ms.dwLength = sizeof(ms);
1731  GlobalMemoryStatus(&ms);
[64]1732#else
[2]1733  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1734  // value if total memory is larger than 4GB
1735  MEMORYSTATUSEX ms;
1736  ms.dwLength = sizeof(ms);
1737  GlobalMemoryStatusEx(&ms);
[58]1738#endif
[2]1739
1740  st->print(", physical %uk", os::physical_memory() >> 10);
1741  st->print("(%uk free)", os::available_memory() >> 10);
1742
[58]1743#ifdef __WIN32OS2__
1744  st->print(", swap %uk", ms.dwTotalPageFile >> 10);
1745  st->print("(%uk free)", ms.dwAvailPageFile >> 10);
[64]1746#else
[2]1747  st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1748  st->print("(%uk free)", ms.ullAvailPageFile >> 10);
[58]1749#endif
[2]1750  st->cr();
1751}
1752
1753void os::print_siginfo(outputStream *st, void *siginfo) {
1754  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1755  st->print("siginfo:");
1756  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1757
1758  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1759      er->NumberParameters >= 2) {
1760      switch (er->ExceptionInformation[0]) {
1761      case 0: st->print(", reading address"); break;
1762      case 1: st->print(", writing address"); break;
1763      default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1764                            er->ExceptionInformation[0]);
1765      }
1766      st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1767  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1768             er->NumberParameters >= 2 && UseSharedSpaces) {
1769    FileMapInfo* mapinfo = FileMapInfo::current_info();
1770    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1771      st->print("\n\nError accessing class data sharing archive."       \
1772                " Mapped file inaccessible during execution, "          \
1773                " possible disk/network problem.");
1774    }
1775  } else {
1776    int num = er->NumberParameters;
1777    if (num > 0) {
1778      st->print(", ExceptionInformation=");
1779      for (int i = 0; i < num; i++) {
1780        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1781      }
1782    }
1783  }
1784  st->cr();
1785}
1786
1787void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1788  // do nothing
1789}
1790
1791static char saved_jvm_path[MAX_PATH] = {0};
1792
1793// Find the full path to the current module, jvm.dll or jvm_g.dll
1794void os::jvm_path(char *buf, jint buflen) {
1795  // Error checking.
1796  if (buflen < MAX_PATH) {
1797    assert(false, "must use a large-enough buffer");
1798    buf[0] = '\0';
1799    return;
1800  }
1801  // Lazy resolve the path to current module.
1802  if (saved_jvm_path[0] != 0) {
1803    strcpy(buf, saved_jvm_path);
1804    return;
1805  }
1806
[309]1807  buf[0] = '\0';
1808  if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
1809     // Support for the gamma launcher. Check for an
1810     // JAVA_HOME environment variable
1811     // and fix up the path so it looks like
1812     // libjvm.so is installed there (append a fake suffix
1813     // hotspot/libjvm.so).
1814     char* java_home_var = ::getenv("JAVA_HOME");
1815     if (java_home_var != NULL && java_home_var[0] != 0) {
1816
1817        strncpy(buf, java_home_var, buflen);
1818
1819        // determine if this is a legacy image or modules image
1820        // modules image doesn't have "jre" subdirectory
1821        size_t len = strlen(buf);
1822        char* jrebin_p = buf + len;
1823        jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1824        if (0 != _access(buf, 0)) {
1825          jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1826        }
1827        len = strlen(buf);
1828        jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1829     }
1830  }
1831
1832  if(buf[0] == '\0') {
[2]1833  GetModuleFileName(vm_lib_handle, buf, buflen);
[309]1834  }
[2]1835  strcpy(saved_jvm_path, buf);
1836}
1837
1838
1839void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1840#ifndef _WIN64
1841  st->print("_");
1842#endif
1843}
1844
1845
1846void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1847#ifndef _WIN64
1848  st->print("@%d", args_size  * sizeof(int));
1849#endif
1850}
1851
[309]1852// This method is a copy of JDK's sysGetLastErrorString
1853// from src/windows/hpi/src/system_md.c
1854
1855size_t os::lasterror(char *buf, size_t len) {
1856  long errval;
1857
1858  if ((errval = GetLastError()) != 0) {
1859      /* DOS error */
1860    int n = (int)FormatMessage(
1861          FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1862          NULL,
1863          errval,
1864          0,
1865          buf,
1866          (DWORD)len,
1867          NULL);
1868    if (n > 3) {
1869      /* Drop final '.', CR, LF */
1870      if (buf[n - 1] == '\n') n--;
1871      if (buf[n - 1] == '\r') n--;
1872      if (buf[n - 1] == '.') n--;
1873      buf[n] = '\0';
1874    }
1875    return n;
1876  }
1877
1878  if (errno != 0) {
1879    /* C runtime error that has no corresponding DOS error code */
1880    const char *s = strerror(errno);
1881    size_t n = strlen(s);
1882    if (n >= len) n = len - 1;
1883    strncpy(buf, s, n);
1884    buf[n] = '\0';
1885    return n;
1886  }
1887  return 0;
1888}
1889
[2]1890// sun.misc.Signal
1891// NOTE that this is a workaround for an apparent kernel bug where if
1892// a signal handler for SIGBREAK is installed then that signal handler
1893// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1894// See bug 4416763.
1895static void (*sigbreakHandler)(int) = NULL;
1896
1897static void UserHandler(int sig, void *siginfo, void *context) {
1898  os::signal_notify(sig);
1899  // We need to reinstate the signal handler each time...
1900  os::signal(sig, (void*)UserHandler);
1901}
1902
1903void* os::user_handler() {
1904  return (void*) UserHandler;
1905}
1906
1907void* os::signal(int signal_number, void* handler) {
1908  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1909    void (*oldHandler)(int) = sigbreakHandler;
1910    sigbreakHandler = (void (*)(int)) handler;
1911    return (void*) oldHandler;
1912  } else {
1913    return (void*)::signal(signal_number, (void (*)(int))handler);
1914  }
1915}
1916
1917void os::signal_raise(int signal_number) {
1918  raise(signal_number);
1919}
1920
1921// The Win32 C runtime library maps all console control events other than ^C
1922// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1923// logoff, and shutdown events.  We therefore install our own console handler
1924// that raises SIGTERM for the latter cases.
1925//
1926static BOOL WINAPI consoleHandler(DWORD event) {
1927  switch(event) {
1928    case CTRL_C_EVENT:
1929      if (is_error_reported()) {
1930        // Ctrl-C is pressed during error reporting, likely because the error
1931        // handler fails to abort. Let VM die immediately.
1932        os::die();
1933      }
1934
1935      os::signal_raise(SIGINT);
1936      return TRUE;
1937      break;
1938    case CTRL_BREAK_EVENT:
1939      if (sigbreakHandler != NULL) {
1940        (*sigbreakHandler)(SIGBREAK);
1941      }
1942      return TRUE;
1943      break;
1944    case CTRL_CLOSE_EVENT:
1945    case CTRL_LOGOFF_EVENT:
1946    case CTRL_SHUTDOWN_EVENT:
1947      os::signal_raise(SIGTERM);
1948      return TRUE;
1949      break;
1950    default:
1951      break;
1952  }
1953  return FALSE;
1954}
1955
1956/*
1957 * The following code is moved from os.cpp for making this
1958 * code platform specific, which it is by its very nature.
1959 */
1960
1961// Return maximum OS signal used + 1 for internal use only
1962// Used as exit signal for signal_thread
1963int os::sigexitnum_pd(){
1964  return NSIG;
1965}
1966
1967// a counter for each possible signal value, including signal_thread exit signal
1968static volatile jint pending_signals[NSIG+1] = { 0 };
1969static HANDLE sig_sem;
1970
1971void os::signal_init_pd() {
1972  // Initialize signal structures
1973  memset((void*)pending_signals, 0, sizeof(pending_signals));
1974
1975  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1976
1977  // Programs embedding the VM do not want it to attempt to receive
1978  // events like CTRL_LOGOFF_EVENT, which are used to implement the
1979  // shutdown hooks mechanism introduced in 1.3.  For example, when
1980  // the VM is run as part of a Windows NT service (i.e., a servlet
1981  // engine in a web server), the correct behavior is for any console
1982  // control handler to return FALSE, not TRUE, because the OS's
1983  // "final" handler for such events allows the process to continue if
1984  // it is a service (while terminating it if it is not a service).
1985  // To make this behavior uniform and the mechanism simpler, we
1986  // completely disable the VM's usage of these console events if -Xrs
1987  // (=ReduceSignalUsage) is specified.  This means, for example, that
1988  // the CTRL-BREAK thread dump mechanism is also disabled in this
1989  // case.  See bugs 4323062, 4345157, and related bugs.
