

 eFTE2 user and reference manual

 [image: [eFTE2 in action: editing this very manual]]
 By Alfredo Fernández
Díaz

 November, 2017

Last revision: 2017-11-01

Table of Contents

	eFTE2 user and reference manual (cover)

	Table of Contents

	What is eFTE2?

	Installation

	Compatibility with old FTE installs

	Base files

	On OS/2 / eCS / ArcaOS

	On Windows

	On Linux

	List of Configuration Files

	Using eFTE2: out of the box

	Manual conventions

	Command line options

	Options

	Examples

	Standard 'plain' text editing

	Text vs Plain mode

	Status line

	Keys, menus and tasks

	Further input required

	File

	Open in Mode

	Edit

	Line

	Block

	Translate

	Search

	SearchWords

	Tags

	Fold

	Options

	Toggle

	Local (pop-up) editing menu

	Non-editing tasks

	Window

	Routines: parts of a file

	Buffers

	Directory

	"Navigate" menu

	Help

	EventMapView

	Editing files to be used with other programs

	Output messages from external applications

	Tools: standard external programs

	Grepâ€¦

	ISpell

	Version control in concurrent environments

	CVS

	SVN

	Regular expressions

	Introduction

	Regular expressions in action

	Regular expressions in eFTE2

	Editing modes (example: HTML)

	New colors schemes

	New editing functions

	HTML entities, colors, single tags

	Tag pairs

	Tags that need to be at a specific location

	Putting it all together

	New and tailored tools

	Zap tags

	Duplicate tags

	Elements: text between tags

	Metadata extraction

	Extended search and replace

	HTML Tidy (external application)

	Alternate editing modes included

	Customizing and extending eFTE2

	Configuration files

	Interface colors

	Text and colors: syntax highlighting

	Coloring files

	Changing colors

	Extending editing functionality: macros

	Easy access to macros: menus

	Editing "modes"

	Loading files in various formats

	Mode selection

	Mode, syntax highlight and event maps

	Event maps

	Keybinding examples

	Abbreviations

	Configuration reference

	Sections, directives, and comments

	Strings

	Regular expressions

	Match Operators

	Replacement Operators

	Global Settings

	C mode Smart Indentation settings

	Interface colors

	Syntax highlighting

	Configurable Syntax Parser

	Editing macros

	Internal commands

	Cursor movement

	Deleting text

	Line commands

	Block commands

	Text editing

	Folding text

	Bookmarks

	Character translation / insertion

	File commands

	Directory commands

	Search and replace

	Window commands

	Compiler support

	CVS support

	TAGS commands

	Option commands

	Miscellaneous commands

	Menus

	Modes

	Mode Settings

	Eventmap

	Menu settings

	Keybindings

	Abbreviations

	This program, authors, timeline

	License of use

	GNU GENERAL PUBLIC LICENSE Version 2, June 1991

	The "Artistic License"

	Authors

	Future, present and past: revision history

	Plans (by Gregg Young)

	Known issues

	Revision legend

	As eFTE2

	As eFTE

	As FTE

What is eFTE2?

 eFTE2 is a free multiplatform text editor loaded
 with features that make it the editor of choice of many programmers and power
 users alike:

 	It is a *FOLDING* text editor.

 	Almost every major feature is customizable:

 	Editing modes for different file types
 (including C/C++, REXX, Perl, HTML, Java, etc).

 	State-machine-based syntax parsing and highlighting.

 	Pull-down menus tailored for the current file type.

 	Common and mode-specific shortcut keys (with nice CUA
 defaults).

 	Programmable editing macros, which can be
 linked to both shortcut keys and menus.

 	Can operate on multiple files independently.

 	Hypertext list of file "routines", as
 defined in each language.

 	Supports ctags.

 	Named bookmarks.

 	Highlight all occurances of a word.

 	Automatically highlights matching symbol when cursor is on any
 parenthesis, brackets, or braces. Great for nesting checks.

 	Most stuff you might expect from any editor worth its salt: block
 indenting, entab/detab, case changes on text block, sort lines, column
 marking/copying, call to external programs (such as compiling), regular expression search and replace,
 screen splitting.

 	Light and fast, can be used over a remote console / ssh connection
 (non-GUI versions anyway?).

 	Multi-platform (currently OS/2, Win32, and Linux/X11).

Installation

 This section is devoted to what component files of eFTE2 are supposed
 to get installed where.

 Installation of eFTE2 should be a simple matter, such as unzip and run,
 which gives the end user full control (and responsability!) of which files
 are installed where, overwritten, etc.

 However, eFTE2 is also distributed in alternate installer packages for
 managed installation on modern systems. In those cases, it is up to the user
 and system documentations to deal with system installers and their
 idiosyncrasies—we infer if you are reading this, you must have been
 able to install the application, or at least unpack it.

 Compatibility with old FTE installs

 If you want to install eFTE2 directly over an FTE/eFTE install on OS/2 and
 not lose your custom configuration changes you can achieve that by installing
 only packages 1 and 3 of the WPI to your current install directory.

 In the future you should be able to use eFTE2 with the configuration files
 of an existing FTE install simply by creating a mymain.fte file in
 the same directory as your old main.fte and setting EFTEDIR
 to point there. Currently this is not possible in all cases because of an
 undocumented change introduced in eFTE: before it,
 includes in the configuration were interpreted as being relative to
 the file they were found in, but in eFTE this was changed to 'relative to main
 configuration'.

 Example: say you have two configuration bits a.fte and
 b.fte under the directory 'menu', and the main configuration includes
 "menu/a.fte". FTE would include "b" from "a" with
 "include b.fte", but eFTE and current eFTE2 need it to be
 "include menu/b.fte".

 This will be changed in the future to help preserving backwards
 compatibility in as many cases as possible.

 Base files

 The following files are included in all archives:

 	README2

 	Readme file.

 	edefault.fte

 	Fallback configuration file. The file edefault.fte should be
 kept in eFTE2's install directory. It provides a basic configuration
 primarily intended for editing files when the regular configuration is
 broken.

 	efte2.hlp

 	The manual you're reading right now.

 	config*.fte

 	Configuration files.

 	HISTORY

 	History of changes.

 	README.efte

 	efte readme file.

 	file_id.diz

 	Program description for BBS upload.

 	COPYING

 	GNU license.

 	Artistic

 	Artistic license.

 	AUTHORS

 	Contributor credits.

 On OS/2 / eCS / ArcaOS

 	efte.exe

 	VIO console-only executable.

 	eftepm.exe

 	PM GUI executable.

 Suggested installation file paths:

 	%TOOLS%\eFTE\efte.exe

 	%TOOLS%\eFTE\eftepm.exe

 	%TOOLS%\eFTE\efte2.hlp

 	%TOOLS%\eFTE\edefault.fte

 	%TOOLS%\eFTE\config*.fte

 	%TOOLS%\eFTE\docs\README.efte

 	%TOOLS%\eFTE\docs\HISTORY

 	%TOOLS%\eFTE\docs\README2

 	%TOOLS%\eFTE\docs\COPYING

 	%TOOLS%\eFTE\docs\Artistic

 	%TOOLS%\eFTE\docs\AUTHORS

 Place executable files somewhere on your PATH. The configuration
 files should be located in the config subdirectory. If you wish to install
 the config files somewhere else you may need to SET the EFTEDIR environmental
 variable to point to that directory. By default eFTE and eFTEPM look for the
 file mymain.fte as the root configuration file. All the rest of the
 configuration files are 'included' by earlier files. You can name your 'root'
 file something else but you will then need to use the -c switch
 followed by the full pathname for that file. For example:

 efte -cx:\efte\config\mynewconfig.fte

 To get the most out of eFTE2, you may install some additional programs and
 include various help files in your HELP and/or BOOKSHELF paths in config.sys.
 Even if you are using Open Watcom and don't need the IBM OS/2 toolkit, you
 should install it and include the path to its help files in HELP. The same is
 true for your compiler help files. See the list of help files below. Most of
 these files come with OS/2, the OS/2 toolkit, Open Watcom or WarpIN. The few
 that don't are available on Hobbes. It is also recommendable putting your
 eFTE2 directory in your PATH and DPATH in CONFIG.SYS.

 These are the programs eFTE2 is setup to work with
 if they are found in the PATH:

 	Open Watcom (http://www.openwatcom.org/)

 	
 Wmake and the C/C++ help files are available directly from the menus
 (Can easily be changed if you use something else).

 See additional notes on using Open Watcom below.

 	Grep

 	Called directly from the menu; You can click on the results to open the
 file at the found line.

 	ISpell

 	Provides reasonable spell checking.

 	SVN and CVS

 	Direct access to the most commonly used commands for these versioning
 systems.

 	HTML Tidy

 	Direct access via menu.

 Note on using Open Watcom: The 'Tools' menu entry 'Make and open list
 file' invokes directly 'wdis' via the totally undocumented command
 'MakeListFile'.

 The object file must be in the compile directory or directory relative
 to the compile directory (see below) f.e. ..\object\my.obj. Absolute paths
 are not currently supported.

 Compile directory is the directory containing the file you are currently
 editing the first time you run/compile/etc. After that the directory remains
 the same as long as the Messages buffer is left
 open. The directory is listed on the 'running' line [running 'myprogram ' in
 directory] Directory is the compile directory. One way to change it is to
 close the Messages buffer and run/ compile from a file in a different
 directory.

 OS/2 developer documentation packages are linked to as well in the 'Help'
 menus of the appropriate editing modes. You will be able to directly consult
 the following books if they are available in your HELP path:

 	OS/2 Programming Guide

 	The following inf files make up this book: addendum.inf +CP1.inf
 +CP2.inf +CP3.inf +GPI1.inf +GPI2.inf+ GPI3.inf +GPI4.inf +MMREF1.inf
 +MMREF2.inf +MMREF3.inf +MMSSPG.inf +PM1.inf +PM2.inf +PM3.inf +PM4.inf
 +PM5.inf +WPS1.inf +WPS2.inf +WPS3.inf.

 	Watcom C Help

 	The following inf files make up this book: clib.inf +clr.inf.

 	Watcom C++ Help

 	The following inf files make up this book: cpplib.inf +wpperrs.inf.

 	EMX Help

 	The following inf files make up this book: emxbsd.inf +emxlib.inf
 +emxdev.inf +emxrt.inf.

 	IPF Help (ipfref.inf)

 	Make Help (Open Watcom tools.inf)

 	REXX Information (rexx.inf)

 	REXX Multimedia (mcirexx.inf)

 	REXX Tips and Tricks (rxtt36.inf)

 	TCP/IP REXX FTP API (rxftp.inf)

 	TCP/IP REXX Sockets API (rxsocket.inf)

 	WarpIN Programmer's Guide and Reference (wpi_prog.inf)

 On Windows

 On Linux

 List of Configuration Files

 This is a complete list of the config files that will be installed on a
 clean install. Updates are meant to be included in a file related to the file
 being update i.e. mym_html.fte for m_html.fte. In practice any one of them
 may get edited by the user. This means updating them will be difficult.

 If you wish to modify only a specific mode, add customizations to a
 my*.fte file and 'include' it at the end of file. To also modify all
 of the descendants, 'include' customizations right after the include
 statement for mode.

 Main/Global configuration

 	main.fte

 	mymain.fte

 	myfontsize.fte

 	systemmain.fte

 	global.fte

 User interface color definitions and schemes

 	color.fte

 	pal_b_kb.fte

 	pal_base.fte

 	pal_blk.fte

 	pal_blue.fte

 	pal_bluez.fte

 	pal_gray.fte

 	pal_nce.fte

 	pal_wht.fte

 HTML character sets and conversion tools selectable from menus (incomplete)

 	charset\ents.fte

 	charset\jap.fte

 	charset\latin.fte

 	htmlchar.fte

 	htmlconv.fte

 Mode specific text highlighting

 	m_4gl.fte

 	m_a51.fte

 	m_ada.fte

 	m_asm.fte

 	m_asm370.fte

 	m_basic.fte

 	m_batch.fte

 	m_bin.fte

 	m_c.fte

 	m_catbs.fte

 	m_clario.fte

 	m_cmake.fte

 	m_cnfgs.fte

 	m_css.fte

 	m_diff.fte

 	m_ebnf.fte

 	m_eiffel.fte

 	m_euphoria.fte

 	m_falcon.fte

 	m_fort90.fte

 	m_fte.fte

 	m_gawk.fte

 	m_groovy.fte

 	m_html.fte

 	m_icon.fte

 	m_idl.fte

 	m_ipf.fte

 	m_java.fte

 	m_ldsgml.fte

 	m_lisaac.fte

 	m_lua.fte

 	m_make.fte

 	m_markup.fte

 	m_merge.fte

 	m_mod3.fte

 	m_msg.fte

 	m_mvsasm.fte

 	m_ocaml.fte

 	m_pascal.fte

 	m_perl.fte

 	m_php.fte

 	m_plain.fte

 	m_py.fte

 	m_resdlg.fte

 	m_rexx.fte

 	m_rpm.fte

 	m_rst.fte

 	m_ruby.fte

 	m_sgml.fte

 	m_sh.fte

 	m_siod.fte

 	m_sl.fte

 	m_sml.fte

 	m_source.fte

 	m_sql.fte

 	m_tcl.fte

 	m_trp.fte

 	m_tex.fte

 	m_texi.fte

 	m_text.fte

 	m_unrealscript.fte

 	m_vhdl.fte

 	m_wis.fte

 	m_xml.fte

 	m_xslt.fte

 User interface styles

 	ui_brief.fte

 	ui_ew.fte

 	ui_fte.fte

 	ui_mixed.fte

 	ui_ne.fte

 	ui_ws.fte

 	uicstyle.fte

 Experimental (incomplete) expansions of the UI (included as a base for
 further development)

 	Experimental\m_vi.fte

 	Experimental\m_xp.fte

 	Experimental\rgbcolor.fte

 	Experimental\ui_k_joe.fte

 	Experimental\ui_vi.fte

 Mode-specific keyboard hotkey definitions

 	kbd\k_c.fte

 	kbd\k_fte.fte

 	kbd\k_groovy.fte

 	kbd\k_html.fte

 	kbd\k_java.fte

 	kbd\k_perl.fte

 	kbd\k_rexx.fte

 	kbd\k_rst.fte

 	kbd\k_sgml.fte

 Abbreviation expansion for various modes

 	ab_c.fte

 	ab_c_os2.fte

 	ab_java.fte

 	ab_perl.fte

 	ab_rexx.fte

 	ab_sh.fte

 Default Menus (Normally English but can be any at user discretion)

 	menu\m_c.fte

 	menu\m_css.fte

 	menu\m_groovy.fte

 	menu\m_html.fte

 	menu\m_html_t.fte

 	menu\m_ipf.fte

 	menu\m_make.fte

 	menu\m_resdlg.fte

 	menu\m_rexx.fte

 	menu\m_rst.fte

 	menu\m_sgml.fte

 	menu\m_wis.fte

 	menu\ui_k_brf.fte

 	menu\ui_k_fte.fte

 	menu\ui_k_ne.fte

 	menu\ui_k_ws.fte

 	menu\ui_m_ew.fte

 	menu\ui_m_fte.fte

 	menu\ui_m_ne.fte

 	menu\ui_m_ws.fte

 Internationalized menus where xx is the country code (optional)

 	menu_xx\m_c.fte

 	menu_xx\m_css.fte

 	menu_xx\m_groovy.fte

 	menu_xx\m_html.fte

 	menu_xx\m_html_t.fte

 	menu_xx\m_ipf.fte

 	menu_xx\m_make.fte

 	menu_xx\m_rexx.fte

 	menu_xx\m_rst.fte

 	menu_xx\m_sgml.fte

 	menu_xx\ui_k_brf.fte

 	menu_xx\ui_k_fte.fte

 	menu_xx\ui_k_ne.fte

 	menu_xx\ui_k_ws.fte

 	menu_xx\ui_m_ew.fte

 	menu_xx\ui_m_fte.fte

 	menu_xx\ui_m_ne.fte

 	menu_xx\ui_m_ws.fte

Using eFTE2: out of the box

 Manual conventions

 Along this document, the syntax of program command lines, eFTE2 arguments
 and macro editing commands, and others will be explained using a uniform
 selection of symbols, compiled here for your convenience. They are:

 	When not assigned another specific meaning (such as in sections regular expression match operators, or keybindings) square brackets [and] indicate
 optional arguments or text.