1990
1991  if (!ReduceSignalUsage) {
1992    // Add a CTRL-C handler
1993    SetConsoleCtrlHandler(consoleHandler, TRUE);
1994  }
1995}
1996
1997void os::signal_notify(int signal_number) {
1998  BOOL ret;
1999
2000  Atomic::inc(&pending_signals[signal_number]);
2001  ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2002  assert(ret != 0, "ReleaseSemaphore() failed");
2003}
2004
2005static int check_pending_signals(bool wait_for_signal) {
2006  DWORD ret;
2007  while (true) {
2008    for (int i = 0; i < NSIG + 1; i++) {
2009      jint n = pending_signals[i];
2010      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2011        return i;
2012      }
2013    }
2014    if (!wait_for_signal) {
2015      return -1;
2016    }
2017
2018    JavaThread *thread = JavaThread::current();
2019
2020    ThreadBlockInVM tbivm(thread);
2021
2022    bool threadIsSuspended;
2023    do {
2024      thread->set_suspend_equivalent();
2025      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2026      ret = ::WaitForSingleObject(sig_sem, INFINITE);
2027      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2028
2029      // were we externally suspended while we were waiting?
2030      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2031      if (threadIsSuspended) {
2032        //
2033        // The semaphore has been incremented, but while we were waiting
2034        // another thread suspended us. We don't want to continue running
2035        // while suspended because that would surprise the thread that
2036        // suspended us.
2037        //
2038        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2039        assert(ret != 0, "ReleaseSemaphore() failed");
2040
2041        thread->java_suspend_self();
2042      }
2043    } while (threadIsSuspended);
2044  }
2045}
2046
2047int os::signal_lookup() {
2048  return check_pending_signals(false);
2049}
2050
2051int os::signal_wait() {
2052  return check_pending_signals(true);
2053}
2054
2055// Implicit OS exception handling
2056
2057LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
2058  JavaThread* thread = JavaThread::current();
2059  // Save pc in thread
2060#ifdef _M_IA64
2061  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
2062  // Set pc to handler
2063  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2064#elif _M_AMD64
2065  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
2066  // Set pc to handler
2067  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2068#else
2069  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
2070  // Set pc to handler
2071  exceptionInfo->ContextRecord->Eip = (LONG)handler;
2072#endif
2073
2074  // Continue the execution
2075  return EXCEPTION_CONTINUE_EXECUTION;
2076}
2077
2078
2079// Used for PostMortemDump
2080extern "C" void safepoints();
2081extern "C" void find(int x);
2082extern "C" void events();
2083
2084// According to Windows API documentation, an illegal instruction sequence should generate
2085// the 0xC000001C exception code. However, real world experience shows that occasionnaly
2086// the execution of an illegal instruction can generate the exception code 0xC000001E. This
2087// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2088
2089#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2090
2091// From "Execution Protection in the Windows Operating System" draft 0.35
2092// Once a system header becomes available, the "real" define should be
2093// included or copied here.
2094#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2095
2096#define def_excpt(val) #val, val
2097
2098struct siglabel {
2099  char *name;
2100  int   number;
2101};
2102
[309]2103// All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2104// C++ compiler contain this error code. Because this is a compiler-generated
2105// error, the code is not listed in the Win32 API header files.
2106// The code is actually a cryptic mnemonic device, with the initial "E"
2107// standing for "exception" and the final 3 bytes (0x6D7363) representing the
2108// ASCII values of "msc".
2109
2110#define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2111
2112
[2]2113struct siglabel exceptlabels[] = {
2114    def_excpt(EXCEPTION_ACCESS_VIOLATION),
2115    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2116    def_excpt(EXCEPTION_BREAKPOINT),
2117    def_excpt(EXCEPTION_SINGLE_STEP),
2118    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2119    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2120    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2121    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2122    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2123    def_excpt(EXCEPTION_FLT_OVERFLOW),
2124    def_excpt(EXCEPTION_FLT_STACK_CHECK),
2125    def_excpt(EXCEPTION_FLT_UNDERFLOW),
2126    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2127    def_excpt(EXCEPTION_INT_OVERFLOW),
2128    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2129    def_excpt(EXCEPTION_IN_PAGE_ERROR),
2130    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2131    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2132    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2133    def_excpt(EXCEPTION_STACK_OVERFLOW),
2134    def_excpt(EXCEPTION_INVALID_DISPOSITION),
2135    def_excpt(EXCEPTION_GUARD_PAGE),
2136    def_excpt(EXCEPTION_INVALID_HANDLE),
[309]2137    def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
[2]2138    NULL, 0
2139};
2140
2141const char* os::exception_name(int exception_code, char *buf, size_t size) {
2142  for (int i = 0; exceptlabels[i].name != NULL; i++) {
2143    if (exceptlabels[i].number == exception_code) {
2144       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2145       return buf;
2146    }
2147  }
2148
2149  return NULL;
2150}
2151
2152//-----------------------------------------------------------------------------
2153LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2154  // handle exception caused by idiv; should only happen for -MinInt/-1
2155  // (division by zero is handled explicitly)
2156#ifdef _M_IA64
2157  assert(0, "Fix Handle_IDiv_Exception");
2158#elif _M_AMD64
2159  PCONTEXT ctx = exceptionInfo->ContextRecord;
2160  address pc = (address)ctx->Rip;
2161  NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
2162  assert(pc[0] == 0xF7, "not an idiv opcode");
2163  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2164  assert(ctx->Rax == min_jint, "unexpected idiv exception");
2165  // set correct result values and continue after idiv instruction
2166  ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2167  ctx->Rax = (DWORD)min_jint;      // result
2168  ctx->Rdx = (DWORD)0;             // remainder
2169  // Continue the execution
2170#else
2171  PCONTEXT ctx = exceptionInfo->ContextRecord;
2172  address pc = (address)ctx->Eip;
2173  NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
2174  assert(pc[0] == 0xF7, "not an idiv opcode");
2175  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2176  assert(ctx->Eax == min_jint, "unexpected idiv exception");
2177  // set correct result values and continue after idiv instruction
2178  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2179  ctx->Eax = (DWORD)min_jint;      // result
2180  ctx->Edx = (DWORD)0;             // remainder
2181  // Continue the execution
2182#endif
2183  return EXCEPTION_CONTINUE_EXECUTION;
2184}
2185
2186#ifndef  _WIN64
2187//-----------------------------------------------------------------------------
2188LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2189  // handle exception caused by native method modifying control word
2190  PCONTEXT ctx = exceptionInfo->ContextRecord;
2191  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2192
2193  switch (exception_code) {
2194    case EXCEPTION_FLT_DENORMAL_OPERAND:
2195    case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2196    case EXCEPTION_FLT_INEXACT_RESULT:
2197    case EXCEPTION_FLT_INVALID_OPERATION:
2198    case EXCEPTION_FLT_OVERFLOW:
2199    case EXCEPTION_FLT_STACK_CHECK:
2200    case EXCEPTION_FLT_UNDERFLOW:
2201      jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2202      if (fp_control_word != ctx->FloatSave.ControlWord) {
2203        // Restore FPCW and mask out FLT exceptions
2204        ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2205        // Mask out pending FLT exceptions
2206        ctx->FloatSave.StatusWord &=  0xffffff00;
2207        return EXCEPTION_CONTINUE_EXECUTION;
2208      }
2209  }
2210
2211  if (prev_uef_handler != NULL) {
2212    // We didn't handle this exception so pass it to the previous
2213    // UnhandledExceptionFilter.
2214    return (prev_uef_handler)(exceptionInfo);
2215  }
2216
2217  return EXCEPTION_CONTINUE_SEARCH;
2218}
2219#else //_WIN64
2220/*
2221  On Windows, the mxcsr control bits are non-volatile across calls
2222  See also CR 6192333
2223  If EXCEPTION_FLT_* happened after some native method modified
2224  mxcsr - it is not a jvm fault.
2225  However should we decide to restore of mxcsr after a faulty
2226  native method we can uncomment following code
2227      jint MxCsr = INITIAL_MXCSR;
2228        // we can't use StubRoutines::addr_mxcsr_std()
2229        // because in Win64 mxcsr is not saved there
2230      if (MxCsr != ctx->MxCsr) {
2231        ctx->MxCsr = MxCsr;
2232        return EXCEPTION_CONTINUE_EXECUTION;
2233      }
2234
2235*/
2236#endif //_WIN64
2237
2238
2239// Fatal error reporting is single threaded so we can make this a
2240// static and preallocated.  If it's more than MAX_PATH silently ignore
2241// it.
2242static char saved_error_file[MAX_PATH] = {0};
2243
2244void os::set_error_file(const char *logfile) {
2245  if (strlen(logfile) <= MAX_PATH) {
2246    strncpy(saved_error_file, logfile, MAX_PATH);
2247  }
2248}
2249
2250static inline void report_error(Thread* t, DWORD exception_code,
2251                                address addr, void* siginfo, void* context) {
2252  VMError err(t, exception_code, addr, siginfo, context);
2253  err.report_and_die();
2254
2255  // If UseOsErrorReporting, this will return here and save the error file
2256  // somewhere where we can find it in the minidump.