 	When not assigned another specific meaning, angle brackets < and >
 indicate an example that must be adjusted to particular cases, without
 the brackets.

 	When not assigned another specific meaning, or appearing literally
 in code, curly braces { and } denote a set of mutually exclusive
 values.

 Also, a number of operations can be performed according to
 conditions expressed independently of each other by the presence or absence of
 some characters in a so called 'flags' string. Such characters are referred to
 as 'flags' for short, and flags strings are used in settings as well as some
 interaction with the user.

 Command line options

 The command line syntax is:

 efte[pm] [[options] [file(s)]]

 If no options nor file(s) are specified, eFTE2 will start in file browsing mode.

 Options

 	-lline[,column]

 	Go to line (and column) in next file specified on command line.

 	-m[MODE]

 	Use mode MODE for remaining files. If no argument is
 specified, mode override is cancelled.

 	-C or -![file]

 	Use specified configuration file (full pathname). If no argument is
 specified, the default configuration edefault.fte is used.

 	-D[file.dsk]

 	Load/save desktop from file.dsk. If
 no argument is specified, desktop loading/saving is disabled.

 	-H[file.his]

 	Load/save history from file.his. If no argument, disable
 history load/save.

 	-Ttags

 	Load tags file tags. The file must be in the format generated
 by the ctags program.

 	-ttag

 	Lookup tag named tag and display file containing it.

 	--

 	The rest of the arguments are not options, but filenames.

 	-+

 	The next argument is not an option even if starting with a '-'.

 	--help -h or -?

 	This shows a usage dialog.

 	--debug / --debugclean

 	These start logging; debug appends efte.log, debugclean
 creates a new one.

 	--version

 	Provides some version information.

 N.B.: there should not be any delimiter between an option and its
 arguments.

 Examples

 	efte[pm] -mBIN efte.exe

 	load efte.exe in BIN mode.

 	efte[pm] -l100,30 win.c

 	go to (100,30) in win.c.

 	efte[pm] -! -l100,30 mymain.fte

 	use the default configuration and go to (100,30) in mymain.fte.

 	efte[pm] window.cpp

 	load file window.cpp.

 	efte[pm] -dGNU window.cpp

 	load file window.cpp using the GNU indent style.

 	efte[pm] --debug window.cpp

 	load file window.cpp with logging enabled in append mode.

 	efte[pm] -mBIN efte.exe -m window.cpp

 	load efte[pm].exe in binary mode, window.cpp in default mode
 (C/C++).

 	efte[pm] -mBIN -+ -bla-

 	load file -bla- in BIN mode.

 	efte[pm] -- -1 -2 -3 -4 -5 -6

 	load files -1, -2, -3, -4, -5, -6.

 	efte[pm] -D -H efte.dsk efte.his

 	Disable desktop and history loading and saving and load files efte.dsk
 and efte.his.

 Under OS/2, NT and DOS default history and desktop
 files are named eFTE.DSK and eFTE.HIS respectively.
 Under Unix they are named .efte-desktop and .efte-history.
 The global desktop and history files will be searched in program directory
 under OS/2 and in user home directory under Unix.

 Standard 'plain' text editing

 eFTE2 default configuration follows the common user access (CUA)
 guidelines, so it should be rather intuitive how to perform typical text
 editing tasks and get started. However, the capabilities of eFTE2 extend
 beyond those of basic system text editors, such as E, NotePad, or the like,
 so it is a good idea to explore them in some depth. Furthermore, basic text
 editing tasks can be daisy-chained in "macros", a
 feature which is obviously easier to take advantage of if at least a
 superficial grasp of the basic editor capabilities has been acquired.

 Text vs Plain mode

 There are two basic styles of editing text files, stream and line
 editing. Stream editors treat files as one long stream of characters, line
 editors treat files as a series of individual lines, separated by a line end
 character. Being originally oriented towards programming, eFTE2 is
 feature-rich on the line editing side, but since both editing styles are
 valid interpretations of the same reality, and stream editing is so popular
 with word processors and many other applications, eFTE2's set of features lets
 the user work seamlessly either way. (eFTE2 also features another variation:
 'column-' editing.)

 The difference, however, may be very important regarding specific files. In
 general, computer code and other text formats where line numbers and exact
 text position are important tend to have many short lines to help clarity and
 avoid lateral scrolling in editors. On the other hand, text documents tend to
 have paragraphs condensed in single, [very] long lines, precisely because line
 numbers and exact text position are not considered important in them. Text
 documents are thus generally expected to have their lines automatically
 rearranged, split, and wrapped by word processors or other applications as
 necessary for comfortable editing.

 By default, 'plain' files are never reflowed in eFTE2, while in 'text'
 files word wrap is set to automatically divide
 lines as the right margin is reached when
 writing. Word wrap can also be set to continuously reflow any text block
 delimited by empty lines (a "paragraph") as it is edited.

 A word of caution: there is always 'undo' and 'discard changes',
 but at the very least, check the status line when
 you're starting to edit files with eFTE2—'plain' and 'text' modes are
 not the same thing!

 Status line

 eFTE2 always shows a status line at the bottom of its screen.

 While editing a file, the status line shows the following information:

 curpos|flags|mode|mod?filename[...]curchar|winno

 Where each field represents:

 	cursor position

 	line:column

 	flags

 	

 	I

 	Insert

 	A

 	Autoindent

 	C

 	Matches are case sensitive

 	SLC

 	Stream, Line, or Column block-mode

 	wW

 	Automatic word wrap active (w = line,
 W = paragraph).

 	mode

 	Mode name as specified in configuration file.

 	mod?

 	* if file was modified, % if file is read-only.

 	curchar

 	Decimal ASCII code of character under cursor, or EOL/EOF.

 	winno

 	'window' number

 Routines, buffers,
 or directory browser screens display lists of
 selectable items, with a final status line at the bottom showing the item
 count and the index of the current selection within it on the right corner;
 the rest of the information displayed should be self-explanatory.

 Keys, menus and tasks

 Most tasks in eFTE2 should be accessible with one or two keystrokes, but
 eFTE2 is built with customizability in mind, starting with key assignment. It
 would then be a bit self-defeating to give a command key reference when key
 shortcuts may well be used for different tasks in different interface
 configurations or editing modes. A task reference is
 given instead.

 Unlike other text editors, eFTE2 is built with accessibility and clarity
 in mind as well, so all basic tasks are bound to pull-down menus (also
 accessible through the mouse), which in turn are organized in logical
 groups.

 As menus unfold, you may notice some characters are underscored or
 highlighted in a different color; by pressing the corresponding keys you can
 activate the right menu entries significantly faster than getting to them with
 the cursor keys.

 The default configuration menus also reflect what key combinations
 (or shortcuts) each task is bound to, so it should be easy to learn by heart
 the key combinations in each mode by opening the menus a few times, and then
 effectively not needing them any more.

 Further input required

 Menu items linked to tasks that require any kind of further user input for
 proper execution typically have an ellipsis (…) in them. You can see
 this in "Open...", "Save as...", and other menu items, and also in some
 entries pointing to sub-menus.

 Submenu entries are always marked with →, so those marked
 with an ellipsis too indicate that all actions linked to the submenu entries
 require additional user input as well.

 The tasks that will be described now are general-purpose, and as such they
 should be available in all editing modes—in most
 cases they correspond to single internal editing commands of the editor, and
 so their actions are not described directly, but are linked instead to the
 appropriate section of the commands reference in
 most cases.

 Once a file is opened in eFTE2, the tasks laid out under the application
 menus are described in the following sections.

 File

 Under the File menu, you find pretty much the same options as not just in
 every other text editor, but pretty much in every other application in
 existence: load a file, save changes, exit the application, etc., with
 possibly only a couple of exceptions: the reference to "editing modes", and "Next/Previous".

 It is often overlooked that eFTE2 is capable of editing several files at
 once: the humble "Next/Previous" labels stand for "Next/Previous
 file" (or, more accurately, buffer), each
 of which will be edited in the appropriate mode.

 	Entry
 	Key (if any)
 	Command / action

 	Open...
	F3
 	FileOpen

 	Open in Mode...
	Ctrl+F3
 	Opens menu for picking the editing
 mode before opening a file.

 	Open Directory
	Ctrl+M
 	DirOpen

 	Reload
	Shift+F3
 	FileReload

 	Save
	F2
 	FileSave

 	Save As...
	Shift+F2
 	FileSaveAs

 	Save All
	Ctrl+F2
 	FileSaveAll

 	Write To...
 	FileWriteTo

 	Print
 	FilePrint

 	Next
	Alt+Right
 	FileNext

 	Previous
	Alt+Left
 	FilePrev

 	Close
	Alt+Q
 	FileClose

 	Close All
 	FileCloseAll

 	Exit
	Alt+X
 	ExitEditor

 Open in Mode

 The entry "Open in Mode..." of the menu "File" offers to open a file from
 a selection of submenu entries. The difference with regular "Open file..." is
 that the editing mode for the file is established first through the appropriate menu entry.
 Then the file can be opened normally, be it by specifying its name, or from the file browser.

 It is out of the scope of this manual to explain what all the programming
 / scripting / markup languages formats, and their associated modes are.
 However, 'plain' or 'text' editing modes are
 very important to understand, for the other modes are directly derived from one
 of these.

 Edit

 	Entry
 	Key (if any)
 	Command / action

 	Undo
	Alt+BackSp
	Undo

 	Redo
	Alt+Shift+BackSp
	Redo

 	Cut
	Shift+Del
	BlockCut

 	Copy
	Ctrl+Ins
	BlockCopy

 	Cut-Append
	BlockCutAppend

 	Copy-Append
	BlockCopyAppend

 	Paste Stream
	Shift+Ins
	BlockPasteStream

 	Paste Column
	Alt+Ins
	BlockPasteColumn

 	Paste Line
	BlockPasteLine

 	Clear
	Ctrl+Del
	BlockKill

 	Line
	Opens submenu Line

 	Quote Literal...
	Ctrl+Q
	InsertChar

 	ASCII Table...
	Ctrl+Sh+A
	ASCIITable

 Line

 	Entry
 	Key (if any)
 	Command / macro

 	Insert line
	Shift+Enter
	LineInsert

 	Add line
	Alt+Enter
	LineAdd

 	Split line
	Ctrl+Enter
	LineSplit

 	Join line
	Ctrl+J
	LineJoin

 	Duplicate line
	Ctrl+D
	LineDuplicate

 	Delete line
	Ctrl+Y
	KillLine

 	Center line
	LineCenter

 	Delete to line end
	Alt+End
	KillToLineEnd

 	Delete to line start
	Ctrl+Sh+BackSp
	KillToLineStart

 	Comment
	Ctrl+Alt+C
	MoveLineStart; ?FindReplace /^(\s*)/ /\/\/ \1/ "xnc"; MoveDown

 	Uncomment
	Ctrl+Alt+U
	MoveLineStart; ?FindReplace /^[\/][\/] / // "xnc"; MoveDown

 	Uppercase
	LineCaseUp

 	Lowercase
	LineCaseDown

 	Togglecase
	LineCaseToggle

 	Rot13
	LineTrans 'A-Za-z' 'N-ZA-Mn-za-m'

 	User specified...
	LineTrans

 You may have noted that this commenting
 lines out / back in is in the style of C programming. This behaviour should be
 expected to be adapted to what is considered a comment in different
 languages.

 Block

 	Entry
 	Key (if any)
 	Command / action

 	Unmark
	Esc
	BlockUnmark

 	Mark Stream
	Alt+A
	BlockMarkStream

 	Mark Column
	Alt+K
	BlockMarkColumn

 	Mark Line
	Alt+L
	BlockMarkLine

 	Select Word
	BlockSelectWord

 	Select Line
	BlockSelectLine

 	Write...
	BlockWrite

 	Read Stream...
	BlockReadStream

 	Read Column...
	BlockReadColumn

 	Read Line...
	BlockReadLine

 	Print
	BlockPrint

 	Indent
	Alt+I
	BlockIndent

 	Unindent
	Alt+U
	BlockUnindent

 	ReIndent
	Alt+\
	BlockReIndent

 	Translate
	Opens submenu Translate.

 	Expand Tabs
	BlockUnTab

 	Generate Tabs
	BlockEnTab

 	Sort
	BlockSort

 	Sort Reverse
	BlockSortReverse

 Translate

 	Entry
 	Command / macro

 	Uppercase
	BlockCaseUp

 	Lowercase
	BlockCaseDown

 	Togglecase
	BlockCaseToggle

 	Rot13
	BlockTrans 'A-Za-z' 'N-ZA-Mn-za-m'

 	User specified...
	BlockTrans

 Search

 	Entry
 	Key (if any)
 	Command / action

 	Find...
	Ctrl+F
	Find

 	Find Next
	Ctrl+G
	FindRepeat

 	Find Prev
	Ctrl+H
	FindRepeatReverse

 	Find and Replace...
	Ctrl+R
	FindReplace

 	Place Bookmark...
	PlaceBookmark

 	Goto Bookmark...
	GotoBookmark

 	Tags
	Opens submenu Tags

 	Match Parenthesis
	Alt+-
	MatchBracket

 	Goto Line...
	Alt+J
	MoveToLine

 	Goto Column...
	MoveToColumn

 	Current Word
	Opens submenu SearchWords

 SearchWords

 	Entry
 	Key (if any)
 	Command

 	Search Prev
	Alt+,
	SearchWordPrev

 	Search Next
	Alt+.
	SearchWordNext

 	Highlight
	Alt+/
	HilitWord

 Tags

 "Tags" are a way of creating automated hypertext links between, for
 example, function calls and function definitions (even across files!).

 For this to work with the file(s) currently being edited, another index (or
 "tag") file must have been generated first by CTags (see http://ctags.sourceforge.net/) or
 an equivalent program.

 From the CTags manual:

 Ctags generates an index (or "tag") file of names found in a set of
 files in a number of languages. Depending on the language, functions,
 variables, class members, macros and so on may be indexed. This tag file
 allows these items to be quickly and easily located by a text editor or
 other utility. A "tag" signifies a language object for which an index entry
 is available (or, alternatively, the index entry created for that
 object).

 Alternatively, ctags can generate a cross reference file which lists, in
 human readable form, information about the various source objects found in a
 set of language files.

 Typically, you would want to know if something in one file is referenced in
 others. Once loaded in the editor, the tags file acts as a proxy allowing to
 jump between all references in the 'regular' files to the items listed in the
 tags. Some additional examples could be:

 	We are editing the editor configuration and we want to check if matching
 colorize and eventmaps are defined. Or, some menu imports
 as submenu another menu from another file. The names of these objects would
 be in the tags file.

 	Elements of an HTML document with class or id
 attributes could have these used as "." or "#" selectors in a CSS file.
 The attribute values would be in the tags file.

 	Entry
 	Key (if any)
 	Command

 	Find word
	Ctrl+]
	TagFindWord

 	Search tag...
	Ctrl+Sh+]
	TagFind

 	Go back
	Ctrl+[
	TagPop

 	Next tag
	Alt+]
	TagNext

 	Previous tag
	Alt+[
	TagPrev

 	Load tags...
	TagLoad

 	Clear tags
	TagClear

 An expected difficulty when trying to use the CTags feature is lack of
 support for more modern languages. This should not be a problem because CTags
 was developed with flexibility and extensibility in mind, but sometimes it is
 for users because the documentation is not all that clear about how to add
 that support themselves.