2257}
2258
2259//-----------------------------------------------------------------------------
2260LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2261  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2262  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2263#ifdef _M_IA64
2264  address pc = (address) exceptionInfo->ContextRecord->StIIP;
2265#elif _M_AMD64
2266  address pc = (address) exceptionInfo->ContextRecord->Rip;
2267#else
2268  address pc = (address) exceptionInfo->ContextRecord->Eip;
2269#endif
2270  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2271
2272#ifndef _WIN64
2273  // Execution protection violation - win32 running on AMD64 only
2274  // Handled first to avoid misdiagnosis as a "normal" access violation;
2275  // This is safe to do because we have a new/unique ExceptionInformation
2276  // code for this condition.
2277  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2278    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2279    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2280    address addr = (address) exceptionRecord->ExceptionInformation[1];
2281
2282    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2283      int page_size = os::vm_page_size();
2284
2285      // Make sure the pc and the faulting address are sane.
2286      //
2287      // If an instruction spans a page boundary, and the page containing
2288      // the beginning of the instruction is executable but the following
2289      // page is not, the pc and the faulting address might be slightly
2290      // different - we still want to unguard the 2nd page in this case.
2291      //
2292      // 15 bytes seems to be a (very) safe value for max instruction size.
2293      bool pc_is_near_addr =
2294        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2295      bool instr_spans_page_boundary =
2296        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2297                         (intptr_t) page_size) > 0);
2298
2299      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2300        static volatile address last_addr =
2301          (address) os::non_memory_address_word();
2302
2303        // In conservative mode, don't unguard unless the address is in the VM
2304        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2305            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2306
2307          // Set memory to RWX and retry
2308          address page_start =
2309            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2310          bool res = os::protect_memory((char*) page_start, page_size,
2311                                        os::MEM_PROT_RWX);
2312
2313          if (PrintMiscellaneous && Verbose) {
2314            char buf[256];
2315            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2316                         "at " INTPTR_FORMAT
2317                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2318                         page_start, (res ? "success" : strerror(errno)));
2319            tty->print_raw_cr(buf);
2320          }
2321
2322          // Set last_addr so if we fault again at the same address, we don't
2323          // end up in an endless loop.
2324          //
2325          // There are two potential complications here.  Two threads trapping
2326          // at the same address at the same time could cause one of the
2327          // threads to think it already unguarded, and abort the VM.  Likely
2328          // very rare.
2329          //
2330          // The other race involves two threads alternately trapping at
2331          // different addresses and failing to unguard the page, resulting in
2332          // an endless loop.  This condition is probably even more unlikely
2333          // than the first.
2334          //
2335          // Although both cases could be avoided by using locks or thread
2336          // local last_addr, these solutions are unnecessary complication:
2337          // this handler is a best-effort safety net, not a complete solution.
2338          // It is disabled by default and should only be used as a workaround
2339          // in case we missed any no-execute-unsafe VM code.
2340
2341          last_addr = addr;
2342
2343          return EXCEPTION_CONTINUE_EXECUTION;
2344        }
2345      }
2346
2347      // Last unguard failed or not unguarding
2348      tty->print_raw_cr("Execution protection violation");
2349      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2350                   exceptionInfo->ContextRecord);
2351      return EXCEPTION_CONTINUE_SEARCH;
2352    }
2353  }
2354#endif // _WIN64
2355
2356  // Check to see if we caught the safepoint code in the
2357  // process of write protecting the memory serialization page.
2358  // It write enables the page immediately after protecting it
2359  // so just return.
2360  if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2361    JavaThread* thread = (JavaThread*) t;
2362    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2363    address addr = (address) exceptionRecord->ExceptionInformation[1];
2364    if ( os::is_memory_serialize_page(thread, addr) ) {
2365      // Block current thread until the memory serialize page permission restored.
2366      os::block_on_serialize_page_trap();
2367      return EXCEPTION_CONTINUE_EXECUTION;
2368    }
2369  }
2370
2371  if (t != NULL && t->is_Java_thread()) {
2372    JavaThread* thread = (JavaThread*) t;
2373    bool in_java = thread->thread_state() == _thread_in_Java;
2374
2375    // Handle potential stack overflows up front.
2376    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2377      if (os::uses_stack_guard_pages()) {
2378#ifdef _M_IA64
2379        //
2380        // If it's a legal stack address continue, Windows will map it in.
2381        //
2382        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2383        address addr = (address) exceptionRecord->ExceptionInformation[1];
2384        if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2385          return EXCEPTION_CONTINUE_EXECUTION;
2386
2387        // The register save area is the same size as the memory stack
2388        // and starts at the page just above the start of the memory stack.
2389        // If we get a fault in this area, we've run out of register
2390        // stack.  If we are in java, try throwing a stack overflow exception.
2391        if (addr > thread->stack_base() &&
2392                      addr <= (thread->stack_base()+thread->stack_size()) ) {
2393          char buf[256];
2394          jio_snprintf(buf, sizeof(buf),
2395                       "Register stack overflow, addr:%p, stack_base:%p\n",
2396                       addr, thread->stack_base() );
2397          tty->print_raw_cr(buf);
2398          // If not in java code, return and hope for the best.
2399          return in_java ? Handle_Exception(exceptionInfo,
2400            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2401            :  EXCEPTION_CONTINUE_EXECUTION;
2402        }
2403#endif
2404        if (thread->stack_yellow_zone_enabled()) {
2405          // Yellow zone violation.  The o/s has unprotected the first yellow
2406          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2407          // update the enabled status, even if the zone contains only one page.
2408          thread->disable_stack_yellow_zone();
2409          // If not in java code, return and hope for the best.
2410          return in_java ? Handle_Exception(exceptionInfo,
2411            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2412            :  EXCEPTION_CONTINUE_EXECUTION;
2413        } else {
2414          // Fatal red zone violation.
2415          thread->disable_stack_red_zone();
2416          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2417          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2418                       exceptionInfo->ContextRecord);
2419          return EXCEPTION_CONTINUE_SEARCH;
2420        }
2421      } else if (in_java) {
2422        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2423        // a one-time-only guard page, which it has released to us.  The next
2424        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2425        return Handle_Exception(exceptionInfo,
2426          SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2427      } else {
2428        // Can only return and hope for the best.  Further stack growth will
2429        // result in an ACCESS_VIOLATION.
2430        return EXCEPTION_CONTINUE_EXECUTION;
2431      }
2432    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2433      // Either stack overflow or null pointer exception.
2434      if (in_java) {
2435        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2436        address addr = (address) exceptionRecord->ExceptionInformation[1];
2437        address stack_end = thread->stack_base() - thread->stack_size();
2438        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2439          // Stack overflow.
2440          assert(!os::uses_stack_guard_pages(),
2441            "should be caught by red zone code above.");
2442          return Handle_Exception(exceptionInfo,
2443            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2444        }
2445        //
2446        // Check for safepoint polling and implicit null
2447        // We only expect null pointers in the stubs (vtable)
2448        // the rest are checked explicitly now.
2449        //
2450        CodeBlob* cb = CodeCache::find_blob(pc);
2451        if (cb != NULL) {
2452          if (os::is_poll_address(addr)) {
2453            address stub = SharedRuntime::get_poll_stub(pc);
2454            return Handle_Exception(exceptionInfo, stub);
2455          }
2456        }
2457        {
2458#ifdef _WIN64
2459          //
2460          // If it's a legal stack address map the entire region in
2461          //
2462          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2463          address addr = (address) exceptionRecord->ExceptionInformation[1];
2464          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2465                  addr = (address)((uintptr_t)addr &
2466                         (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2467                  os::commit_memory((char *)addr, thread->stack_base() - addr,
2468                                    false );
2469                  return EXCEPTION_CONTINUE_EXECUTION;
2470          }
2471          else
2472#endif
2473          {
2474            // Null pointer exception.
2475#ifdef _M_IA64
2476            // We catch register stack overflows in compiled code by doing
2477            // an explicit compare and executing a st8(G0, G0) if the
2478            // BSP enters into our guard area.  We test for the overflow
2479            // condition and fall into the normal null pointer exception
2480            // code if BSP hasn't overflowed.
2481            if ( in_java ) {
2482              if(thread->register_stack_overflow()) {
2483                assert((address)exceptionInfo->ContextRecord->IntS3 ==
2484                                thread->register_stack_limit(),
2485                               "GR7 doesn't contain register_stack_limit");
2486                // Disable the yellow zone which sets the state that
2487                // we've got a stack overflow problem.