 Support for new languages must be added to CTags via command line
 parameters, or adding these to its configuration file (.ctags). This
 is an editor-centric example of support for the eFTE2 config 'language' as
 must be added to the CTags configuration:

 --langdef=fte

 --langmap=fte:.fte

 --regex-fte=/^[\t]*menu[\t]+(.*)[\t]+/\1/u,usermenu,UI menu definitions/

 --regex-fte=/^[\t]*colorize[\t]+([A-Za-z0-9_-]+)([\t]*:[\t]*([A-Za-z0-9_-]+)[\t*])/\1 \3/c,colorize,syntax highlight schemes/

 --regex-fte=/^[\t]*eventmap[\t]+([A-Za-z0-9_-]+)([\t]*:[\t]*([A-Za-z0-9_-]+)[\t*])/\1 \3/e,eventmap,menu and key bindings/

 --regex-fte=/^[\t]*mode[\t]+([A-Za-z0-9_-]+)([\t]*:[\t]*([A-Za-z0-9_-]+)[\t*])/\1 \3/m,mode,editing modes/

 Please note that the syntax used for CTags regular
 expressions is a bit different from the one eFTE2
 uses.

 Fold

 The idea behind folding is that the text you are editing is often composed
 of conceptual blocks that you want to be reminded of, but don't necessarily
 want to have to scroll through. For example, a programmer might want to see
 all the methods of a class on screen at once, but not necessarily the whole
 implementation of each method (and if you did show the implementation, it
 would not all fit on one screen). But even more than programming code, one
 thing that benefits *hugely* from folding is HTML. Here is an example, based
 on the HTML source of this manual:

 <h4>SaveFolds</h4> (0:10)
<h4>Colorizer</h4> [0]
 Specifies a previously declared colorize mode to use for syntax
 highlighting in this editing mode.
<h4>Loading files in various formats</h4> (0:43)

 The first and last line here are color-highlighted within eFTE2 itself.
 The parenthesis (also color-highlighted to stand out) after the folded lines
 quickly tell you that, e.g., the "SaveFolds" section has 10 lines in it, and
 is a top-level fold (it might contain sub-folds). It takes just a couple
 keystrokes to fold away "Colorizer" and display the "SaveFolds" body.

 If you happen to need to look at the same file in a different text editor,
 the folds are indicated by comments appropriate to the language being used,
 for example:

 <h4>Loading files in various formats</h4> <!--fold00-->

 It adds a few extra characters to the file, but doesn't interfere with its
 actual function outside of this editor.

 Once the folding concept is illustrated, the 'folding' tasks referenced
 below should not be difficult to understand:

 	Entry
 	Key (if any)
 	Command

 	Open fold
	Ctrl+Gr+
	FoldOpen

 	Open nested folds
	Ctrl+Gr*
	FoldOpenNested

 	Open all folds
	Alt+Gr*
	FoldOpenAll

 	Close fold
	Ctrl+Gr-
	FoldClose

 	Close all folds
	Alt+Gr/
	FoldCloseAll

 	Create fold
	Alt+Gr+
	FoldCreate

 	Create folds by regexp...
	FoldCreateByRegexp

 	Create folds at routines
	FoldCreateAtRoutines

 	Destroy fold
	Alt+Gr-
	FoldDestroy

 	Destroy all folds
	FoldDestroyAll

 	Promote
	Sh+Gr-
	FoldPromote

 	Demote
	Sh+Gr+
	FoldDemote

 	Toggle
	Ctrl+Gr/
	FoldToggleOpenClose

 Options

 The "Options" menu entries let the users change settings that affect the
 behaviour of eFTE2 while editing the file.

 	Entry
 	Key (if any)
 	Command / macro / action

 	Change mode [more]
	Opens a submenu to change the editing mode for current file.

 	Change C indent style
	Opens a submenu to choose from a selection of popular styles.

 	Toggle
	Opens submenu Toggle

 	Insert mode
	C+O C+I
	ToggleInsert

 	Word wrap
	C+O C+W
	ToggleWordWrap

 	Left margin...
	C+O A+[
	ChangeLeftMargin

 	Right margin...
	C+O A+]
	ChangeRightMargin

 	Show markers
	C+O C+.
	ToggleShowMarkers; WinRefresh

 	Highlight tags
	ToggleHilitTags; WinRefresh

 	Show bookmarks
	ToggleShowBookmarks; WinRefresh

 	Show tabs
	C+O Tab
	ToggleShowTabs; WinRefresh

 	Tab size...
	C+O C+T
	ChangeTabSize; WinRefresh

 	Expand tabs
	C+O C+Tab
	ToggleExpandTabs; WinRefresh

 	Insert tabulator
	S+Tab
	InsertTab

 	File Trim EOL
	FileTrim; WinRefresh

 	Indent block
	Alt+\
	BlockReIndent; FileTrim; WinRefresh

 	Print to...
	SetPrintDevice

 Toggle

 	Entry
 	Key (if any)
 	Command

 	Character case
	A+`
	CharCaseToggle

 	Auto indent
	C+O C+A
	ToggleAutoIndent

 	Case sensitive
	C+O C+C
	ToggleMatchCase

 	Trim EOL spaces
	C+O C+E
	ToggleTrim

 	Undo/Redo
	C+O C+U
	ToggleUndo

 	Read only
	C+O C+R
	ToggleReadOnly

 	Keep backups
	ToggleKeepBackups

 	Make backups
	ToggleMakeBackups

 	Backspace Unindents
	ToggleBackSpUnindents

 	Indent with tabs
	ToggleIndentWithTabs

 	Space tabs
	ToggleSpaceTabs

 	Backspace kill tab
	ToggleBackSpKillTab

 	Delete kill tab
	ToggleDeleteKillTab

 Local (pop-up) editing menu

 This is an internally called 'Local' menu, not another entry in the main
 application menu. It pops up while editing a file when you click with the
 2nd mouse button on the background of the editor window, or
 alternatively if you press its key shortcut (Shift+F10 by default).

 It gives access to the most frequently used actions relevant to the
 current file, line, or selected block of text, all of which have been
 covered already:

 	Entry
 	Key
 	Command / macro

 	Unmark
	Esc
	BlockUnmark

 	Cut
	Shift+Del
	BlockCut

 	Copy
	Ctrl+Ins
	BlockCopy

 	Paste
	Shift+Ins
	BlockPasteStream

 	Paste Column
	Alt+Ins
	BlockPasteColumn

 	Delete line
	Ctrl+Y
	KillLine

 	Delete to EOL
	Alt+End
	KillToLineEnd

 	Indent block
	Alt+\
	BlockReIndent; FileTrim; WinRefresh

 	Save
	F2
	FileSave

 	Close
	Alt+Q
	FileClose

 The contents of this menu are customizable as well; note that different
 pop-up menus are available in the other views of eFTE2 (see Non-editing tasks).

 Non-editing tasks

 No tasks under certain application submenus have been covered so
 far—eFTE2 lets the user do other tasks that, being handy to have
 covered from within the editor, and very useful at that, are not part of the
 editing itself, so they have their own separate section.

 Window

 Items under the menu Window let the user decide what information eFTE2
 displays, and how it is visually presented. The task reference and some term
 definitions follow:

 	Entry
 	Key (if any)
 	Command / action

 	New Frame
	FrameNew

 	Split Horizontal
	Ctrl+F4
	WinHSplit

 	Close view
	Shift+Alt+F4
	WinClose

 	Close other views
	F5
	WinZoom

 	Next view
	F4
	WinNext

 	Prev view
	Shift+F4
	WinPrev

 	Load Desktop
	DesktopLoad

 	Save Desktop
	DesktopSave

 	Save Desktop As
	DesktopSaveAs

 	Routines
	Ctrl+I
	ListRoutines

 	Buffers
	Alt+0
	ViewBuffers

 	Directory
	C+M
	DirOpen

 	Frame

 	In GUI environments, a new program window executing eFTE2. Frames can
 be closed one by one, or all at once.

 	View

 	Each eFTE2 window (whether text mode- or a GUI session) may be
 split in sub-displays stacked vertically, named 'views', only one of which
 can have active focus at a time to receive user input. All of them act like
 independent editor windows (syntax highlight, key bindings, status line)
 within the editor display, and the active view controls the common visual
 elements of the display, f.e. contents of the application menu.

 Note that different views are not the same thing as different buffers
 (see note about Views vs. buffersin the next
 section).

 	Desktop

 	A special text file where eFTE2 stores a list of editing buffers,
 position in them, etc. Following the same metaphore as popular operating
 systems, this provides a quick way to replicate previous work sessions by
 opening again the same files and directories that were open at some point
 in time, like returning to a real desktop to continue what was being done
 before leaving it.

 	Routines

 	Buffers

 	Directory

 Routines: parts of a file

 While editing a file, you can open an alternate view (called a buffer) that shows just a summary of the meaningful
 units of your text (function definitions, HTML headings, class declarations,
 etc.), one per line. Highlight any unit from this list and press enter to
 jump there.

 The concept is similar to folds, but operates
 independently of what is folded. Because of the similarity, when editing a
 file eFTE2 actually lets you define file
 folds based on the routines found in it.

 What text constructs the editor will consider as "routines" exactly
 depends on the file type being edited, and thus on the corresponding editing
 mode. In the configuration settings for that mode, routines must be defined using a regular expression that allows the editor to find
 them.

 The routines buffer does not allow for editing, it only allows to select routines to move quickly through
 long files, so its menus have few entries, and others are very simplified
 compared to those shown when editing the file.

 Buffers

 In eFTE2 terminology, a 'buffer' is any channel used to store information
 for the user to select and browse or otherwise work on what is in it. The
 buffers list will show open files, file browser instances, message queues, or
 the EventMapView buffer if open, and can be
 used as a quick way to switch between them, or do some rudimentary managing of
 open files (limited to saving or closing them).

 The buffers list is in itself a buffer, and is thus listed at the top,
 because it is the only one that cannot be closed.

 Unless files are opened in different instances of the editor, operating
 systems cannot show them independently in their tasks lists, so this is the
 only way to list all files currently opened in it.

 It is possible to switch from one editing buffer to the previous or next
 one using the File menu, or jump direclty to one of the first ten using the
 default key combination Alt+#, where # is the buffer number displayed for
 each buffer in the list.

 Notes:

 	Different views can show the same buffer, for
 example a file being edited. They do not edit the file independently,
 though, but only display independently parts of it: if the same [region of
 a] buffer is shown in more than one view, any action that takes place in the
 active one is immediately reflected in the other(s).

 	Different editing buffers can be opened for the same file (for example by
 re-opening it via the file browser), though. If
 this is the case, these can be shown and act totally independently in
 different views.

 Directory

 eFTE2 incorporates a minimal file browser which provides the ability to
 make directories, navigate the file system, and rename or delete individual
 files. (See "Navigate" menu below.)

 The file browser lists, in its own buffer(s),
 the contents of the last directories examined when manually picking files for
 editing.

 "Navigate" menu

 	Entry
 	Key (if any)
 	Command

 	Reload
	Ctrl+R
	Rescan

 	Go < level
	Ctrl+PgUp
	DirGoUp

 	Go > level
	Ctrl+PgDn
	DirGoDown

 	Go to \
	Ctrl+\
	DirGoRoot

 	/ Goto Dir...
	/
	DirGoto

 	Rename File
	RenameFile

 	Make Directory
	MakeDirectory

 	Delete File
	Ctrl+D
	DeleteFile

 Help

 	Entry
 	Key (if any)
 	Command / macro

 	Contents
	F1
	ShowHelp "eFTE2" ""

 	Keyboard
	Alt+F1
	ViewModeMap

 	Show key
	ShowKey

 	About...
	ShowVersion

 On OS/2 systems only (?).

 EventMapView

 From pretty much anywhere in eFTE2, selecting 'keyboard' from the 'Help'
 menu, or pressing the corresponding key combination (Alt+F1 by default) will
 bring up this unique buffer listing keyboard bindings.

 EventMapView list starts with the mode last active when it was invoked,
 then each item in the list shows a key combination plus a dump of the command
 macro that it will execute. The listing will recursively repeat the listing
 for all parent modes linked by inheritance.

 Editing files to be used with other programs

 It is of course possible to write general-purpose text files, or all your
 relevant documents in plain text, but you will be most likely using eFTE2 to
 edit text files following some particular style or structure so the resulting
 file will be used by another application lacking the ability of editing such
 files with the same flexibility and freedom, be it because that is not its
 primary function, or whatever other reason. Examples of this could be:

 	Writing documents to pass on to a typesetting system such as TeX.

 	The sources to some computer program written in programming languages
 like C/C++ before it is compiled.

 	An HTML document to be published online and viewed in internet
 browsers.

 	An interpreted program, e.g. a REXX or Perl script.

 	Online manuals or help for application programs, with internal links and
 different contexts for help or references.

 In all of these cases and many more, the final use of a file with an
 application other than the text editor is the culmination of an often lengthy
 task that could benefit from intermediate stages such as spell-checking,
 testing internal references, suitability for compilation, etc. eFTE2 provides
 the ability not only to invoke external applications to execute such tasks,
 but also to capture and process their output for further use, if relevant,
 within eFTE2.

 For example, a compiler will write to the standard output to inform you
 of mistakes needing your attention at some locations in a program source file
 before it can be further used. If executed from within eFTE2, such compiler
 output could be used to open the file in eFTE2 at those precise locations for
 immediate action to take place.

 Because FTE was initially conceived as a programming editor, the editing
 command and setting that govern this behavior in eFTE2 in each editing mode
 are actually called Compile and CompileRx. However, this feature can be useful in any
 process for which one or more suitable analogs for the compilation / check
 compiler messages for feedback exist. In fact, most entries in the
 standard* 'Tools' pull-down menu do some variant of (some part of)
 it.

 * specific editing modes may execute a substantially different
 set of tasks from their 'Tools' menu.

 Typically, a file must be saved immediately prior to invoking a tool, as
 will be done with the standard ones, so any modifications the tool might make
 to the file will not conflict with those made in the editor since the last
 time the file was saved.

 Output messages from external applications

 There are two basic internal commands to run an external program from
 eFTE2: RunProgram and Compile.

 When RunProgram is used, programs are executed without special
 regarding to any possible output. GUI eFTE2 runs programs aynchronously in a
 separate session, but the text mode version runs them as a child process. In
 this case, it is still possible to read at least the last part of any output
 by pressing Alt+F5*, like in the old Borland IDEs.

 * This is the default key combination. For reference, the
 internal command executed is ShowEntryScreen.

 On the other hand, when an external program is executed via Compile, its output is captured by eFTE2 and put
 into yet another buffer. With the aid of an adequate regular expression to
 parse it, the Messages buffer will let you move quickly through the
 application output and jump from one error to another skipping the rest, or
 return to the exact position in the file that was 'compiled', if that
 information is available.

 This is the local (pop-up) menu task reference for messages buffers:

 	Entry
 	Key (if any)
 	Command / action

 	View error
	Enter
	Activate

 	Previous error
	F11
	CompilePrevError

 	Next error
	F12
	CompileNextError

 Tools: standard external programs

 By default eFTE2 is ready to execute a number of standard tools available
 on most platforms, and suitable for a variety of tasks:

 	Entry
 	Key (if any)
 	Command / action

 	Compile...
	F9
	Compile "wmake -e "

 	Grep...
	Compile "grep -n -I "

 	Make and Load List File *
	MakeListFile

 	Save and ISpell
	FileSave; RunProgram "ispell.exe ".$FilePath; FileReload

 	Shell
	Alt+F9
	RunProgram ""

 	Run...
	Ctrl+F9
	RunProgram

 	Previous error
	F11
	CompilePrevError

 	Next error
	F12
	CompileNextError

 	Messages
	S+F9
	ViewMessages

 	Clear Messages
	ClearMessages

 	CVS
	C+O_C+V
	Opens submenu CVS

 	SVN
	C+O_C+N
	Opens submenu SVN

 * On OS/2 systems only (?). See Notes on
 using Open Watcom, under installation.

 Grep…

 grep is a standard command-line utility for searching plain-text files for
 lines that match a regular expression. Its name
 comes from the "ed" editor command g/re/p ("globally search a regular
 expression and print").

 See https://en.wikipedia.org/wiki/Grep
 for more information.

 ISpell

 Ispell is a program, part of the GNU system, that helps you to correct
 spelling and typographical errors in a file. When presented with a word that
 is not in the dictionary, ispell attempts to find near misses that might
 include the word you meant.

 Supposedly ISpell may be superseded by a similar tool called ASpell, for
 which support might be added in the future.

 Version control in concurrent environments

 Both CVS and SVN are applications for controlling the changes made /
 applied to files in a concurrent work environment. With slightly different
 approaches, CVS and SVN let you compare a set of files in a central
 repository with a local copy, and selectively synchronize either by applying
 individual changes or sets of them in the appropriate direction.

 While primarily intended for cooperative software development, these
 systems can be applied, at least in theory, to any environment meeting the
 aforementioned conditions.

 Detailed use of either versioning system is beyond the intended scope of
 this manual, but under the pull-down menu 'Tools', you can see two sub-menus
 that give direct access to the most frequently used commands of both and
 their output from within eFTE2 with some more specialized macros/internal
 commands:

 CVS

 	Entry
 	Command / action

 	CVS Check
	RunCvs "-n update"

	CVS Update
	RunCvs "update -d"

	CVS Diff
	CvsDiff ""

	CVS Commit
	RunCvsCommit ""

	CVS Add
	RunCvs "add"

	CVS Remove
	RunCvs "remove"

	CVS Status
	RunCvs "status -v"

	CVS
	Cvs

	View CVS
	ViewCvs

	View CVS Diff
	ViewCvsDiff

	View CVS og
	ViewCvsLog

	Clear CVS messages
	ClearCvsMessages

 SVN

 	Entry
 	Command

 	SVN Status
	RunSvn "status"

	SVN Update
	RunSvn "update"

	SVN Diff
	SvnDiff ""

	SVN Commit
	RunSvnCommit ""

	SVN Add
	RunSvn "add"

	SVN Remove
	RunSvn "remove"

	SVN Log
	RunSvn "log"

	SVN Revert
	RunSvn "revert"

	SVN Blame
	RunSvn "blame"

	SVN
	Svn

	View SVN
	ViewSvn

	View SVN Diff
	ViewSvnDiff

	View SVN log
	ViewSvnLog

	Clear SVN messages
	ClearSvnMessages

 Regular expressions

 Introduction

 While most developers might be expected to get acquainted with regular
 expressions at some point, this is not necessarily the case with many
 'regular' users.

 Regular expressions, used extensively within eFTE2, are bits of text that
 often look a lot like file filters with 'wildcards' in them, think f.e. *.txt,
 or *12?.htm?. They also provide an advanced method of representing or
 searching and replacing text in your files, much more powerful than working
 with wildcards or static text strings.

 In most old text editors, and even many word processors, users are not
 expected to do anything significantly beyond inputting text, and maybe simple
 substitution stuff like replacing 'cat' with 'dog', or perhaps ' ,' with ', '
 for the typographically-inclined. Search / replace operations like "find full
 stops not followed by upper case letters" or "replace any sequence of more
 than one space with a single one" are quite often hopelessly impossible
 except using specific, 'advanced' functions or tools present in few
 programs.

 Regular expressions use a relatively simple syntax to encode expressions
 similar to the aforementioned ones in machine-processable form. In most
 regular expression 'dialects' those would look very similar to:

 	.*\.\l

 	"any character string followed by a dot immediately followed by a
 lowercase letter, no spaces in between".

 	\s+

 	"a sequence of at least one blank character (space, tab, newline or
 carriage return)".

 Formally, regular expressions consist of normal characters, and characters
 with a special meaning, called 'operators'. Operators allow you to anchor
 matches, match classes of characters, match a given pattern several times or
 match among alternate patterns. Operators can be also used to group simple
 patterns to form more complex ones. (See regular
 expression match operators for reference.)

 Regular expressions in action

 To illustrate how regular expression matching works, an example might
 come in handy.

 You might want to search for tags with a named anchor inside in an HTML
 file, like <h4>A
 header</h4>.

 Depending on how much details we need to care about within our targeted
 tags, this regular expression might suffice:

 \<(\w+)\>\[^\<]*\<\/a\>\<\/\w+\>

 Borrowing some knowledge from the regular
 expression syntax reference, let's examine a bit more in detail what
 this expression matches:

 	\<(\w+)\>

 	
 \w+ stands for "one or more word characters" (A to Z and a to z plus
 numbers in most cases). Being between parenthesis, whatever it matches
 must be registered for later use, and it must also be enclosed in angled
 brackets "<" and ">", so that expression bit efectively means "find
 and remember any single word between < and >", or in HTML terms,
 "any opening tag, without attributes".

 Notes:

 	w is escaped so it means "word character" instead of being taken as
 a regular letter; on the other hand, both "<" and ">" have to be
 escaped to be taken literally and not as regular expression
 operators.

 	Only the tag name is registered, without the angled brackets—
 these are outside the parenthesis.

 	\

 	This is again an a tag with the attribute name being
 assigned some value between double quotes. The value, [^"]*, can
 thus be any string of zero or more (the * bit) characters other
 than the double quote (^"). Whatever is inside the quotes is
 registered for future reference as well.

 	[^\<]*

 	Any number of characters (again even none at all) other than "<"
 (escaped with "\"). This goes on until a new HTML tag opening character
 "<" or the next one in the expression are found in the text.

 	\<\/a\>\<\/\w+\>

 	The closing tag "", followed by any other closing
 tag. Note that in reasonably well-formed HTML this would match the first
 tag, but this covers mismatched tags as well.

 So this expression will match any HTML string following that precise
 pattern. Some examples might be:

 	<h1>Title</h1>

 	<h2>Some intermediate
 header</h1>

 	<h3></h3>

 	<p>This might be a
 footnote.</p>

 In general, it is best to start matching text with simple regular
 expressions that match text quite rigidly and gradually incorporate elements
 that may or may not be present in the text to be matched, to make them more
 flexible and effective: for example, the matching expression above could
 account for extra tag attributes, or spaces around them too.

 After a pattern is thus matched to a regular expression, it can be replaced
 with a simple text string or another pattern with its own operators. (See
 regular expression replacement operators for
 reference.)

 In the example above, we might want to modernize the HTML code, and
 replace the name attribute of the anchor tag with an id
 attribute for the opening tag, keeping the same value, and get rid of the
 anchor altogether. Using the same expression as before, the following one
 could be a suitable replacement: <\1 id="\2">\3<\/\1>
 (note the same tag is used twice now to ensure opening and closing tags of
 the element do match).

 The above would replace the previous matched tags examples with:

 	<h1 id=“start”>Title</h1>

 	<h2 id=“section_n”>Some intermediate
 header</h2>

 	<h3 id=“please_fill_in”></h3>

 	<p id=“note_on_xyz”>This might be a
 footnote.</p>

 N.B.: If you inspect closely example #2, you will see how both
 opening and closing tags now do match.

 Regular expressions in eFTE2

 Regular expressions can be typed in eFTE2 when doing Find / Replace
 operations, but they are also used in many parts of the configuration, be it
 to define editing mode file names, the text constructs that make up the proper
 routines in that particular mode, ways to analyze output of other programs, or
 as part of macro commands involving Find / Replace actions, for example in the
 alternate HTML mode 'Tools' menu. Naturally, the same syntax and operators are
 used everywhere; see the regular expressions
 reference for details.

 Editing modes (example: HTML)

 This section of the manual is intended to illustrate the kind of enhanced
 editing you can expect from mature specialized editing modes, part of the
 decision-­making involved in writing some parts, and how using them can
 make your life easier. HTML mode will be used as an example, leaving out as
 many details about HTML itself as possible.

 This new editing mode builds up on plain mode, and
 thus shares all of its functionality and menus, but also extends them by
 adding some automated editing functions written with the HTML format
 peculiarities in mind.

 These functions are accessible through hotkeys and two application menu
 entries, corresponding to two main categories: a new one simply called 'HTML',
 and 'Tools', where a number of submenus have been changed or added.

 For this manual, it will suffice to consider HTML as regular text
 interspersed with special constructs called 'entities' and 'tags' (not to be
 confused with search tags). Regular text is mostly
 unpredictable in its input patterns, and already covered by the standard
 editing functions anyway, so enhancements to HTML editing are aimed directly
 at dealing with these special elements.

 New colors schemes

 Different types of text (programming code, tagged text) may have specific
 syntax rules that benefit greatly from coloring.

 HTML tags follow a rigid syntax, so one thing that definitely helps to
 write them right is coloring, or syntax highlighting, i.e. when editing an
 HTML file, different colors are used to write all parts of a tag so you can
 not only spot them against the normal text they are interspersed with, but
 also so you can tell whether they are well formed or not at a glance.

 HTML tags are written like this:

 <tag attribute=“value”[more attributes...
]>text</tag>

 So in eFTE2 you should see the symbols <, >, / and = in the code
 punctuation color when they are part of a tag, and different colors for 'tag',
 'attribute', 'value' and 'text'.

 Text colors are changed and assigned at different positions according to
 the sequence of characters found prior to getting there. F.e., in HTML
 specifically the colorizer is programmed so that '<' triggers the change
 from default color to punctuation, then to 'tag', and '>' gets back to
 'normal' from 'tag'. Also, while in 'tag' sub-mode, 'attribute' is entered
 automatically at the first space, and '=' and quotes change from 'attribute'
 to 'value', etc.

 Now, the colorizer goes a little yet important step beyond that: you are
 not supposed to make up your tag or attribute names, but to pick them from
 pre-defined lists. Being a mere text-editor eFTE2 will of course let you type
 anything you want, but at the same time, if you use words which are not in the
 lists for tags or attributes, yet another color is used so you can tell on the
 spot whether your code matches what is programmed into the editing mode. It
 can even color a few 'forbidden' keywords from other lists.

 Now, the colorizer goes a little yet important step beyond that: you are
 not supposed to make up your tag or attribute names, but to pick them from
 pre-defined lists. Being a mere text-editor, eFTE2 will of course let you type
 anything you want while, at the same time, it will try to match your input
 against word lists. This lets several colors be used so you can tell on the
 fly whether your input matches any 'allowed' (or 'forbidden'!) keywords on
 different spots.

 Examples:

 	<MyTag>You are not supposed to do this</MyTag>

 	<p MyAttribute="do not do this either">More made-up stuff</p>

 	<p style="text-align: center;">Now this is legal</p>

 	<center>Was deprecated years ago</center>

 New editing functions

 Every entry under the menu "HTML" is devoted to speed up writing HTML
 tags and entities. These can be classified in several groups according to
 their complexity, but all items within the same group are equivalent for all
 practical editing purposes, so only a working description of each group will
 be given.

 HTML entities, colors, single tags

 A first approach could be automatic insertion of text strings that are
 hard to memorize, or long to type, for example HTML entities. That is
 exactly what you will find under the submenus "Colors" or "Special
 characters". No more trying to remember whether 'black' is '#000000' or
 something completely different. Just put the cursor where you want it,
 select the right menu, and the editor will write it in for you. Ditto
 for math symbols or what have you.

 Tag pairs

 The next level in complexity stems from most HTML tags coming in opening
 and closing pairs, f.e.: <i>this should be cursive</i>.

 An easy try at this could be to have the editor to write both tags at
 once, f.e. "<i></i>". Short as this is (two or three
 keystrokes vs. typing both these shortest tags), it wouldn't be quite
 practical: HTML tag pairs enclose text between them most of the time, so any
 carefully written macro should take this into account.

 And indeed, the method currently employed to write HTML tag pairs does that
 precisely: it will move to the start of any block of text selected, write an
 opening tag, then move to the end of the block, and write the closig tag; if
 no text is selected at all upon invocation, the whole process falls back
 to writing both tags at cursor position.

 If you try it, you may wonder why such tag pair injections leave any text
 selected previously plus the newly injected tags selected upon termination.
 The reason is simple: doing so provides an easier way to serialize these
 operations. Imagine you need to enclose a text block in two tag pairs. If the
 first enclosing ended and unselected the block, it would be necessary to select
 it again for the second one, and only you (the user) can do that, so you are
 required to do it—by hand. On the other hand, if the block is left
 selected, the second enclosing can be executed directly. But what if no second
 operation were to be performed, you may ask? Well, unmarking the block can be
 done with just an additional keystroke, or, and this is the good part, with an
 additional automated operation.

 Tags that need to be at a specific location

 Some HTML tags need to be at specific locations; for example, DTD tags must
 be at the very top of the file, and encoding tags need to be in the HTML head
 block, but before any other tag within it, especially the document title, to
 avoid getting funny-looking characters.

 If you were editing a file and suddenly you remembered you need to include
 one of these tags, you would need to search for the appropriate location to
 insert them, and then type them in (or do it from one of those menus intended
 to save you precious time). But the necessary location is marked, so moving
 the cursor there can be done as well with an automated search!

 And that is exactly what all entries under 'Base tags' or 'Document head'
 do: they insert the required tag(s) only after making sure a suitable location
 is found in the file, and moving the cursor there.

 Putting it all together

 As with all good building block sets, the ability to automatically write
 tags at cursor position, or at specific locations, is pretty much all that is
 needed to create a more complex structure, such as a new HTML document (empty
 but for the necessary tags) from scratch—it is just a matter of doing
 all of those things sequentially, so that would be the next logical step in
 automatisation.

 But can more interesting things be done? after all, it is even easier
 to have empty document templates in store than creating them from scratch
 every time, no mater if it takes only a few keystrokes. It would be really
 much nicer to have the possibility of combining HTML templates with existing
 text documents.

 Said and done. We could enclose existing text in HTML tags, couldn't we?
 So, let's just open an ASCII text file in HTML mode, select its whole
 contents, and an HTML template can be built around it before going on with the
 editing! It is nearly the same thing as the multiple tag inclusions discussed
 in the previous section.

 And a new whole submenu under 'HTML' is born: 'Create structures' (from
 text).

 New and tailored tools

 Besides adding tags to text faster than simply typing them, there is the
 question of dealing with HTML already written in a document opened for
 editing. All tags start with "<", and end with ">", so they are easy to
 find for doing some nifty tricks!:

 Zap tags

 First thing would be getting rid of tags quickly. Under "Tools" you will
 find a "Zap HTML tags" submenu:

 	< >? Current <? >

 	Assumes cursor is inside a tag (between "<" and ">"), and
 deletes the whole tag. If cursor is between two tags, they both and any
 text between them will be erased.

 Examples:

 	<!-- this whole comment [cursor] will be erased -->

 	

 	<p>This whole paragraph [cursor] will be erased.</p>

 	Previous

 	
 Looks up first tag ending anywhere before the current cursor position,
 and deletes it. Cursor does not even need to be moved near the tag.

 Example:

 <p class=“tag to be deleted”>Some
 text [cursor] … </p>

 	Next

 	Looks up any tag starting anywhere to right of cursor, and deletes it.
 (The closing </p> in the example above.)

 	Both

 	
 Performs both previous operations.

 Example:

 "<p>Some [cursor] text.</p>" → "Some
 [cursor] text."

 Duplicate tags

 If for some reason existing HTML tags must be duplicated, the tools
 described above are replicated under "Duplicate HTML tags", but they will
 copy and paste again the tags instead of deleting them.

 Elements: text between tags

 A simple definition for an HTML element could be "plain text enclosed
 between matching opening and closing tags," for example:

 <p>A simple text paragraph.</p>

 Some obvious operations can be greatly accelerated with the right
 specialized tools:

 	Complete closing tag

 	
 This will look for any tag starting before the cursor, and will add a
 matching closing tag at the end of the line the cursor is in.

 Example:

 <p>This paragraph will have a closing tag
 added...

 [cursor] somewhere.<!-- Here -->

 	Complete opening tag

 	
 This will look for any ending tag starting after the cursor, and will
 add a matching opening tag at the beginning of the line the cursor is
 in.

 Example:

 <!-- Opening tag will be created here -->This
 paragraph wasn't properly started [cursor], but it can be—

 as long as this closing tag is found:</p>

 	Split at cursor

 	
 If the cursor is placed before an element closing tag, it can be
 split in two at cursor by replicating the closing tag. Example:

 <p>Some text.[cursor]Some more text.</p>

 will be split into:

 <p>Some text.</p>[cursor]<p>Some more
 text</p>

 	Merge with next

 	
 Sometimes, two adjacent elements must be merged, which is
 equivalent to deleting the end tag of the first, the open tag of the
 next, and the space in between. Example:

 <p>This text[cursor]</p>

 <p>should be connected</p>

 will be merged like this:

 <p>This text[cursor]should be
 connected</p>

 Please note these 'element' operations are not aware of the Document Object
 Model, or HTML well-formedness, and they are not a
 magic wand, just some basic tools oriented at speeding up manual editing of
 reasonably clean HTML code. They are easy to trip up if you are not
 careful!