2488                if (thread->stack_yellow_zone_enabled()) {
2489                  thread->disable_stack_yellow_zone();
2490                }
2491                // Give us some room to process the exception
2492                thread->disable_register_stack_guard();
2493                // Update GR7 with the new limit so we can continue running
2494                // compiled code.
2495                exceptionInfo->ContextRecord->IntS3 =
2496                               (ULONGLONG)thread->register_stack_limit();
2497                return Handle_Exception(exceptionInfo,
2498                       SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2499              } else {
2500                //
2501                // Check for implicit null
2502                // We only expect null pointers in the stubs (vtable)
2503                // the rest are checked explicitly now.
2504                //
2505                if (((uintptr_t)addr) < os::vm_page_size() ) {
2506                  // an access to the first page of VM--assume it is a null pointer
2507                  address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2508                  if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2509                }
2510              }
2511            } // in_java
2512
2513            // IA64 doesn't use implicit null checking yet. So we shouldn't
2514            // get here.
2515            tty->print_raw_cr("Access violation, possible null pointer exception");
2516            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2517                         exceptionInfo->ContextRecord);
2518            return EXCEPTION_CONTINUE_SEARCH;
2519#else /* !IA64 */
2520
2521            // Windows 98 reports faulting addresses incorrectly
2522            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2523                !os::win32::is_nt()) {
2524              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2525              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2526            }
2527            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2528                         exceptionInfo->ContextRecord);
2529            return EXCEPTION_CONTINUE_SEARCH;
2530#endif
2531          }
2532        }
2533      }
2534
2535#ifdef _WIN64
2536      // Special care for fast JNI field accessors.
2537      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2538      // in and the heap gets shrunk before the field access.
2539      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2540        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2541        if (addr != (address)-1) {
2542          return Handle_Exception(exceptionInfo, addr);
2543        }
2544      }
2545#endif
2546
2547#ifdef _WIN64
2548      // Windows will sometimes generate an access violation
2549      // when we call malloc.  Since we use VectoredExceptions
2550      // on 64 bit platforms, we see this exception.  We must
2551      // pass this exception on so Windows can recover.
2552      // We check to see if the pc of the fault is in NTDLL.DLL
2553      // if so, we pass control on to Windows for handling.
2554      if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
2555#endif
2556
2557      // Stack overflow or null pointer exception in native code.
2558      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2559                   exceptionInfo->ContextRecord);
2560      return EXCEPTION_CONTINUE_SEARCH;
2561    }
2562
2563    if (in_java) {
2564      switch (exception_code) {
2565      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2566        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2567
2568      case EXCEPTION_INT_OVERFLOW:
2569        return Handle_IDiv_Exception(exceptionInfo);
2570
2571      } // switch
2572    }
2573#ifndef _WIN64
[309]2574    if (((thread->thread_state() == _thread_in_Java) ||
2575        (thread->thread_state() == _thread_in_native)) &&
2576        exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
[2]2577    {
2578      LONG result=Handle_FLT_Exception(exceptionInfo);
2579      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2580    }
2581#endif //_WIN64
2582  }
2583
2584  if (exception_code != EXCEPTION_BREAKPOINT) {
2585#ifndef _WIN64
2586    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2587                 exceptionInfo->ContextRecord);
2588#else
2589    // Itanium Windows uses a VectoredExceptionHandler
2590    // Which means that C++ programatic exception handlers (try/except)
2591    // will get here.  Continue the search for the right except block if
2592    // the exception code is not a fatal code.
2593    switch ( exception_code ) {
2594      case EXCEPTION_ACCESS_VIOLATION:
2595      case EXCEPTION_STACK_OVERFLOW:
2596      case EXCEPTION_ILLEGAL_INSTRUCTION:
2597      case EXCEPTION_ILLEGAL_INSTRUCTION_2:
2598      case EXCEPTION_INT_OVERFLOW:
2599      case EXCEPTION_INT_DIVIDE_BY_ZERO:
[309]2600      case EXCEPTION_UNCAUGHT_CXX_EXCEPTION:
[2]2601      {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2602                       exceptionInfo->ContextRecord);
2603      }
2604        break;
2605      default:
2606        break;
2607    }
2608#endif
2609  }
2610  return EXCEPTION_CONTINUE_SEARCH;
2611}
2612
2613#ifndef _WIN64
2614// Special care for fast JNI accessors.
2615// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2616// the heap gets shrunk before the field access.
2617// Need to install our own structured exception handler since native code may
2618// install its own.
2619LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2620  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2621  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2622    address pc = (address) exceptionInfo->ContextRecord->Eip;
2623    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2624    if (addr != (address)-1) {
2625      return Handle_Exception(exceptionInfo, addr);
2626    }
2627  }
2628  return EXCEPTION_CONTINUE_SEARCH;
2629}
2630
2631#define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2632Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
[145]2633  Return ret = 0; \
[2]2634  __try { \
[145]2635    ret = (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
[2]2636  } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2637  } \
[145]2638  return ret; \
[2]2639}
2640
2641DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2642DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2643DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2644DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2645DEFINE_FAST_GETFIELD(jint,     int,    Int)
2646DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2647DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2648DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2649
2650address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2651  switch (type) {
2652    case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2653    case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2654    case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2655    case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2656    case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2657    case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2658    case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2659    case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2660    default:        ShouldNotReachHere();
2661  }
2662  return (address)-1;
2663}
2664#endif
2665
2666// Virtual Memory
2667
2668int os::vm_page_size() { return os::win32::vm_page_size(); }
2669int os::vm_allocation_granularity() {
2670  return os::win32::vm_allocation_granularity();
2671}
2672
[58]2673#ifndef __WIN32OS2__
2674
[2]2675// Windows large page support is available on Windows 2003. In order to use
2676// large page memory, the administrator must first assign additional privilege
2677// to the user:
2678//   + select Control Panel -> Administrative Tools -> Local Security Policy
2679//   + select Local Policies -> User Rights Assignment
2680//   + double click "Lock pages in memory", add users and/or groups
2681//   + reboot
2682// Note the above steps are needed for administrator as well, as administrators
2683// by default do not have the privilege to lock pages in memory.
2684//
2685// Note about Windows 2003: although the API supports committing large page
2686// memory on a page-by-page basis and VirtualAlloc() returns success under this
2687// scenario, I found through experiment it only uses large page if the entire
2688// memory region is reserved and committed in a single VirtualAlloc() call.
2689// This makes Windows large page support more or less like Solaris ISM, in
2690// that the entire heap must be committed upfront. This probably will change
2691// in the future, if so the code below needs to be revisited.
2692
2693#ifndef MEM_LARGE_PAGES
2694#define MEM_LARGE_PAGES 0x20000000
2695#endif
2696
2697// GetLargePageMinimum is only available on Windows 2003. The other functions
2698// are available on NT but not on Windows 98/Me. We have to resolve them at
2699// runtime.
2700typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
2701typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
2702             (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
2703typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
2704typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
2705
2706static GetLargePageMinimum_func_type   _GetLargePageMinimum;
2707static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
2708static OpenProcessToken_func_type      _OpenProcessToken;
2709static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
2710
2711static HINSTANCE _kernel32;
2712static HINSTANCE _advapi32;
2713static HANDLE    _hProcess;
2714static HANDLE    _hToken;
2715
2716static size_t _large_page_size = 0;
2717
2718static bool resolve_functions_for_large_page_init() {
2719  _kernel32 = LoadLibrary("kernel32.dll");
2720  if (_kernel32 == NULL) return false;
2721
2722  _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
2723                            GetProcAddress(_kernel32, "GetLargePageMinimum"));
2724  if (_GetLargePageMinimum == NULL) return false;
2725
2726  _advapi32 = LoadLibrary("advapi32.dll");
2727  if (_advapi32 == NULL) return false;
2728
2729  _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
2730                            GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
2731  _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
2732                            GetProcAddress(_advapi32, "OpenProcessToken"));
2733  _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
2734                            GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
2735  return _AdjustTokenPrivileges != NULL &&
2736         _OpenProcessToken      != NULL &&
2737         _LookupPrivilegeValue  != NULL;
2738}
2739
2740static bool request_lock_memory_privilege() {
2741  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2742                                os::current_process_id());
2743
2744  LUID luid;
2745  if (_hProcess != NULL &&
2746      _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2747      _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2748
2749    TOKEN_PRIVILEGES tp;
2750    tp.PrivilegeCount = 1;
2751    tp.Privileges[0].Luid = luid;
2752    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2753
2754    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2755    // privilege. Check GetLastError() too. See MSDN document.