 Metadata extraction

 It is quite frequent to find HTML documents which contents have been merely
 pasted on some template system, so the document will look OK at first glance
 but soon enough you'll start spotting details like the document title being,
 well, 'document title'. A couple of extra tools have been included to automate
 doing some search, copy and text replacement to palliate common cases of such
 sloppy publishing.

 Under the submenu "Extract metadata" you will find:

 	Title

 	Looks for the first h1 element available in the document,
 copies its contents, and replaces any document title element with that.

 	Author

 	Looks for an element similar to <p
 class=“author”>Name here</p>, and adds a
 meta tag to the file replicating that information.

 Extended search and replace

 Recurrent search and replace operations in HTML can be too tedious and
 complicated to type them in every time, so they are best automated too. All of
 the following can be performed from the corresponding menus in any selected
 block of text:

 	Make empty elements (non-)self-closing, f.e.:
 ↔

.

 	Transform non-ASCII characters to HTML entities and viceversa. (According
 to selected encodings.)

 	Convert named entites to numeric, and viceversa.

 	Convert ASCII constructs to HTML, like simplified entitites (f.e.
 "(c)" for "©"), line breaks, paragraphs, etc.

 HTML Tidy (external application)

 Specialized HTML editing macros and all, when editing HTML it is easy to
 make mistakes. From the Tidy website:

 Wouldn't it be nice if there was a simple way to fix these mistakes
 automatically and tidy up sloppy editing into nicely layed out markup? HTML
 TIDY is a free utility for doing just that. It also works great on the
 atrociously hard to read markup generated by specialized HTML editors and
 conversion tools, and can help you identify where you need to pay further
 attention on making your pages more accessible to people with
 disabilities.

 Tidy is able to fix up a wide range of problems and to bring to your
 attention things that you need to work on yourself. Each item found is
 listed with the line number and column so that you can see where the problem
 lies in your markup. Tidy won't generate a cleaned up version when there are
 problems that it can't be sure of how to handle. These are logged as
 "errors" rather than "warnings".

 Tidy will be invoked directly from the 'Tools' after choosing the current
 HTML file encoding from its submenu. For this to work, Tidy must be available
 in your PATH (or its equivalent in Unix systems).

 Alternate editing modes included

 Currently, eFTE2 incorporates all these mode definitions in its
 configuration. This listing was generated from a tags
 file.

 	Mode name
 	Definition file
 	Inherits from mode
 	Additional information

 	GL
 	m_4gl.fte
 	SOURCE
 	

 	ASM51
 	m_a51.fte
 	SOURCE
 	

 	Ada
 	m_ada.fte
 	SOURCE
 	

 	ASM
 	m_asm.fte
 	SOURCE
 	

 	ASM370
 	m_asm370.fte
 	SOURCE
 	

 	BASIC
 	m_basic.fte
 	SOURCE
 	http://www.freebasic.net

 	Batch
 	m_batch.fte
 	PLAIN
 	DOS .BAT and JP Software Command Processor BTM files,
 by Michael DeBusk

 	BIN
 	m_bin.fte
 	PLAIN
 	Binary mode

 	C
 	m_c.fte
 	SOURCE
 	

 	CATBS
 	m_catbs.fte
 	PLAIN
 	For viewing nroff output (do NOT use for editing)

 	CLARION
 	m_clario.fte
 	SOURCE
 	

 	CMAKE
 	m_cmake.fte
 	PLAIN
 	

 	CNFGSYS
 	m_cnfgs.fte
 	PLAIN
 	DOS and OS/2 CONFIG.SYS files, by Michael DeBusk

 	CSS
 	m_css.fte
 	PLAIN
 	Cascading Style Sheets (*.CSS) files to dress up HTML.

 	DIFF
 	m_diff.fte
 	PLAIN
 	

 	EBNF
 	m_ebnf.fte
 	PLAIN
 	

 	Eiffel
 	m_eiffel.fte
 	SOURCE
 	

 	EUPHORIA
 	m_euphoria.fte
 	SOURCE
 	http://openeuphoria.org/

 	FALCON
 	m_falcon.fte
 	SOURCE
 	

 	FORTRAN
 	m_fort90.fte
 	SOURCE
 	Fortran-90

 	FTE
 	m_fte.fte
 	SOURCE
 	The editor configuration 'language'.

 	GAWK
 	m_gawk.fte
 	SOURCE
 	

 	GROOVY
 	m_groovy.fte
 	SOURCE
 	

 	HTML
 	m_html.fte
 	PLAIN
 	Internet sites are woven HyperText Markup Language.

 	ICON
 	m_icon.fte
 	SOURCE
 	https://www2.cs.arizona.edu/icon/index.htm

 	IDL
 	m_idl.fte
 	C
 	

 	IPF
 	m_ipf.fte
 	PLAIN
 	Text source format for IBM Information Presentation Facility
 binary online help and manuals (INF/HLP).

 	JAVA
 	m_java.fte
 	SOURCE
 	C without pointers?

 	LDSGML
 	m_ldsgml.fte
 	MARKUP
 	LinuxDoc SGML

 	LISAAC
 	m_lisaac.fte
 	SOURCE
 	http://isaacproject.u-strasbg.fr

 	Lua
 	m_lua.fte
 	SOURCE
 	

 	MAKE
 	m_make.fte
 	PLAIN
 	

 	MARKUP
 	m_markup.fte
 	PLAIN
 	The theory: all markup modes should inherit from this mode, which
 enables the user to easily modify preferences for all markup file
 types.

 	MERGE
 	m_merge.fte
 	PLAIN
 	

 	MODULA3
 	m_mod3.fte
 	SOURCE
 	Modula-3

 	MSG
 	m_msg.fte
 	TEXT
 	EMail messages

 	MVSASM
 	m_mvsasm.fte
 	SOURCE
 	

 	OCAML
 	m_ocaml.fte
 	PLAIN
 	

 	PASCAL
 	m_pascal.fte
 	SOURCE
 	

 	PERL
 	m_perl.fte
 	SOURCE
 	

 	PHP
 	m_php.fte
 	SOURCE
 	A popular server-side HTML preprocessing programming language.

 	PYTHON
 	m_py.fte
 	SOURCE
 	

 	RESOURCE
 	m_resdlg.fte
 	PLAIN
 	OS/2 and Win* dialog resource files.

 	REXX
 	m_rexx.fte
 	SOURCE
 	

 	NETREXX
 	m_rexx.fte
 	REXX
 	

 	RPM
 	m_rpm.fte
 	SOURCE
 	RPM spec files

 	reST
 	m_rst.fte
 	PLAIN
 	ReStucturedText files, http://docutils.sourceforge.net/

 	Ruby
 	m_ruby.fte
 	SOURCE
 	

 	SGML
 	m_sgml.fte
 	MARKUP
 	

 	SH
 	m_sh.fte
 	SOURCE
 	

 	SIOD
 	m_siod.fte
 	SOURCE
 	

 	sl
 	m_sl.fte
 	SOURCE
 	SLang

 	SML
 	m_sml.fte
 	SOURCE
 	

 	SOURCE
 	m_source.fte
 	PLAIN
 	The theory: All source modes should inherit from this mode which
 enables the user to easily modify preferences for all source code file
 types.

 	SQL
 	m_sql.fte
 	SOURCE
 	

 	TCL
 	m_tcl.fte
 	SOURCE
 	

 	TEX
 	m_tex.fte
 	MARKUP
 	

 	TEXINFO
 	m_texi.fte
 	MARKUP
 	

 	TEXT
 	m_text.fte
 	PLAIN
 	

 	TRP
 	m_trp.fte
 	SOURCE
 	Trap reports generated by Exceptq/MapXQS.

 	UNREALSCRIPT
	m_unrealscript.fte
	C
 	

 	VHDL
 	m_vhdl.fte
 	SOURCE
 	

 	WIS
 	m_wis.fte
 	PLAIN
 	WarpIN installer script

 	XML
 	m_xml.fte
 	MARKUP
 	

 	XSLT
 	m_xslt.fte
 	HTML
 	

Customizing and extending eFTE2

 Every major user interface feature in eFTE2 can be customized to fit your
 preferences or extend its functionality by editing the configuration, which
 is directly loaded from .FTE files, like edefault.fte. This file
 should be located and kept in the installation directory of eFTE2 as a
 failsafe mechanism:

 Since the configuration is plain text, it can be edited from within eFTE2
 itself. However, it is not possible to reload the configuration on the fly
 (yet?), and any syntax errors in the configuration will prevent eFTE2 from
 opening until they are fixed, so it is recommendable to leave eFTE2 open after
 editing and open a second instance to test the changes. If it fails you can
 easily edit/back out the changes in the first instance.

 Another possibility is to make a copy of the current configuration and
 edit that instead. eFTE2 can switch between configurations using the
 -c command line switch followed by the
 full path to the alternate configuration.

 If everything fails, use the "efte -!…" string from the error message.
 This will open the configuration at the problem line while using the default
 configuration.

 Configuration files

 To make management of complex configurations easier, the eFTE2
 configuration is by default broken down into several smaller modules (modes,
 menus, keys) that are linked together via include directives in them.
 However, all configuration parameters of linked separate files are
 incorporated to the same single configuration space, which is referred to in
 this manual as 'the configuration (file)' for short.

 On startup, the editor will attempt to load the configuration starting from
 mymain.fte in any of several standard places including:

 	The eFTE2 install directory (can be named anything)

 	efte\config

 	efte\local

 and under the "Program Files" and "HOME" directories from your environment.
 If you want the configuration files somewhere else or if eFTE2 is having
 trouble finding mymain.fte, you can use the environment variable
 EFTEDIR with SET EFTEDIR = <MYPATH>. eFTE2 will look
 in that directory and in a config and/or local subdirectory.
 If you have several sets of configuration files use SET EFTEDIR in a
 script to switch between them.

 Four 'compiler directives' are defined to conditionally include or exclude
 configuration files. The directives are %if, %endif,
 %define and %undefine. They behave as expected and
 !, the "not" character, can be used in the defines. Do not try to
 put comments (or anything else) on these lines, as this will result in a
 syntax error. White space is tolerated. In the last section of the manual
 there is a complete reference of the configuration
 sections and syntax.

 Note that the include directives allow different configurations
 to share important, non-changing bits.

 In mymain.fte you can select the global UI style and color
 scheme as explained in the following section, or you
 can skip it and go to the main configuration file, main.fte. There
 you will find the global configuration settings,
 and includes to start linking editing modes and menus.

 Interface colors

 eFTE2 user interface colors are defined in pal_base.fte and
 grouped together in different color schemes in other FTE configuration files
 (pal_*.fte), which are selectively included in the main
 configuration file to allow for easy customization.

 You can select any pre-made color scheme editing the file
 mymain.fte, edit the color schemes themselves, or create your own to
 be included anywhere in the configuration.

 Color symbolic names and UI editor objects (f.e scroll bars) are linked to
 one another in color.fte.

 Except for the possibility of rendering text or other objects unreadable
 or invisible with the same color for both foreground and background, changing
 the interface colors is independent of the rest of eFTE2 functionality.

 The syntax for color settings is:

 color_palette { { 'name', 'value' } [, …] }

 where 'name' is any symbolic name string defined for later use in any
 other parts of the configuration dealing with color, and 'value' is either a
 colon-separated pair of symbolic names as previously defined, or a
 space-separated couple of numeric values, corresponding to the standard PC
 color numbering in text video modes; the first item in 'value' is for the
 background color, the second one is for the foreground.

 In the default configuration, pal_base.fte maps numeric colors to
 symbolic names like this:

 { 'black', '0 0' }

 which are then used in pal_*.fte color schemes like this:

 { 'Editor_Selected', 'black:darkCyan' }

 All numeric color values are listed in the color
 reference.

 Text and colors: syntax highlighting

 It would make very little sense to define different colors for text as seen
 in pal*.fte files if all text
 were to be rendered in the same one. eFTE2 lets the user to define sets of
 rules governing how text will change color as special symbols, words, or
 combinations of them are found, and form patterns that make edition easier for
 the user.

 This is done creating a colorizer in the configuration. The safest
 way to try this is to create a new file, say test.fte, and then
 optionally include it from the main configuration files with
 "oinclude test.fte". This way, if this file breaks the configuration,
 it will suffice to rename or delete it and the editor will start as normal
 when it is not found.

 Coloring files

 The absolute minimum to do text highlighting would obviously be two colors.
 To do things a bit more interesting, four are defined here for internal use
 (assuming they actually map to four different colors as defined in the
 pal*.fte). This is a working skeleton test.fte file to
 expand:

 colorize TEST {
 SyntaxParser = 'SIMPLE';
 color {
 { 'Normal', 'Editor_Default' },
 { 'Number', 'Lang_DecimalNumber' },
 { 'Punctuation', 'Lang_Punctuation' },
 { 'Comment', 'Lang_Comment' },
 };
}
mode TEST {
 FileNameRx = /\.\c{TST}$/;
 HilitOn = 1;
 Colorizer = 'TEST';
}

 This will make eFTE2 open *.tst files in 'test' mode, all text in
 one color. Note the colorize is not bound in itself to file
 extensions, nor the other way round. This allows for the same colorizer to be
 used for different file extensions if necessary.

 Changing colors

 To alternate between colors, rules must be specified in the
 colorize section, after the color pairings between
 'internal' colors just declared for highlighting and global color categories
 defined for the editor in pal*.fte. The rules for color change
 correspond to transitions in a 'state machine'. The first state must be
 declared like this:

 colorize TEST {
 SyntaxParser = 'SIMPLE';
 color { [...] };
 h_state 0 { 'Normal' }
}

 which should make all text appear in 'Normal' color, or any of the other
 three if the rule is changed accordingly.

 Let us imagine now that test files allow for comments, ignoring
 all text appearing between the character '#' and the end of each line. This
 will require a second state and transitions from state 0 to 1 and back to be
 declared like this:

 colorize TEST { [...]
 h_state 0 { 'Normal' }
 h_trans { 1, '', '#', 'Comment' }
 h_state 1 { 'Comment' }
 h_trans { 0, '$', '', 'Normal' }
}

 which should result in lines of test files being split in two
 color regions on either side of wherever the character '#' appears.

 Now some more color could be applied, for example, to mathematical
 operations:

 colorize TEST { [...]
 h_state 0 { 'Normal' }
 k_trans { 0, 's', '-+:=;<>', 'Punctuation' }
 h_trans { 0, 'x', '[0-9]+', 'Number' }
 h_trans { 1, '', '#', 'Comment' }
 h_state 1 { 'Comment' }
 h_trans { 0, '$', '', 'Normal' }
}

 Note that the two new highlight rules operate completely within state 0, so
 no coloring of numbers or operators takes place in the comments, to the right
 of '#'s. An inverted coloring pattern could be easily defined on the comments
 side like this:

 colorize TEST { [...]
 h_state 0 { 'Normal' }
 h_trans { 0, 's', '-+:=;<>', 'Punctuation' }
 h_trans { 0, 'x', '[0-9]+', 'Number' }
 h_trans { 1, '', '#', 'Comment' }
 h_state 1 { 'Comment' }
 h_trans { 1, 's', '-+:=;<>', 'Normal' }
 h_trans { 1, 'x', '[0-9]+', 'Punctuation' }
 h_trans { 0, '$', '', 'Normal' }
}

 Additionally, rules for highlighting specific keywords can be added to each
 state, either within a given state or with the possibility of state
 transitions when keywords are matched or not. The mechanism, though, remains
 essentially the same: as the editor explores the file contents, all characters
 found are checked against states and transition rules to be given a
 corresponding color. If the file contents are altered, so may the colors
 downstream be.

 Please note that all transition rules for any given state are tested
 sequentially, that is, the moment a token in the file matches a transition
 rule, no more of them are tested, and the cursor is advanced in the file to
 start checking again the rules against the new token. It is generally a good
 idea to put more specific rules ahead of more general ones in order to reduce
 the likelihood of interference.

 Syntax highlighting and text coloring can get complicated, and ten or
 more states are not a rarity among common colorizers; however, most cases can
 be adequately and briefly dealt with after the basic transitions outlined
 above are properly mastered.

 Extending editing functionality: macros

 Macros are sequences of actions executed automatically to speed up text
 editing. Once defined, macros are activated either by pressing an appropriate
 key combination or through interface menus, or when invoked from other
 macros.

 Example: putting quotes around some text is done by moving the
 cursor to the beginning of the text, inserting a quote character ("), and
 doing the same again after moving the cursor to the end of the text to be
 quoted. This could be automated by defining a macro to execute after
 selecting some text.

 In the configuration, macros are semicolon-separated series of commands
 between curly braces, i.e.:

 {
 <command>; # (f.e. InsertString "Hello World!";)
 […;]
 <command;>
}

 Any number of commands in the sequence can be
 in the same line; except for the last one, all of them must be followed by a
 semicolon.

The example mentioned above could thus look like this:

 { MoveBlockStart; InsertString '"';
MoveBlockEnd; InsertString '"' }

 Commands in a macro can be optionally preceded by a whole number and a
 colon to be executed more than once (f.e.: 3:MoveDown), and a question mark
 if failing should not halt the macro (f.e.: ?Replace_1; ?Replace_2;
 ?Replace_3 …, or 2:?Find '/').

 Macro execution will end after the last command is executed, or halt when
 the first command not marked with '?' fails.

 Example — two command sets:

 	Find 'place'; InsertString "X";

 	?Find 'place'; InsertString "X";

 These behave the same if 'place' is found ⇒ cursor is moved there, and
 an X marks the spot.

 OTOH if 'place' is not found, a) stops right there, whereas b) goes on and
 most likely the X ends up in the wrong place…

 Easy access to macros: menus

 The first way a user might want to invoke an editing macro, being
 unfamiliar with the editor, would be selecting it from a menu. Let us assume,
 then, that you want to use the example macro that was described before to put
 quotes around blocks of text.

 Now, a natural place to put something like this might be the 'Block' menu,
 and that must be done at a specific location: ui_m_fte.fte, or
 whatever other UI style linked from main.fte—that one is simply
 the default.

 The code for the menu block will look very similar to the following, maybe
 with different key shortcut
 labels:

 menu Block {
 item "&Unmark\tEsc" { BlockUnmark }
 item "Mark &Stream\tAlt+A" { BlockMarkStream }
 item "Mark &Column\tAlt+K" { BlockMarkColumn }
 item "Mark &Line\tAlt+L" { BlockMarkLine }
 item;
 item "Select Wor&d" { BlockSelectWord }
 item "Selec&t Line" { BlockSelectLine }
 item;
 item "&Write…" { BlockWrite }
 item "&Read Stream…" { BlockReadStream }
 item "Re&ad Column…" { BlockReadColumn }
 item "Rea&d Line…" { BlockReadLine }
 item "&Print" { BlockPrint }
 item;
 item "&Indent\tAlt+I" { BlockIndent }
 item "U&nindent\tAlt+U" { BlockUnindent }
 item "R&eIndent\tAlt+\" { BlockReIndent }
 item;
 submenu "Translat&e", Translate;
 item "E&xpand Tabs" { BlockUnTab }
 item "&Generate Tabs" { BlockEnTab }
 item "Sor&t" { BlockSort }
 item "Sort Re&verse" { BlockSortReverse }
}

 Please note that shortcut keys are not
 really defined in the menu entries—if they exist, mere courtesy to the
 user dictates they ought to be reflected there. This might not be necessary in
 the future.

 All you need to include in the code above is these lines before the closing
 curly brace (well, the first line is not really necessary):

 menu Block {
 ...
 item;
 item "Put block in quotes"
 { MoveBlockStart; InsertString '"'; MoveBlockEnd; InsertString '"' }
}

 The next time the editor is started, the item "Put block in quotes" will
 be the last one in the 'Block' menu, ready to go when selected after selecting
 some block of text.

 But it would be even better to be able to invoke any user defined macros
 with their own shortcut keys, wouldn't it? After all, the purpose of having
 macros is to save time and every keystroke counts.

 Instead of binding the same series of commands again to some key definition
 we will get to, the first real step to saving work would be to name the macro
 so it can be invoked just like any other command—from the menu above (or
 any other), via some key combination, or even from other macros.

 This should be easy enough:

 sub BlockQuote {
 SavePos;
 MoveBlockStart; InsertString '"';
 MoveBlockEnd; InsertString '"' ;
 MoveSavedPos;
}

 Actually, commands in any macro can be either internal commands (such as
 MoveRight) or other macros that have been previously defined: any macro meant to
 be invoked by others must be declared before them.

 Example: if we intend to have a macro like

 sub ComplexStuff {
 [command(s);]
 SimpleStuff;
 [more command(s)]
}

 where "SimpleStuff" is another macro we have created, SimpleStuff must
 appear in the configuration before ComplexStuff.

 So, where in the configuration must named macros appear exactly?

 If you have a look at main.fte, you will see that a bunch of
 "mode" (m_*.fte) files are included together. If you browse the bigger ones,
 you will see they include named macros in their bodies, but these are not
 enclosed in other sections. This means macros are global to the configuration,
 so putting them in one file or the other is just a matter of helping to
 manage complex configurations more easily.

 Since the merging of contents into configuration space is done
 sequentially, care must be taken so files containing macro definitions that
 invoke other macros are included in the right order, but that is all there is
 to it. In general, though, putting macros for one "mode" into that m_*.fte
 file is enough—it is unlikely that macros conceived for some specific
 purpose are to be invoked from more than one mode.

 But what is a "mode", anyway?

 Editing "modes"

 A mode is a collection of basic editor settings (such as tab size,
 or what is considered a comment) plus editing macros, menus, syntax
 highlighting, and/or sets of key combinations that are
 bound together to ease editing of specific file types—all of these
 settings are available at the same time when editing files of given types,
 thus conforming an 'editing mode' for them. Modes are declared like this in
 the configuration:

 mode new[:old] { mode settings
 }

 The mode named new inherits its initial settings from old parent mode if one is
 specified at declaration, then overrules any values with its own.

 Loading files in various formats

 Here are appropriate settings for loading files in various formats:

 	DOS/Win/OS2/NT text files (CR/LF delimited):

 	StripChar 13

 LineChar 10

 AddCR 1

 AddLF 1

 	Unix text files (LF delimited):

 	StripChar -1

 LineChar 10

 AddCR 0

 AddLF 1

 	MAC text files (CR delimited):

 	StripChar -1

 LineChar 13

 AddCR 1

 AddLF 0

 	Binary files (fixed record length):

 	StripChar -1

 LineChar -1

 AddCR 0

 AddLF 0

 LoadMargin 64

 ForceNewLine 0

 Mode selection

 To determine what mode to use for a file, eFTE2 will first check if such
 mode has been established by the command FileOpenInMode or a command line option
 (-m).

 If no mode has been set, the file name is then matched to all FileNameRx defined in mode declarations.

 If a mode has not been determined like that yet, the first line of the
 file will be read (up to 80 chars), to try and match it with the FirstLineRx declarations of all modes.

 If all of the above fails, the editor will use the mode specified by the
 global setting DefaultModeName to
 load a file. If such mode does not exist, the first mode defined in the
 configuration will be used.

 Mode, syntax highlight and event maps

 Besides colors for syntax highlighting, the most visible effects in the
 editor come from "event maps". Remember, macros,
 syntax highlighting and menus are defined globally so they can be shared and
 linked to different editing modes when/where appropriate. eventmap
 sections of the configuration are used to bind user events (key presses and
 activation of menus) to one another and to specific modes.

 Both syntax highlighting schemes and user events are linked to a given mode
 either by having in the configuration a corresponding configuration section
 of the appropriate type with the same name, i.e.:

 mode 'MYMODE'[:PARENT] { mode settings }

 colorize 'MYMODE'[:PARENT] { eventmap settings }

 eventmap 'MYMODE'[:PARENT] { eventmap settings }

 or by establishing the values EventMap
 or Colorizerin the mode settings.

 This allows for similar modes to share eventmap and/or
 colorize definitions without the need to have additional sections
 that just inherit settings from a previous one.

 Contributor's note: this also seems to be a fail-safe mechanism, as
 inferred from some notes in the configuration (notably ui_vi.fte
 file) which read "make sure proper eventmap is used".

 Event maps

 Eventmap settings sections of the configuration may include activation of
 menus, keybindings, and abbreviations as well. If <PARENT> if specified
 in the definition, any <PARENT> settings will be inherited by
 <MYMODE>.

 The references for establishing the mode menus and
 keybindings for a mode should be
 self-explanatory.

 Key combinations can be bound to any macro, just like menu items. Again,
 all commands in the macro are executed in sequence until one of them
 fails.

 Keybindings are inherited from parent modes and optionally overriden.

 Key names can be preceded by modifiers A, C, G, S (for Alt, Control,
 Shift, and Grey (numeric pad)). If modifier is followed by a + (plus),
 the key specification will be matched only if the modifier key is pressed.
 If the modifier is followed by - (minus), the state of the modifier key
 is ignored.

 Keybinding examples

 Here are some examples of key specifications (see configuration files
 under config/kbd for more):

 	[A]

 	Uppercase a

 	[a]

 	Lowercase a

 	[;]

 	Semicolon

 	[A+A]

 	Alt+A

 	[C+B]

 	Ctrl+B

 	[A+C+F1]

 	Alt+Ctrl+F1

 	[A+C+S+F1]

 	Alt+Ctrl+Shift+F1

 	[A+Space]

 	Alt+Space

 	[C+K_C+B]

 	Ctrl+K and then Ctrl+B (two keys)

 	[C+A_C+B_C+C]

 	Ctrl+A, Ctrl+B and Ctrl+C must be pressed in sequence.

 	[G+-]

 	Gray -

 	[G++]

 	Gray +

 	[C-S-X]

 	X, ignore the state of Ctrl and Shift keys.

 	[C+\\]

 	Ctrl+Backslash

 	[C+\[]

 	Ctrl+[

 	[C+G-Left]

 	Ctrl+Left, ignore difference between the two Left keys.

 	[C+A-A]

 	Ctrl+A, ignore the state of Alt key.

 Abbreviations

 Abbreviations are used to automatically replace some text or run an editor
 macro when some word is typed in. When a non-word character is entered, the
 previous word is searched for in the list of abbreviations. If it is found,
 the word is either replaced with a new string or a macro is executed.

 Some examples of abbreviations:

 abbrev 'wcsw' 'WinCreateStdWindow';

 abbrev 'ifx' {
 KillWordPrev; InsertString 'if () {'; LineIndent; LineNew;
 InsertString '}'; LineIndent;
 MoveUp; MoveLineEnd; 3:MoveLeft;
 Fail; # do not insert typed character
}

 The first one defines a replacement string, while the second one defines
 an editor macro to be run.

 N.B.: For abbreviations to work, setting Abbreviations must be set to 1 for active mode.

Configuration reference

 Sections, directives, and comments

 The syntax for eFTE2 configuration sections is:

 type [name[:parent]] { settings }

 	type

 	One of object, color_palette, global, sub, colorize, mode,
 eventmap.

 	name

 	Section object may have the privileged name GLOBAL,
 color_palette can't have a name, sub can't have a
 parent.

 	settings

 	Each section type has its own settings syntax.

 Comments start with # anywhere in a line and last until the end
 of the line.

 Note: comments are not allowed in lines starting with compiler
 directives %if, %endif, %define, or
 %undefine.

 Sections and %if/%endif blocks can be enclosed in one another.

 When split across several files, the configuration can incude other files
 via the include command. Its twin command oinclude is meant
 for optional files in which users should make their changes, so updating the
 base files leaves them intact. Including non-existing files will not halt
 loading the configuration if done via oinclude.

 Syntax:

 [o]include '[folder/]file.fte';

 Strings

 Strings can be specified using any of ' " / characters.

 Single quoted strings perform no substitution. To include ' or
 \ in a string, it must be preceded with a backslash.

 Double quoted strings perform the following substitutions:

 	\t -> ^I, tab character

 	\r -> ^M, CR

 	\n -> ^J, LF

 	\e -> ^[, escape character

 	\v -> ^L, vertical tab

 	\b -> ^H, backspace

 	\a -> ^G, bell

 Strings started by / character require no escaping (except for
 '/'). Mostly useful for specifying regular expressions
 without double backslashes that are necessary in single and double quoted
 strings. In turn, regular expression operators must be escaped to be interpreted
 as literal characters while operating with regular expressions.

 Regular expressions

 This is the reference for the particular syntax and operators of regular
 expressions in eFTE2, which may be different from other implementations you
 are used to. In particular, eFTE2 currently lacks operators to indicate match
 lengths other than conditional 0 or 1, but there may be more differences, so
 please read carefully.

 Also, regular expression match and replace can be conditioned by some flags. These flags are unrelated to regular expressions
 themselves, and are the same used for literal text in search and replace commands.

 Match Operators

 	\

 	(Un)quotes the following character: alphanumeric characters gain a
 special meaning as described below, and non-alphanumeric operators are
 interpreted literally (f.e. "\." comes to mean "a single dot" instead of
 "any character").

 	\n

 	Matches a 0x0A (LF) character.

 	\r

 	Matches a 0x0D (CR) character.

 	\t

 	Matches a 0x09 (TAB) character.

 	\e

 	Matches an escape character (0x1B).

 	\s

 	Matches whitespace (CR, LF, TAB, SPACE) characters.

 	\S

 	Matches non-whitespace (the reverse of \s).

 	\w

 	Matches word character [a-zA-Z0-9].

 	\W

 	Matches non-word character.

 	\d

 	Matches a digit [0-9].

 	\D

 	Matches a non-digit.

 	\U

 	Matches uppercase characters (A-Z).

 	\L

 	Matches lowercase characters (a-z).

 	\x##

 	Matches specified hex value (\x0A, \x0D, \x09, etc.).

 	\o###

 	Matches specified octal value (\o000, \o015, etc.).

 	\N###

 	Matches specified decimal value (\N000, \N013, \N009, etc.).

 	\C

 	Starts case sensitive matching.

 	\c

 	Starts case insensitive matching.

 	^

 	Match a beginning of line.

 	$

 	Match an end of line.

 	.

 	Match any character.

 	<

 	Match beginning of word (word consists of [A-Za-z0-9]).

 	>

 	Match end of word.

 	[]

 	Specifies a class of characters ([abc123], [\]\x10], etc), any of which will be matched individually.

 	[-]

 	Specifies a range of characters ([0-9a-zA-Z_], [0-9], etc).

 	[^]

 	Specifies complement class ([^a-z], [^\-], etc).

 	?

 	Matches preceding pattern optionally (a?bc, filename\.?, $?, etc.).

 	|

 	Matches preceding or next pattern (a|b, c|d, abc|d). Only one character
 will be used as pattern unless grouped together using parenthesis (), or
 curly braces {}.

 	*

 	Match zero or more occurances of preceding pattern. Matching is greedy
 and will match as much as possible.

 	+

 	Match one or more occurances of preceding pattern. Match is greedy.

 	@

 	Match zero or more occurances of preceding pattern. Matching is
 non-greedy and will match as little as possible without causing the rest of
 the pattern match to fail.

 	#

 	Match one or more occurances of preceding pattern. Matching is
 non-greedy.

 	{ }

 	Group patterns together to form complex patterns (f.e.: {abc},
 {abc}|{cde}, {abc}?, {word}?).

 	()

 	Group patterns together to form complex patterns. Also used to save the
 matched substring into the register which can be used for substitution
 operation. Up to 9 registers can be used.

 Replacement Operators

 	\

 	Causes next character to alternate between being interpreted literally,
 or as a special character. F.e.: \0, or \\ to get a literal "\".

 	\0

 	Recalls entire matched pattern.

 	\1 to \9

 	Recalls stored substrings from registers (\1, \2, \3, to \9).