2756    if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2757        (GetLastError() == ERROR_SUCCESS)) {
2758      return true;
2759    }
2760  }
2761
2762  return false;
2763}
2764
2765static void cleanup_after_large_page_init() {
2766  _GetLargePageMinimum = NULL;
2767  _AdjustTokenPrivileges = NULL;
2768  _OpenProcessToken = NULL;
2769  _LookupPrivilegeValue = NULL;
2770  if (_kernel32) FreeLibrary(_kernel32);
2771  _kernel32 = NULL;
2772  if (_advapi32) FreeLibrary(_advapi32);
2773  _advapi32 = NULL;
2774  if (_hProcess) CloseHandle(_hProcess);
2775  _hProcess = NULL;
2776  if (_hToken) CloseHandle(_hToken);
2777  _hToken = NULL;
2778}
2779
[58]2780#endif // ifndef __WIN32OS2__
2781
[2]2782bool os::large_page_init() {
2783  if (!UseLargePages) return false;
2784
2785  // print a warning if any large page related flag is specified on command line
2786  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2787                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2788  bool success = false;
2789
2790# define WARN(msg) if (warn_on_failure) { warning(msg); }
[58]2791
2792#ifdef __WIN32OS2__
2793    WARN("Large page is not supported by the operating system.");
2794#else
[2]2795  if (resolve_functions_for_large_page_init()) {
2796    if (request_lock_memory_privilege()) {
2797      size_t s = _GetLargePageMinimum();
2798      if (s) {
2799#if defined(IA32) || defined(AMD64)
2800        if (s > 4*M || LargePageSizeInBytes > 4*M) {
2801          WARN("JVM cannot use large pages bigger than 4mb.");
2802        } else {
2803#endif
2804          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2805            _large_page_size = LargePageSizeInBytes;
2806          } else {
2807            _large_page_size = s;
2808          }
2809          success = true;
2810#if defined(IA32) || defined(AMD64)
2811        }
2812#endif
2813      } else {
2814        WARN("Large page is not supported by the processor.");
2815      }
2816    } else {
2817      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2818    }
2819  } else {
2820    WARN("Large page is not supported by the operating system.");
2821  }
2822#undef WARN
2823
2824  const size_t default_page_size = (size_t) vm_page_size();
2825  if (success && _large_page_size > default_page_size) {
2826    _page_sizes[0] = _large_page_size;
2827    _page_sizes[1] = default_page_size;
2828    _page_sizes[2] = 0;
2829  }
2830
2831  cleanup_after_large_page_init();
[58]2832#endif // ifdef __WIN32OS2__
2833
[2]2834  return success;
2835}
2836
2837// On win32, one cannot release just a part of reserved memory, it's an
2838// all or nothing deal.  When we split a reservation, we must break the
2839// reservation into two reservations.
2840void os::split_reserved_memory(char *base, size_t size, size_t split,
2841                              bool realloc) {
2842  if (size > 0) {
2843    release_memory(base, size);
2844    if (realloc) {
2845      reserve_memory(split, base);
2846    }
2847    if (size != split) {
2848      reserve_memory(size - split, base + split);
2849    }
2850  }
2851}
2852
2853char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2854  assert((size_t)addr % os::vm_allocation_granularity() == 0,
2855         "reserve alignment");
2856  assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2857  char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2858  assert(res == NULL || addr == NULL || addr == res,
2859         "Unexpected address from reserve.");
2860  return res;
2861}
2862
2863// Reserve memory at an arbitrary address, only if that area is
2864// available (and not reserved for something else).
2865char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2866  // Windows os::reserve_memory() fails of the requested address range is
2867  // not avilable.
2868  return reserve_memory(bytes, requested_addr);
2869}
2870
2871size_t os::large_page_size() {
[58]2872#ifdef __WIN32OS2__
2873  return 0;
2874#else
[2]2875  return _large_page_size;
[58]2876#endif
[2]2877}
2878
2879bool os::can_commit_large_page_memory() {
2880  // Windows only uses large page memory when the entire region is reserved
2881  // and committed in a single VirtualAlloc() call. This may change in the
2882  // future, but with Windows 2003 it's not possible to commit on demand.
2883  return false;
2884}
2885
2886bool os::can_execute_large_page_memory() {
2887  return true;
2888}
2889
2890char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
2891
2892  const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
2893
[58]2894#ifndef __WIN32OS2__
[2]2895  if (UseLargePagesIndividualAllocation) {
2896    if (TracePageSizes && Verbose) {
2897       tty->print_cr("Reserving large pages individually.");
2898    }
2899    char * p_buf;
2900    // first reserve enough address space in advance since we want to be
2901    // able to break a single contiguous virtual address range into multiple
2902    // large page commits but WS2003 does not allow reserving large page space
2903    // so we just use 4K pages for reserve, this gives us a legal contiguous
2904    // address space. then we will deallocate that reservation, and re alloc
2905    // using large pages
2906    const size_t size_of_reserve = bytes + _large_page_size;
2907    if (bytes > size_of_reserve) {
2908      // Overflowed.
2909      warning("Individually allocated large pages failed, "
2910        "use -XX:-UseLargePagesIndividualAllocation to turn off");
2911      return NULL;
2912    }
2913    p_buf = (char *) VirtualAlloc(addr,
2914                                 size_of_reserve,  // size of Reserve
2915                                 MEM_RESERVE,
2916                                 PAGE_READWRITE);
2917    // If reservation failed, return NULL
2918    if (p_buf == NULL) return NULL;
2919
2920    release_memory(p_buf, bytes + _large_page_size);
2921    // round up to page boundary.  If the size_of_reserve did not
2922    // overflow and the reservation did not fail, this align up
2923    // should not overflow.
2924    p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
2925
2926    // now go through and allocate one page at a time until all bytes are
2927    // allocated
2928    size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
2929    // An overflow of align_size_up() would have been caught above
2930    // in the calculation of size_of_reserve.
2931    char * next_alloc_addr = p_buf;
2932
2933#ifdef ASSERT
2934    // Variable for the failure injection
2935    long ran_num = os::random();
2936    size_t fail_after = ran_num % bytes;
2937#endif
2938
2939    while (bytes_remaining) {
2940      size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
2941      // Note allocate and commit
2942      char * p_new;
2943
2944#ifdef ASSERT
2945      bool inject_error = LargePagesIndividualAllocationInjectError &&
2946          (bytes_remaining <= fail_after);
2947#else
2948      const bool inject_error = false;
2949#endif
2950
2951      if (inject_error) {
2952        p_new = NULL;
2953      } else {
2954        p_new = (char *) VirtualAlloc(next_alloc_addr,
2955                                    bytes_to_rq,
2956                                    MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
2957                                    prot);
2958      }
2959
2960      if (p_new == NULL) {
2961        // Free any allocated pages
2962        if (next_alloc_addr > p_buf) {
2963          // Some memory was committed so release it.
2964          size_t bytes_to_release = bytes - bytes_remaining;
2965          release_memory(p_buf, bytes_to_release);
2966        }
2967#ifdef ASSERT
2968        if (UseLargePagesIndividualAllocation &&
2969            LargePagesIndividualAllocationInjectError) {
2970          if (TracePageSizes && Verbose) {
2971             tty->print_cr("Reserving large pages individually failed.");
2972          }
2973        }
2974#endif
2975        return NULL;
2976      }
2977      bytes_remaining -= bytes_to_rq;
2978      next_alloc_addr += bytes_to_rq;
2979    }
2980
2981    return p_buf;
2982
2983  } else {
2984    // normal policy just allocate it all at once
2985    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2986    char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
2987    return res;
2988  }
[58]2989#else // ifndef __WIN32OS2__
2990  // normal policy just allocate it all at once
2991  DWORD flag = MEM_RESERVE | MEM_COMMIT;
2992  char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
2993  return res;
2994#endif // ifndef __WIN32OS2__
[2]2995}
2996
2997bool os::release_memory_special(char* base, size_t bytes) {
2998  return release_memory(base, bytes);
2999}
3000
3001void os::print_statistics() {
3002}
3003
3004bool os::commit_memory(char* addr, size_t bytes, bool exec) {
3005  if (bytes == 0) {
3006    // Don't bother the OS with noops.
3007    return true;
3008  }
3009  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3010  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3011  // Don't attempt to print anything if the OS call fails. We're
3012  // probably low on resources, so the print itself may cause crashes.
3013  bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
3014  if (result != NULL && exec) {
3015    DWORD oldprot;
3016    // Windows doc says to use VirtualProtect to get execute permissions
3017    return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
3018  } else {
3019    return result;
3020  }
3021}
3022
3023bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
3024                       bool exec) {
3025  return commit_memory(addr, size, exec);
3026}
3027
3028bool os::uncommit_memory(char* addr, size_t bytes) {
3029  if (bytes == 0) {
3030    // Don't bother the OS with noops.