 	\n

 	Inserts a 0x0A (LF) character.

 	\r

 	Inserts a 0x0D (CR) character.

 	\t

 	Inserts a 0x09 (TAB) character.

 	\u

 	Convert next character to uppercase.

 	\l

 	Convert next character to lowercase.

 	\U

 	Convert to uppercase till \E or \e.

 	\L

 	Convert to lowercase till \E or \e.

 Global Settings

 Note: Many of these have been lifted from the original FTE
 documentation without further verification. They are styled
 like this text.

 The following settings can be used in the object GLOBAL
 section of the configuration. Some of the options are platform specific (to be
 fixed).

 	DefaultModeName

 	Default mode name for loading/editing files. If not set or invalid,
 first mode in the configuration file will be used instead. By default set
 to 'PLAIN'.

 	CompletionFilter

 	A regular expression. Files matching it are
 ignored when doing filename completion.

 	CompileRx

 	Defines regular expressions and their
 subpattern indices to match when searching for errors and warnings in
 compilation output. First number is an index of the subpattern that matches
 filename. The second must match the line number, the third parameter is the
 regular expression to match to each line of the compiler output.

 	OpenAfterClose

 	If set to 1, editor will prompt for another file when all files are
 closed.

 	SysClipboard

 	When set to 1, editor will use external (PM, X11) clipboard instead of
 internal one.

 	ScreenSizeX

 	Number of columns visible on screen or window.

 	ScreenSizeY

 	Number of lines visible on screen or window.

 	CursorInsertStart

 	Starting percentage of cursor size (from top) when in insert mode.

 	CursorInsertEnd

 	Ending percentage of cursor size when in insert mode.

 	CursorOverStart

 	Starting percentage of cursor size when in overstrike mode.

 	CursorOverEnd

 	Ending percentage of cursor size when in overstrike mode.

 	SelectPathname

 	If set to 1, pathname will be selected by default when prompting for a
 file in FileOpen function. If set to 0, pathname
 will not be selected, this allows you to quickly type a new filename,
 without erasing an entire entryfield.

 	ShowMenuBar

 	If set to 1, main menu bar will be visible.

 	ShowVScroll

 	If set to 1, scroll bar will be visible.

 	ShowHScroll

 	If set to 1, scroll bar will be visible.

 	KeepHistory

 	If set to 1, last file position and input prompt history will be loaded
 on startup and saved on exit. Can be overriden with command line option
 '-h'.

 	LoadDesktopOnEntry

 	
 If set to 1, all files listed in desktop
 file in current directory or program directory will be loaded into
 eFTE2. The desktop file can be overriden with command line option
 '-d'.

 If set to 2, desktop is only loaded (and saved) if there are no files
 specified on the command line.

 	SaveDesktopOnExit

 	If set to 1, desktop will be automatically saved when ExitEditor command is issued.

 	KeepMessages

 	If set to 1, compiler messages will be kept until deleted by user.

 	ScrollBorderX

 	Horizontal offset to the border before window starts scrolling.

 	ScrollBorderY

 	Vertical offset to the border before window starts scrolling.

 	ScrollJumpX

 	Scroll window by this many columns when cursor reaches scrolling
 border.

 	ScrollJumpY

 	Scroll window by this many lines when cursor reaches scrolling
 border.

 	C_*

 	
 Define the C mode smart indentation parameters.

 See section on configuring C mode
 indentation.

 	REXX_Indent

 	Defines the REXX basic indentation level.

 C mode Smart Indentation settings

 	C_Indent

 	Basic C indentation level.

 	C_BraceOfs

 	Brace '{' offset.

 	C_CaseOfs

 	Offset of case and default statements.

 	C_CaseDelta

 	Offsets of statements following case/default.

 	C_ClassOfs

 	Offset of public, private and protected.

 	C_ClassDelta

 	Offset of statements following public, private, protected.

 	C_ColonOfs

 	Offset of labels.

 	C_CommentOfs

 	Offset of comments.

 	C_CommentDelta

 	Offset of second line of comments.

 	C_FirstLevelWidth

 	Width of the first indentation level (indent of '{' in the function
 start).

 	C_FirstLevelIndent

 	Indentation of statements in the first indentation level.

 	C_ParenDelta

 	When ≥ 0, offset of continued text after '('. When set to -1, the
 offset is equal to position of '(' plus one.

 Example 1:

 class line {
public: // C_ClassOfs = 0
 line(); // C_ClassDelta = 4
 ~line();
};
int main() {
 int x = 1;
 /* // C_CommentOfs = 0
 * check value // C_CommentDelta = 1
 */
 puts("main"); // C_Indent = 4
 if (x)
 { // C_BraceOfs = 0
 switch (x) {
 case 1: // C_CaseOfs = 0
 puts("ok"); // C_CaseDelta = 4
 break;
 }
 }
end:
 return 0;
}

 Example 2:

 class line {
 public: // C_ClassOfs = 2
 line(); // C_ClassDelta = 2
 ~line();
};
int main() {
 int x = 1;
 /* // C_CommentOfs = 2
 ** check value // C_CommentDelta = 0
 */
 puts("main"); // C_Indent = 4
 if (x)
 { // C_BraceOfs = 0
 switch (x) {
 case 1: // C_CaseOfs = 4
 puts("ok"); // C_CaseDelta = 4
 break;
 }
 }
end:
 return 0;
}

 Interface colors

 The syntax for color settings is:

 color_palette { { 'name', 'value' } [, …] }

 	name

 	Any symbolic name defined here for later use.

 	value

 	Either a colon-separated pair of symbolic names, or a space-separated
 pair of numeric values; the first item in 'value' is for background, the
 second one for foreground.

 Numeric values of colors:

 	0 (High bit 0, RGB mask 000)

 	Black

 	1 (High bit 0, RGB mask 001)

 	Dark Blue

 	2 (High bit 0, RGB mask 010)

 	Dark Green

 	3 (High bit 0, RGB mask 011)

 	Dark Cyan

 	4 (High bit 0, RGB mask 100)

 	Dark Red

 	5 (High bit 0, RGB mask 101)

 	Dark Magenta

 	6 (High bit 0, RGB mask 110)

 	Orange

 	7 (High bit 0, RGB mask 111)

 	Pale Gray

 	8 (High bit 1, RGB mask 000)

 	Dark Gray

 	9 (High bit 1, RGB mask 001)

 	Blue

 	A (High bit 1, RGB mask 010)

 	Green

 	B (High bit 1, RGB mask 011)

 	Cyan

 	C (High bit 1, RGB mask 100)

 	Red

 	D (High bit 1, RGB mask 101)

 	Magenta

 	E (High bit 1, RGB mask 110)

 	Yellow

 	F (High bit 1, RGB mask 111)

 	White

 Syntax highlighting

 Syntax:

 colorize new[:old] { settings }

 If specified, colorizer <new> inherits settings from
 <old>.

 Settings:

 	SyntaxParser = "<parser>";

 	
 Activates the specified syntax parser for highlighting mode.
 <Parser> can be any of:

 	PLAIN

 	No syntax parser, only keyword
 highlighting is available.

 	SIMPLE

 	User configurable syntax parser will be
 defined.

 	C

 	REXX

 	HTML

 	PERL

 	MAKE

 	DIFF

 	For viewing output of diff.

 	MERGE

 	For editing output of rcsmerge (RCS, CVS).

 	IPF

 	Ada

 	MSG

 	For editing E-Mail.

 	SH

 	PASCAL

 	TEX

 	FTE

 	CATBS

 	For VIEWING ONLY of nroff formatted man-pages
 (formatted with backspaces).

 	color { { color match } [, { color match }…
] };

 	
 Each "color match" couples color names internal to the colorizer and
 symbolic color names defined globally:

 { "highlight_color", "global_name" }

 highlight_color must be one of "Normal",
 "Keyword", "String", "Comment", "CPreprocessor", "Regexp", "Header",
 "Quotes", "Number", "HexNumber", "OctalNumber", "FloatNumber", "Function",
 "Command", "Tag", "Punctuation", "New", "Old", "Changed", "Control",
 "Separator", "Variable", "Symbol", "Directive", "Label", "Special",
 "QuoteDelim", "RegexpDelim".

 	keyword "color_name" {
 "some_keyword" [, "other_keyword"[, …]]};

 	Multiple keyword sets with different colors can be defined.
 color_name is always a global editor color name.

 Configurable Syntax Parser

 When SyntaxParser is set to "SIMPLE", the following commands can be
 used to configure the state machine used for parsing the text:

 	h_state state_number { "color_name"
 }

 	
 Defines a new state for the state machine.

 States must be numbered sequentially from 0 without skipping any
 numbers.

 The color denoted by internal name will be used for characters that
 are not matched by any transition string or keyword.

 	h_wtype { next_state_if_matched, next_state_if_not_matched,
 next_state_if_otheronly, "state_flags", "keyword_charset" }

 	
 Specifies the keyword matching parameters for current state. There can
 be only one h_wtype keyword per state.

 h_wtype takes the following arguments:

 	next_state_if_matched

 	-1 to keep current state, or the number of the next state to go into
 if a keyword is matched.

 	next_state_if_not_matched

 	-1 to keep current state, or the number of the next state to go into
 if a string other than a keyword is found.

 	next_state_if_otheronly

 	-1 to keep current state, or the number of the next state to go into
 if only characters not in the specified charset are found.

 	state_flags

 	
 String containing zero or more of the following characters:

 	i

 	Keyword matching is performed case-insensitively.

 	keyword_charset

 	A character set such as 'a-zA-Z0-9_$@'.

 	h_trans { next_state, trans_flags, trans_match, 'color_name'
 }

 	
 h_trans defines a new state transition for current state. It
 takes the following parameters:

 	next_state

 	The number of next state to go if a match is successful.

 	trans_flags

 	
 Determines options for matching trans_match. Can contain
 zero or more of the following characters:

 	^

 	Matches only at beginning of line.

 	$

 	Matches only at end of line.

 	i

 	Match is case-insensitive.

 	s

 	trans_match is a character set. Matches only if the
 next character is part of the set. "-" is allowed in
 trans_match to specify ranges of characters, f.e: 'A-J0-9'.
 If "-" is part of the set, it must be the first character in it or
 escaped.

 	S

 	Same as 's' but next character must not be part of the set.

 	x

 	trans_match is a regular expression. If some part of
 expression is enclosed in parentheses, pointer is advanced up to
 the start of parenthesized match (WARNING: this can cause infinite
 loops).

 	-

 	After successfull match, the pointer is not advanced, matching
 will resume at the same position in next state. (WARNING: this can
 cause infinite loops).

 	<

 	The matched character(s) are tagged with current state number.
 This is important for proper operation of
 MatchBracket command.
 MatchBracket will only match braces tagged with same state
 number.

 	>

 	The matched character(s) are tagged with next state number.

 	q

 	On successful match quote the next character (the next
 character is not used for matching).

 	Q

 	On successful match quote the end of line (the end of line is
 not used for matching).

 	trans_match

 	When S or s options are used, a set of characters, any
 of which should be matched. When S or s options are not
 used, a string to be matched. If x is specified,
	trans_match is a regular expression with its corresponding
 matching operators and escaped characters.

 	h_words "color_name" { "some_keyword"
 [,"another_keyword" … }

 	
 Specifies the set of keywords to match in this state. All characters
 in keywords must be part of the keyword_charset in
 h_wtype command for this mode.

 Works the same way as keyword but
 keywords are for current state only.

 Multiple keyword sets with different colors can be defined.

 '-' can be used for color specifier to use the default keyword color
 specified in global settings.

 Editing macros

 A macro can be declared to have a name assigned for invocation, or be
 directly assigned to a menu or keybinding without being declared.

 Syntax:

 sub <macro name> { macro }

 or

 menu <menu name> {
 […;] item "<title>" { macro } [;…]
}

 or

 eventmap <mode…> {
 [...;] key <keybinding> { macro } [;...]
}

 macro breakdown:

 [n:][?]command[; more commands]

 	n

 	How many times command will be executed.

 	?

 	Flag: if present, continue macro execution even if command fails.

 	command

 	Any other macro previously declared, or editor internal command (see next section).

 Internal commands

 Note: Most of these have been lifted from the original FTE
 documentation without further verification. They are styled like this text.

 	Cursor movement

 	Deleting text

 	Line commands

 	Block commands

 	Text editing

 	Folding text

 	Bookmarks

 	Character translation / insertion

 	File commands

 	Directory commands

 	Search and replace

 	Window commands

 	Compiler support

 	CVS support

 	TAGS commands

 	Option commands

 	Miscellaneous commands

 Cursor movement

 	MoveDown

 	Move cursor to next line.

 	MoveUp

 	Move cursor to previous line.

 	MoveLeft

 	Move cursor to previous column.

 	MoveRight

 	Move cursor to next column.

 	MovePrev

 	Move cursor to previous character. Moves to end of the previous line if
 cursor is at the beginning of line.

 	MoveNext

 	Move cursor to next character. Moves to the beginning of next line if
 cursor is at the end of line.

 	MoveWordLeft

 	Move cursor to the beginning of the word on the left.

 	MoveWordRight

 	Move cursor to the beginning of the word on the right.

 	MoveWordPrev

 	Move cursor to the beginning of the previous word.

 	MoveWordNext

 	Move cursor to the beginning of the next word.

 	MoveWordEndLeft

 	Move cursor to the end of the previous word.

 	MoveWordEndRight

 	Move cursor to the end of the word on the right.

 	MoveWordEndPrev

 	Move cursor to the end of the previous word.

 	MoveWordEndNext

 	Move cursor to the end of the next word.

 	MoveWordOrCapLeft

 	Move cursor to the beginning of the word or capital letter on the
 right.

 	MoveWordOrCapRight

 	Move cursor to the beginning of the word or capital letter on the
 left.

 	MoveWordOrCapPrev

 	Move cursor to the beginning of the previous word or to previous
 capital letter.

 	MoveWordOrCapNext

 	Move cursor to the beginning of the next word or to next capital
 letter.

 	
 MoveWordOrCapEndLeft

 	Move cursor to the end of the word or capitals on the left.

 	
 MoveWordOrCapEndRight

 	Move cursor to the end of the word or capitals on the right.

 	
 MoveWordOrCapEndPrev

 	Move cursor to the end of the previous word or capitals.

 	
 MoveWordOrCapEndNext

 	Move cursor to the end of the next word or capitals.

 	MoveLineStart

 	Move cursor to the beginning of line.

 	MoveLineEnd

 	Move cursor to the end of line.

 	MovePageStart

 	Move cursor to the first line on current page.

 	MovePageEnd

 	Move cursor to the last line on currently page.

 	MovePageUp

 	Display previous page.

 	MovePageDown

 	Display next page.

 	MoveFileStart

 	Move cursor to the beginning of file.

 	MoveFileEnd

 	Move cursor to the end of file.

 	MovePageLeft

 	Scroll horizontally to display page on the left.

 	MovePageRight

 	Scroll horizontally to display page on the right.

 	MoveBlockStart

 	Move cursor to the beginning of selected block.

 	MoveBlockEnd

 	Move cursor to end beginning of selected block.

 	MoveFirstNonWhite

 	Move cursor to the first non-blank character on line.

 	MoveLastNonWhite

 	Move cursor to the last non-blank character on line.

 	MovePrevEqualIndent

 	Move cursor to the previous line with equal indentation.

 	MoveNextEqualIndent

 	Move cursor to the next line with equal indentation.

 	MovePrevTab

 	Move cursor to the previous tab position.

 	MoveNextTab

 	Move cursor to the next tab position.

 	MoveTabStart

 	When cursor is on the tab characters, moves it to the beginning of the
 tab.

 	MoveTabEnd

 	When cursor is on the tab characters, moves it to the end of the
 tab.

 	MoveLineTop

 	Scroll the file to make the current line appear on the top of the
 window.

 	MoveLineCenter

 	Scroll the file to make the current line appear on the center of the
 window.

 	MoveLineBottom

 	Scroll the file to make the current line appear on the bottom of the
 window.

 	ScrollLeft

 	Scroll screen left.

 	ScrollRight

 	Scroll screen right.

 	ScrollDown

 	Scroll screen down.