3031    return true;
3032  }
3033  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3034  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3035  return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
3036}
3037
3038bool os::release_memory(char* addr, size_t bytes) {
3039  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3040}
3041
[278]3042bool os::create_stack_guard_pages(char* addr, size_t size) {
3043  return os::commit_memory(addr, size);
3044}
3045
3046bool os::remove_stack_guard_pages(char* addr, size_t size) {
3047  return os::uncommit_memory(addr, size);
3048}
3049
[2]3050// Set protections specified
3051bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3052                        bool is_committed) {
3053  unsigned int p = 0;
3054  switch (prot) {
3055  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3056  case MEM_PROT_READ: p = PAGE_READONLY; break;
3057  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3058  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3059  default:
3060    ShouldNotReachHere();
3061  }
3062
3063  DWORD old_status;
3064
3065  // Strange enough, but on Win32 one can change protection only for committed
3066  // memory, not a big deal anyway, as bytes less or equal than 64K
3067  if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
3068    fatal("cannot commit protection page");
3069  }
3070  // One cannot use os::guard_memory() here, as on Win32 guard page
3071  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3072  //
3073  // Pages in the region become guard pages. Any attempt to access a guard page
3074  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3075  // the guard page status. Guard pages thus act as a one-time access alarm.
3076  return VirtualProtect(addr, bytes, p, &old_status) != 0;
3077}
3078
3079bool os::guard_memory(char* addr, size_t bytes) {
3080  DWORD old_status;
3081  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3082}
3083
3084bool os::unguard_memory(char* addr, size_t bytes) {
3085  DWORD old_status;
3086  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3087}
3088
3089void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3090void os::free_memory(char *addr, size_t bytes)         { }
3091void os::numa_make_global(char *addr, size_t bytes)    { }
3092void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3093bool os::numa_topology_changed()                       { return false; }
3094size_t os::numa_get_groups_num()                       { return 1; }
3095int os::numa_get_group_id()                            { return 0; }
3096size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3097  if (size > 0) {
3098    ids[0] = 0;
3099    return 1;
3100  }
3101  return 0;
3102}
3103
3104bool os::get_page_info(char *start, page_info* info) {
3105  return false;
3106}
3107
3108char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3109  return end;
3110}
3111
3112char* os::non_memory_address_word() {
3113  // Must never look like an address returned by reserve_memory,
3114  // even in its subfields (as defined by the CPU immediate fields,
3115  // if the CPU splits constants across multiple instructions).
3116  return (char*)-1;
3117}
3118
3119#define MAX_ERROR_COUNT 100
3120#define SYS_THREAD_ERROR 0xffffffffUL
3121
3122void os::pd_start_thread(Thread* thread) {
3123  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3124  // Returns previous suspend state:
3125  // 0:  Thread was not suspended
3126  // 1:  Thread is running now
3127  // >1: Thread is still suspended.
3128  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3129}
3130
3131class HighResolutionInterval {
3132  // The default timer resolution seems to be 10 milliseconds.
3133  // (Where is this written down?)
3134  // If someone wants to sleep for only a fraction of the default,
3135  // then we set the timer resolution down to 1 millisecond for
3136  // the duration of their interval.
3137  // We carefully set the resolution back, since otherwise we
3138  // seem to incur an overhead (3%?) that we don't need.
3139  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3140  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3141  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3142  // timeBeginPeriod() if the relative error exceeded some threshold.
3143  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3144  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3145  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3146  // resolution timers running.
3147private:
3148    jlong resolution;
3149public:
3150  HighResolutionInterval(jlong ms) {
3151    resolution = ms % 10L;
3152    if (resolution != 0) {
3153      MMRESULT result = timeBeginPeriod(1L);
3154    }
3155  }
3156  ~HighResolutionInterval() {
3157    if (resolution != 0) {
3158      MMRESULT result = timeEndPeriod(1L);
3159    }
3160    resolution = 0L;
3161  }
3162};
3163
3164int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3165  jlong limit = (jlong) MAXDWORD;
3166
3167  while(ms > limit) {
3168    int res;
3169    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3170      return res;
3171    ms -= limit;
3172  }
3173
3174  assert(thread == Thread::current(),  "thread consistency check");
3175  OSThread* osthread = thread->osthread();
3176  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3177  int result;
3178  if (interruptable) {
3179    assert(thread->is_Java_thread(), "must be java thread");
3180    JavaThread *jt = (JavaThread *) thread;
3181    ThreadBlockInVM tbivm(jt);
3182
3183    jt->set_suspend_equivalent();
3184    // cleared by handle_special_suspend_equivalent_condition() or
3185    // java_suspend_self() via check_and_wait_while_suspended()
3186
3187    HANDLE events[1];
3188    events[0] = osthread->interrupt_event();
3189    HighResolutionInterval *phri=NULL;
3190    if(!ForceTimeHighResolution)
3191      phri = new HighResolutionInterval( ms );
3192    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3193      result = OS_TIMEOUT;
3194    } else {
3195      ResetEvent(osthread->interrupt_event());
3196      osthread->set_interrupted(false);
3197      result = OS_INTRPT;
3198    }
3199    delete phri; //if it is NULL, harmless
3200
3201    // were we externally suspended while we were waiting?
3202    jt->check_and_wait_while_suspended();
3203  } else {
3204    assert(!thread->is_Java_thread(), "must not be java thread");
3205    Sleep((long) ms);
3206    result = OS_TIMEOUT;
3207  }
3208  return result;
3209}
3210
3211// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3212void os::infinite_sleep() {
3213  while (true) {    // sleep forever ...
3214    Sleep(100000);  // ... 100 seconds at a time
3215  }
3216}
3217
3218typedef BOOL (WINAPI * STTSignature)(void) ;
3219
3220os::YieldResult os::NakedYield() {
3221  // Use either SwitchToThread() or Sleep(0)
3222  // Consider passing back the return value from SwitchToThread().
3223  // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
3224  // In that case we revert to Sleep(0).
3225  static volatile STTSignature stt = (STTSignature) 1 ;
3226
3227  if (stt == ((STTSignature) 1)) {
3228    stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
3229    // It's OK if threads race during initialization as the operation above is idempotent.
3230  }
3231  if (stt != NULL) {
3232    return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3233  } else {
3234    Sleep (0) ;
3235  }
3236  return os::YIELD_UNKNOWN ;
3237}
3238
3239void os::yield() {  os::NakedYield(); }
3240
3241void os::yield_all(int attempts) {
3242  // Yields to all threads, including threads with lower priorities
3243  Sleep(1);
3244}
3245
3246// Win32 only gives you access to seven real priorities at a time,
3247// so we compress Java's ten down to seven.  It would be better
3248// if we dynamically adjusted relative priorities.
3249
3250int os::java_to_os_priority[MaxPriority + 1] = {
3251  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3252  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3253  THREAD_PRIORITY_LOWEST,                       // 2
3254  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3255  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3256  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3257  THREAD_PRIORITY_NORMAL,                       // 6
3258  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3259  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3260  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3261  THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
3262};
3263
3264int prio_policy1[MaxPriority + 1] = {
3265  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3266  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3267  THREAD_PRIORITY_LOWEST,                       // 2
3268  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3269  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3270  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3271  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3272  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3273  THREAD_PRIORITY_HIGHEST,                      // 8
3274  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3275  THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
3276};
3277
3278static int prio_init() {
3279  // If ThreadPriorityPolicy is 1, switch tables
3280  if (ThreadPriorityPolicy == 1) {
3281    int i;
3282    for (i = 0; i < MaxPriority + 1; i++) {
3283      os::java_to_os_priority[i] = prio_policy1[i];
3284    }
3285  }
3286  return 0;
3287}
3288
3289OSReturn os::set_native_priority(Thread* thread, int priority) {
3290  if (!UseThreadPriorities) return OS_OK;
3291  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3292  return ret ? OS_OK : OS_ERR;
3293}
3294
3295OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3296  if ( !UseThreadPriorities ) {
3297    *priority_ptr = java_to_os_priority[NormPriority];
3298    return OS_OK;
3299  }
3300  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3301  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3302    assert(false, "GetThreadPriority failed");
3303    return OS_ERR;
3304  }
3305  *priority_ptr = os_prio;
3306  return OS_OK;
3307}
3308
3309
3310// Hint to the underlying OS that a task switch would not be good.
3311// Void return because it's a hint and can fail.
3312void os::hint_no_preempt() {}
3313
3314void os::interrupt(Thread* thread) {
3315  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3316         "possibility of dangling Thread pointer");
3317
3318  OSThread* osthread = thread->osthread();
3319  osthread->set_interrupted(true);
3320  // More than one thread can get here with the same value of osthread,
3321  // resulting in multiple notifications.  We do, however, want the store
3322  // to interrupted() to be visible to other threads before we post
3323  // the interrupt event.
3324  OrderAccess::release();
3325  SetEvent(osthread->interrupt_event());
3326  // For JSR166:  unpark after setting status
3327  if (thread->is_Java_thread())
3328    ((JavaThread*)thread)->parker()->unpark();
3329
3330  ParkEvent * ev = thread->_ParkEvent ;
3331  if (ev != NULL) ev->unpark() ;
3332
3333}
3334
3335
3336bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3337  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3338         "possibility of dangling Thread pointer");
3339
3340  OSThread* osthread = thread->osthread();
3341  bool interrupted;
3342  interrupted = osthread->interrupted();
3343  if (clear_interrupted == true) {
3344    osthread->set_interrupted(false);
3345    ResetEvent(osthread->interrupt_event());
3346  } // Otherwise leave the interrupted state alone
3347
3348  return interrupted;
3349}
3350
3351// Get's a pc (hint) for a running thread. Currently used only for profiling.
3352ExtendedPC os::get_thread_pc(Thread* thread) {
3353  CONTEXT context;
3354  context.ContextFlags = CONTEXT_CONTROL;
3355  HANDLE handle = thread->osthread()->thread_handle();
3356#ifdef _M_IA64
3357  assert(0, "Fix get_thread_pc");
3358  return ExtendedPC(NULL);
3359#else
3360  if (GetThreadContext(handle, &context)) {
3361#ifdef _M_AMD64
3362    return ExtendedPC((address) context.Rip);
3363#else
3364    return ExtendedPC((address) context.Eip);
3365#endif
3366  } else {
3367    return ExtendedPC(NULL);
3368  }
3369#endif
3370}
3371
3372// GetCurrentThreadId() returns DWORD
3373intx os::current_thread_id()          { return GetCurrentThreadId(); }
3374
3375static int _initial_pid = 0;
3376
3377int os::current_process_id()
3378{
3379  return (_initial_pid ? _initial_pid : _getpid());
3380}
3381
3382int    os::win32::_vm_page_size       = 0;
3383int    os::win32::_vm_allocation_granularity = 0;
3384int    os::win32::_processor_type     = 0;
3385// Processor level is not available on non-NT systems, use vm_version instead
3386int    os::win32::_processor_level    = 0;
3387julong os::win32::_physical_memory    = 0;
3388size_t os::win32::_default_stack_size = 0;
3389
3390         intx os::win32::_os_thread_limit    = 0;
3391volatile intx os::win32::_os_thread_count    = 0;
3392
3393bool   os::win32::_is_nt              = false;
3394bool   os::win32::_is_windows_2003    = false;
3395
3396
3397void os::win32::initialize_system_info() {
3398  SYSTEM_INFO si;
3399  GetSystemInfo(&si);
3400  _vm_page_size    = si.dwPageSize;
3401  _vm_allocation_granularity = si.dwAllocationGranularity;
3402  _processor_type  = si.dwProcessorType;
3403  _processor_level = si.wProcessorLevel;
[278]3404  set_processor_count(si.dwNumberOfProcessors);
[2]3405
[58]3406#ifdef __WIN32OS2__
3407  MEMORYSTATUS ms;
3408  ms.dwLength = sizeof(ms);
3409
3410  GlobalMemoryStatus(&ms);
3411  _physical_memory = ms.dwTotalPhys;
[64]3412#else
[2]3413  MEMORYSTATUSEX ms;
3414  ms.dwLength = sizeof(ms);
3415
3416  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3417  // dwMemoryLoad (% of memory in use)
3418  GlobalMemoryStatusEx(&ms);
3419  _physical_memory = ms.ullTotalPhys;
[58]3420#endif
[2]3421
3422  OSVERSIONINFO oi;
3423  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
3424  GetVersionEx(&oi);
3425  switch(oi.dwPlatformId) {
3426    case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3427    case VER_PLATFORM_WIN32_NT:
3428      _is_nt = true;
3429      {
3430        int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3431        if (os_vers == 5002) {
3432          _is_windows_2003 = true;
3433        }
3434      }
3435      break;
3436    default: fatal("Unknown platform");
3437  }
3438
3439  _default_stack_size = os::current_stack_size();
3440  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3441  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3442    "stack size not a multiple of page size");
3443
3444  initialize_performance_counter();
3445
3446  // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3447  // known to deadlock the system, if the VM issues to thread operations with
3448  // a too high frequency, e.g., such as changing the priorities.
3449  // The 6000 seems to work well - no deadlocks has been notices on the test
3450  // programs that we have seen experience this problem.
3451  if (!os::win32::is_nt()) {
3452    StarvationMonitorInterval = 6000;
3453  }
3454}
3455
3456
3457void os::win32::setmode_streams() {
[127]3458  // On OS/2, the console requires "\r\n" to start a new line so avoid setting
3459  // O_BINARY there. Let's assume this does not break anything in Java for now.
3460#ifndef __WIN32OS2__
[2]3461  _setmode(_fileno(stdin), _O_BINARY);
3462  _setmode(_fileno(stdout), _O_BINARY);
3463  _setmode(_fileno(stderr), _O_BINARY);
[127]3464#endif
[2]3465}
3466
3467
3468int os::message_box(const char* title, const char* message) {
3469  int result = MessageBox(NULL, message, title,
3470                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3471  return result == IDYES;
3472}
3473
3474int os::allocate_thread_local_storage() {
3475  return TlsAlloc();
3476}
3477
3478
3479void os::free_thread_local_storage(int index) {
3480  TlsFree(index);
3481}
3482
3483
3484void os::thread_local_storage_at_put(int index, void* value) {
3485  TlsSetValue(index, value);
3486  assert(thread_local_storage_at(index) == value, "Just checking");
3487}
3488
3489
3490void* os::thread_local_storage_at(int index) {
3491  return TlsGetValue(index);
3492}
3493
3494
3495#ifndef PRODUCT
3496#ifndef _WIN64
3497// Helpers to check whether NX protection is enabled
3498int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3499  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3500      pex->ExceptionRecord->NumberParameters > 0 &&
3501      pex->ExceptionRecord->ExceptionInformation[0] ==
3502      EXCEPTION_INFO_EXEC_VIOLATION) {
3503    return EXCEPTION_EXECUTE_HANDLER;
3504  }
3505  return EXCEPTION_CONTINUE_SEARCH;
3506}
3507
3508void nx_check_protection() {
3509  // If NX is enabled we'll get an exception calling into code on the stack
3510  char code[] = { (char)0xC3 }; // ret
3511  void *code_ptr = (void *)code;
3512  __try {
[315]3513#ifdef TARGET_COMPILER_gcc
[58]3514    __asm__("call *%0" : : "m"(code_ptr));
3515#else
[2]3516    __asm call code_ptr
[58]3517#endif
[2]3518  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3519    tty->print_raw_cr("NX protection detected.");
3520  }
3521}
3522#endif // _WIN64
3523#endif // PRODUCT
3524
3525// this is called _before_ the global arguments have been parsed
3526void os::init(void) {
3527  _initial_pid = _getpid();
3528
3529  init_random(1234567);
3530
3531  win32::initialize_system_info();
3532  win32::setmode_streams();
3533  init_page_sizes((size_t) win32::vm_page_size());
3534
3535  // For better scalability on MP systems (must be called after initialize_system_info)
3536#ifndef PRODUCT
3537  if (is_MP()) {
3538    NoYieldsInMicrolock = true;
3539  }
3540#endif
3541  // This may be overridden later when argument processing is done.
3542  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3543    os::win32::is_windows_2003());
3544
3545  // Initialize main_process and main_thread
3546  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
[58]3547  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
[2]3548                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3549    fatal("DuplicateHandle failed\n");
3550  }
3551  main_thread_id = (int) GetCurrentThreadId();
[297]3552
3553#ifdef __WIN32OS2__
3554  // The mprotect-based memory barrier technique seems be very unstable under
3555  // the SMP kernel on OS/2 for some reason. This needs more investigation and
3556  // hence we force the old mode using the fence instructions for the time
3557  // being. See #118 for more details.
3558  UseMembar = true;
3559#endif
[2]3560}
3561
3562// To install functions for atexit processing
3563extern "C" {
3564  static void perfMemory_exit_helper() {
3565    perfMemory_exit();
3566  }
3567}
3568
3569// this is called _after_ the global arguments have been parsed
3570jint os::init_2(void) {
3571  // Allocate a single page and mark it as readable for safepoint polling
3572  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3573  guarantee( polling_page != NULL, "Reserve Failed for polling page");
3574
3575  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3576  guarantee( return_page != NULL, "Commit Failed for polling page");
3577
3578  os::set_polling_page( polling_page );
3579
3580#ifndef PRODUCT
3581  if( Verbose && PrintMiscellaneous )
3582    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3583#endif
3584
3585  if (!UseMembar) {
3586    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3587    guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3588
3589    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3590    guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3591
3592    os::set_memory_serialize_page( mem_serialize_page );
3593
3594#ifndef PRODUCT
3595    if(Verbose && PrintMiscellaneous)
3596      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3597#endif
3598}
3599
3600  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3601
3602  // Setup Windows Exceptions
3603
3604  // On Itanium systems, Structured Exception Handling does not
3605  // work since stack frames must be walkable by the OS.  Since
3606  // much of our code is dynamically generated, and we do not have
3607  // proper unwind .xdata sections, the system simply exits
3608  // rather than delivering the exception.  To work around
3609  // this we use VectorExceptions instead.
3610#ifdef _WIN64
3611  if (UseVectoredExceptions) {
3612    topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
3613  }
3614#endif
3615
3616  // for debugging float code generation bugs
3617  if (ForceFloatExceptions) {
3618#ifndef  _WIN64
3619    static long fp_control_word = 0;
[315]3620#ifdef TARGET_COMPILER_gcc
[58]3621    __asm__("fstcw %0" : "=m"(fp_control_word));
3622#else
[2]3623    __asm { fstcw fp_control_word }
[64]3624#endif
[2]3625    // see Intel PPro Manual, Vol. 2, p 7-16
3626    const long precision = 0x20;
3627    const long underflow = 0x10;
3628    const long overflow  = 0x08;
3629    const long zero_div  = 0x04;
3630    const long denorm    = 0x02;
3631    const long invalid   = 0x01;
3632    fp_control_word |= invalid;
[315]3633#ifdef TARGET_COMPILER_gcc
[58]3634    __asm__("fldcw %0" : : "m"(fp_control_word));
3635#else
[2]3636    __asm { fldcw fp_control_word }
3637#endif
[58]3638#endif
[2]3639  }
3640
3641  // If stack_commit_size is 0, windows will reserve the default size,
3642  // but only commit a small portion of it.
3643  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3644  size_t default_reserve_size = os::win32::default_stack_size();
3645  size_t actual_reserve_size = stack_commit_size;
3646  if (stack_commit_size < default_reserve_size) {
3647    // If stack_commit_size == 0, we want this too
3648    actual_reserve_size = default_reserve_size;
3649  }
3650
[309]3651  // Check minimum allowable stack size for thread creation and to initialize
3652  // the java system classes, including StackOverflowError - depends on page
3653  // size.  Add a page for compiler2 recursion in main thread.
3654  // Add in 2*BytesPerWord times page size to account for VM stack during
3655  // class initialization depending on 32 or 64 bit VM.
3656  size_t min_stack_allowed =
3657            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3658            2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3659  if (actual_reserve_size < min_stack_allowed) {
3660    tty->print_cr("\nThe stack size specified is too small, "
3661                  "Specify at least %dk",
3662                  min_stack_allowed / K);
3663    return JNI_ERR;
3664  }
3665
[2]3666  JavaThread::set_stack_size_at_create(stack_commit_size);
3667
3668  // Calculate theoretical max. size of Threads to guard gainst artifical
3669  // out-of-memory situations, where all available address-space has been
3670  // reserved by thread stacks.
3671  assert(actual_reserve_size != 0, "Must have a stack");
3672
3673  // Calculate the thread limit when we should start doing Virtual Memory
3674  // banging. Currently when the threads will have used all but 200Mb of space.
3675  //
3676  // TODO: consider performing a similar calculation for commit size instead
3677  // as reserve size, since on a 64-bit platform we'll run into that more
3678  // often than running out of virtual memory space.  We can use the
3679  // lower value of the two calculations as the os_thread_limit.
3680  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3681  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3682
3683  // at exit methods are called in the reverse order of their registration.
3684  // there is no limit to the number of functions registered. atexit does
3685  // not set errno.
3686
3687  if (PerfAllowAtExitRegistration) {
3688    // only register atexit functions if PerfAllowAtExitRegistration is set.
3689    // atexit functions can be delayed until process exit time, which
3690    // can be problematic for embedded VM situations. Embedded VMs should
3691    // call DestroyJavaVM() to assure that VM resources are released.
3692
3693    // note: perfMemory_exit_helper atexit function may be removed in
3694    // the future if the appropriate cleanup code can be added to the
3695    // VM_Exit VMOperation's doit method.
3696    if (atexit(perfMemory_exit_helper) != 0) {
3697      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3698    }
3699  }
3700
[113]3701#ifndef __WIN32OS2__
[2]3702  // initialize PSAPI or ToolHelp for fatal error handler
3703  if (win32::is_nt()) _init_psapi();
3704  else _init_toolhelp();
[113]3705#endif
[2]3706
3707#ifndef _WIN64
3708  // Print something if NX is enabled (win32 on AMD64)
3709  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3710#endif
3711
3712  // initialize thread priority policy
3713  prio_init();
3714
3715  if (UseNUMA && !ForceNUMA) {
3716    UseNUMA = false; // Currently unsupported.
3717  }
3718
3719  return JNI_OK;
3720}
3721
[278]3722void os::init_3(void) {
3723  return;
3724}
[2]3725
3726// Mark the polling page as unreadable
3727void os::make_polling_page_unreadable(void) {
3728  DWORD old_status;
3729  if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3730    fatal("Could not disable polling page");
3731};
3732
3733// Mark the polling page as readable
3734void os::make_polling_page_readable(void) {
3735  DWORD old_status;
3736  if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3737    fatal("Could not enable polling page");
3738};
3739
3740
3741int os::stat(const char *path, struct stat *sbuf) {
3742  char pathbuf[MAX_PATH];
3743  if (strlen(path) > MAX_PATH - 1) {
3744    errno = ENAMETOOLONG;
3745    return -1;
3746  }
[309]3747  os::native_path(strcpy(pathbuf, path));
[2]3748  int ret = ::stat(pathbuf, sbuf);
3749  if (sbuf != NULL && UseUTCFileTimestamp) {
3750    // Fix for 6539723.  st_mtime returned from stat() is dependent on
3751    // the system timezone and so can return different values for the
3752    // same file if/when daylight savings time changes.  This adjustment
3753    // makes sure the same timestamp is returned regardless of the TZ.
3754    //
3755    // See:
3756    // http://msdn.microsoft.com/library/
3757    //   default.asp?url=/library/en-us/sysinfo/base/
3758    //   time_zone_information_str.asp
3759    // and
3760    // http://msdn.microsoft.com/library/default.asp?url=
3761    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3762    //
3763    // NOTE: there is a insidious bug here:  If the timezone is changed
3764    // after the call to stat() but before 'GetTimeZoneInformation()', then
3765    // the adjustment we do here will be wrong and we'll return the wrong
3766    // value (which will likely end up creating an invalid class data
3767    // archive).  Absent a better API for this, or some time zone locking
3768    // mechanism, we'll have to live with this risk.
3769    TIME_ZONE_INFORMATION tz;
3770    DWORD tzid = GetTimeZoneInformation(&tz);
3771    int daylightBias =
3772      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3773    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3774  }
3775  return ret;
3776}
3777
3778
3779#define FT2INT64(ft) \
3780  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3781
3782
3783// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3784// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3785// of a thread.
3786//
3787// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3788// the fast estimate available on the platform.
3789
3790// current_thread_cpu_time() is not optimized for Windows yet
3791jlong os::current_thread_cpu_time() {
3792  // return user + sys since the cost is the same
3793  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3794}
3795
3796jlong os::thread_cpu_time(Thread* thread) {
3797  // consistent with what current_thread_cpu_time() returns.
3798  return os::thread_cpu_time(thread, true /* user+sys */);
3799}
3800
3801jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3802  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3803}
3804
3805jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3806  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3807  // If this function changes, os::is_thread_cpu_time_supported() should too
3808  if (os::win32::is_nt()) {
3809    FILETIME CreationTime;
3810    FILETIME ExitTime;
3811    FILETIME KernelTime;
3812    FILETIME UserTime;
3813
3814    if ( GetThreadTimes(thread->osthread()->thread_handle(),
3815                    &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3816      return -1;
3817    else
3818      if (user_sys_cpu_time) {
3819        return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3820      } else {
3821        return FT2INT64(UserTime) * 100;
3822      }
3823  } else {
3824    return (jlong) timeGetTime() * 1000000;
3825  }
3826}
3827
3828void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3829  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3830  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3831  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3832  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3833}
3834
3835void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3836  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3837  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3838  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3839  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3840}
3841
3842bool os::is_thread_cpu_time_supported() {
3843  // see os::thread_cpu_time
3844  if (os::win32::is_nt()) {
3845    FILETIME CreationTime;
3846    FILETIME ExitTime;
3847    FILETIME KernelTime;
3848    FILETIME UserTime;
3849
3850    if ( GetThreadTimes(GetCurrentThread(),
3851                    &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3852      return false;
3853    else
3854      return true;
3855  } else {
3856    return false;
3857  }
3858}
3859