 	ScrollUp

 	Scroll screen up.

 	MoveFoldTop

 	Move to the beginning of current fold.

 	MoveFoldPrev

 	Move to the beginning of previous fold.

 	MoveFoldNext

 	Move to the beginning of next fold.

 	MoveBeginOrNonWhite

 	Move to beginning of line, or to first non blank character.

 	
 MoveBeginLinePageFile

 	Move to the beginning of line. If there already, move to the beginning
 page. If there already, move to the beginning of file.

 	MoveEndLinePageFile

 	Move to the end of line. If there already, move to the end page. If
 there already, move to the end of file.

 	MoveToLine

 	Move to line number given as argument.

 	MoveToColumn

 	Move to column given as argument.

 	MoveSavedPosCol

 	Move to column from saved position.

 	MoveSavedPosRow

 	Move to line from saved position.

 	MoveSavedPos

 	Move to saved position.

 	SavePos

 	Save current cursor position.

 	MovePrevPos

 	Move to last cursor position.

 See also: all commands.

 Deleting text

 	KillLine

 	Delete current line. If the line is the last line in the file, only the
 text is deleted.

 	KillChar

 	Delete character under (after) cursor.

 	KillCharPrev

 	Delete character before cursor.

 	KillWord

 	Delete the word after cursor.

 	KillWordPrev

 	Delete the word before cursor.

 	KillWordOrCap

 	Delete word or capitals after cursor.

 	KillWordOrCapPrev

 	Delete word or capitals before cursor.

 	KillToLineStart

 	Delete characters to the beginning of line.

 	KillToLineEnd

 	Delete characters to the end of line.

 	KillBlock

 	Delete block.

 	KillBlockOrChar

 	If block is marked, delete it, otherwise delete character under
 cursor.

 	KillBlockOrCharPrev

 	If block is marked, delete it, otherwise delete character before
 cursor.

 	Delete

 	Delete character under (after) cursor.

 	BackSpace

 	Delete character before cursor.

 See also: DeleteKillTab,
 DeleteKillBlock,
 BackSpKillTab,
 BackSpKillBlock,
 all commands.

 Line commands

 	LineInsert

 	Insert a new line before the current one.

 	LineAdd

 	Add a new line after the current one.

 	LineSplit

 	Insert line break at cursor position.

 	LineJoin

 	Supress break between current line and the next one. If cursor is
 positioned beyond the end of line, the current line is first padded with
 whitespace.

 	LineNew

 	Insert line break and move to the beginning of the new line.

 	LineIndent

 	Reindent current line.

 	LineTrim

 	Trim whitespace at the end of current line.

 	LineDuplicate

 	Duplicate the current line.

 	LineCenter

 	Center the current line.

 See also: all commands.

 Block commands

 	BlockBegin

 	Set block beginning to current position.

 	BlockEnd

 	Set block end to current position.

 	BlockUnmark

 	Unmark block.

 	BlockCut

 	Cut selected block to clipboard.

 	BlockCopy

 	Copy selected block to clipboard.

 	BlockCutAppend

 	Cut selected block and append it to clipboard.

 	BlockCopyAppend

 	Append selected block to clipboard.

 	BlockClear

 	Clear selected block.

 	BlockPaste

 	Paste clipboard to current position.

 	BlockKill

 	Delete selected text.

 	BlockIndent

 	Indent block by 1 character.

 	BlockUnindent

 	Unindent block by 1 character.

 	BlockMarkStream

 	Start/stop marking stream block.

 	BlockMarkLine

 	Start/stop marking line block.

 	BlockMarkColumn

 	Start/stop marking column block.

 	BlockExtendBegin

 	Start extending selected block following cursor moves.

 	BlockExtendEnd

 	Stop extending selected block.

 	BlockReIndent

 	Reindent entire block (C/REXX mode).

 	BlockSelectWord

 	Select word under cursor as block.

 	BlockSelectLine

 	Select current line as block.

 	BlockSelectPara

 	Select current paragraph (delimited by blank lines) as block.

 	BlockPasteStream

 	Paste clipboard to current position as stream block.

 	BlockPasteLine

 	Paste clipboard to current position as line block.

 	BlockPasteColumn

 	Paste clipboard to current position as column block.

 	BlockPrint

 	Print a block to configured device.

 	BlockRead

 	Read block from file.

 	BlockReadStream

 	Read block from file as stream block.

 	BlockReadLine

 	Read block from file as line block.

 	BlockReadColumn

 	Read block from file as column block.

 	BlockWrite

 	Write marked block to file.

 	BlockSort

 	Sorts the marked block in ascending order. If mode setting MatchCase is
 set, characters will be compared case sensitively. When block is marked in
 Stream or Line mode, the entire lines in marked block will be
 compared. When block is marked in Column
 mode, only characters within marked columns will be compared.

 	BlockSortReverse

 	Sorts the marked block in descending order.

 	BlockUnTab

 	Remove tabs from marked lines.

 	BlockEnTab

 	Generate and optimize tabs in marked lines.

 	BlockMarkFunction

 	Mark current function as block.

 	BlockTrim

 	Trim end-of-line whitespace.

 See also: all commands.

 Text editing

 	Undo

 	Undo last operation.

 	Redo

 	Redo last undone operation.

 See also: all commands.

 Folding text

 	FoldCreate

 	Create fold.

 	FoldCreateByRegexp

 	Create folds at lines matching a regular
 expression.

 	FoldCreateAtRoutines

 	Create folds at lines matching RoutineRegexp.

 	FoldDestroy

 	Destroy fold at current line.

 	FoldDestroyAll

 	Destroy all folds in the file.

 	FoldPromote

 	Promote fold to outer level.

 	FoldDemote

 	Demote fold to inner level.

 	FoldOpen

 	Open fold at current line.

 	FoldOpenNested

 	Open fold and nested folds.

 	FoldClose

 	Close current fold.

 	FoldOpenAll

 	Open all folds in the file.

 	FoldCloseAll

 	Close all folds in the file.

 	FoldToggleOpenClose

 	Toggle open/close current fold.

 See also: all commands.

 Bookmarks

 	PlaceBookmark

 	Place a file-local bookmark.

 	RemoveBookmark

 	Remove a file-local bookmark.

 	GotoBookmark

 	Go to file-local bookmark location.

 	PlaceGlobalBookmark

 	Place global (persistent) bookmark.

 	RemoveGlobalBookmark

 	Remove global bookmark.

 	GotoGlobalBookmark

 	Go to global bookmark location.

 	PushGlobalBookmark

 	Push global bookmark (named as #<num>) to stack.

 	PopGlobalBookmark

 	Pop global bookmark from stack.

 See also: all commands.

 Character translation / insertion

 	CharCaseUp

 	Convert current character to uppercase.

 	CharCaseDown

 	Convert current character to lowercase.

 	CharCaseToggle

 	Toggle case of current character.

 	CharTrans

 	Translate current character (like perl/sed).

 	LineCaseUp

 	Convert current line to uppercase.

 	LineCaseDown

 	Convert current line to lowercase.

 	LineCaseToggle

 	Toggle case of current line.

 	LineTrans

 	Translate characters on current line.

 	BlockCaseUp

 	Convert characters in selected block to uppercase.

 	BlockCaseDown

 	Convert characters in selected block to lowercase.

 	BlockCaseToggle

 	Toggle case of characters in selected block.

 	BlockTrans

 	Translate characters in selected block.

 	InsertString <string>

 	Insert argument string at cursor position.

 	InsertSpace

 	Insert space.

 	InsertChar

 	Insert character argument at cursor position.

 	TypeChar

 	Insert character at cursor position (expanding abbreviations).

 	InsertTab

 	Insert tab character at cursor position.

 	InsertSpacesToTab

 	Insert appropriate number of spaces to simulate a tab.

 	SelfInsert

 	Insert typed character.

 	WrapPara

 	Wrap current paragraph.

 	InsPrevLineChar

 	Insert character in previous line above cursor.

 	InsPrevLineToEol

 	Insert previous line from cursor to end of line.

 	CompleteWord

 	Complete current word to last word starting with the same prefix.

 See also: all commands.

 File commands

 	FileOpen

 	Prompts for file name to open, editing mode is determined automatically. If a directory name is
 specified, the internal file browser is opened.

 	FileOpenInMode "<mode>"

 	Prompts for file name to open using specified mode.

 	FileReload

 	Reload current file.

 	FileSave

 	Save current file.

 	FileSaveAll

 	Save all modified files.

 	FileSaveAs

 	Rename Save current file.

 	FileWriteTo

 	Write current file into another file.

 	FilePrint

 	Print current file.

 	FileClose

 	Close current file.

 	FileCloseAll

 	Close all open files.

 	FileTrim

 	Trim end-of-line whitespace.

 	FilePrev

 	Switch to previous file in ring.

 	FileNext

 	Switch to next file in ring.

 	FileLast

 	Exchange last two files in ring.

 	SwitchTo

 	Switch to numbered buffer given as argument.

 See also: all commands.

 Directory commands

 	DirOpen

 	Open directory browser.

 	DirGoUp

 	Change to parent directory.

 	DirGoDown

 	Change to currently selected directory.

 	DirGoRoot

 	Change to root directory.

 	DirGoto

 	Change to directory given as argument.

 	DirSearchCancel

 	Cancel search.

 	DirSearchNext

 	Find next matching file.

 	DirSearchPrev

 	Find previous matching file.

 	RenameFile

 	MakeDirectory

 See also: all commands.

 Search and replace

 	IncrementalSearch

 	Incremental search.

 	Find [find [flags]]

 FindReplace [find [replace [flags]]]

 	
 Find and FindReplace will interact with the user when
 parameters are omitted. The editor then asks what to find, [what to
 replace it with,] and for the search flags string: "Options (All / Block /
 Cur / Delln / Glob / Igncase / Joinln / Rev / SplitLn / Noask / Word /
 regX):".

 Notes:

 	find and replace can be regular
 expressions.

 	In configuration files, find, replace, and
 flags are either single- or double-quote-, or slash-delimited
 character strings in which the usual
 replacements take place.

 flags string may contain the following characters:

 	a

 	"All matches." If absent only one Find/Replace operation will be
 performed. If present, a Find operation will move cursor position to
 the last match.

 	b

 	Operate within the selected block only (cursor must be located ahead of
 block start).

 	c

 	Include matches at cursor position; default is to skip to next match if
 any.

 	d

 	Delete line containing matched find -> same as replacing with "" +
 LineDelete would do.

 	g

 	Global lookup, i.e. from beginning of file.

 	i

 	Ignore case when matching.

 	j

 	Join line containing matched find with the next line.

 	r

 	Reverse look up (upstream in the file, only for literal
 Find/Replace).

 	s

 	Split line containing match at cursor position.

 	n

 	Do not ask for confirmation (this tag is honored only when invoking
 Find/Replace commands from a configuration file, and not when taken from
 user input?).

 	x

 	Regular expression; if not present, find [and replace] are interpreted
 as literal strings.

 	w

 	"Words only" ?

 	FindRepeat

 	Repeat last find/replace operation, including flags.

 	FindRepeatOnce

 	Repeat last find/replace operation only once.

 	FindRepeatReverse

 	Repeat last find/replace operation in reverse. Not supported in RegExp
 mode (yet?), only literal search works.

 	MatchBracket

 	Find matching bracket ([{<>}]).

 	HilitWord

 	Highlight current word everywhere in the file.

 	SearchWordPrev

 	Search for previous occurence of word under cursor.

 	SearchWordNext

 	Search for next occurence of word under cursor.

 	HilitMatchBracket

 	Highlight matching bracket.

 See also: all commands.

 Window commands

 	WinHSplit

 	Split window horizontally.

 	WinNext

 	Switch to next (bottom) window.

 	WinPrev

 	Switcn to previous (top) window.

 	WinClose

 	Close current window.

 	WinZoom

 	Delete all windows except for current one.

 	WinResize

 	Resize current window (+n,-n given as argument).

 	ViewBuffers

 	View currently open buffers.

 	ListRoutines

 	Display routines in current source file.

 	ExitEditor

 	Exit eFTE2.

 	ShowEntryScreen

 	View external program output if available.

 See also: all commands.

 Compiler support

 	Compile [command]

 	Ask for compile command and run compiler. If command parameter
 is specified, it is offered to the user for completion.

 	RunCompiler

 	Run configured compile command.

 	ViewMessages

 	View compiler output.

 	CompileNextError

 	Switch to next compiler error.

 	CompilePrevError

 	Switch to previous compiler error.

 	RunProgram

 	Run external program.

 See also: all commands.

 CVS support

 	Cvs

 	Ask for CVS options and run CVS.

 	RunCvs

 	Run configured CVS command.

 	ViewCvs

 	View CVS output.

 	ClearCvsMessages

 	Clear CVS messages.

 	CvsDiff

 	Ask for CVS diff options and run CVS.

 	RunCvsDiff

 	Run configured CVS diff command.

 	ViewCvsDiff

 	View CVS diff output.

 	CvsCommit

 	Ask for CVS commit options and run CVS.

 	RunCvsCommit

 	Run configured CVS commit command.

 	ViewCvsLog

 	View CVS log.

 See also: all commands.

 TAGS commands

 eFTE2 supports TAGS files generated by programs like ctags.

 	TagFind

 	Find word argument in tag files.

 	TagFindWord

 	Find word under cursor in tag files.

 	TagNext

 	Switch to next occurance of tag.

 	TagPrev

 	Switch to previous occurance of tag.

 	TagPop

 	Pop saved position from tag stack.

 	TagLoad

 	Load tag file and merge with current tags.

 	TagClear

 	Clear loaded tags.

 	TagGoto

 See also: all commands.

 Option commands

 	ToggleAutoIndent

 	ToggleInsert

 	ToggleExpandTabs

 	ToggleShowTabs

 	ToggleUndo

 	ToggleReadOnly

 	ToggleKeepBackups

 	ToggleMakeBackups

 	ToggleMatchCase

 	ToggleBackSpKillTab

 	ToggleDeleteKillTab

 	ToggleSpaceTabs

 	ToggleIndentWithTabs

 	ToggleBackSpUnindents

 	ToggleWordWrap

 	ToggleTrim

 	ToggleShowMarkers

 	ToggleHilitTags

 	ToggleShowBookmarks

 	SetLeftMargin

 	SetRightMargin

 	ToggleSysClipboard

 	SetPrintDevice

 	ChangeTabSize

 	ChangeLeftMargin

 	ChangeRightMargin

 See also: all commands.

 Miscellaneous commands

 	ShowPosition

 	Show internal position information on status line.

 	ShowVersion

 	Show editor version information.

 	ShowKey

 	Wait for keypress and display modifiers+key pressed in status line.

 	WinRefresh

 	Refresh display.

 	MainMenu

 	Activate main menu.

 	ShowMenu

 	Popup menu specified as argument.

 	LocalMenu

 	Popup context menu.

 	ChangeMode

 	Change active mode for current buffer.

 	ChangeKeys

 	Change keybindings for current buffer.

 	ChangeFlags

 	Change option flags for current buffer.

 	Cancel

 	Activate

 	Rescan

 	CloseActivate

 	ActivateInOtherWindow

 	DeleteFile

 	ASCIITable

 	Display ASCII selector in status line.

 	DesktopSave

 	Save desktop.

 	ClipClear

 	Clear clipboard.

 	DesktopSaveAs

 	Save desktop under a new name.

 	DesktopLoad

 	ChildClose

 	BufListFileSave

 	Save currently selected file in buffer list.

 	BufListFileClose

 	Close currently selected file in buffer list.

 	BufListSearchCancel

 	Cancel search.

 	BufListSearchNext

 	Next match in search.

 	BufListSearchPrev

 	Previous match in search.

 	ViewModeMap

 	Lists current mode keybindings in EventMapView.

 	ClearMessages

 	Clear compiler messages.

 	IndentFunction

 	Indent current function.

 	MoveFunctionPrev

 	Move cursor to previous function.

 	MoveFunctionNext

 	Move cursor to next function.

 	InsertDate

 	Insert date at cursor.

 	InsertUid

 	Insert user name at cursor.

 	FrameNew

 	FrameClose

 	FrameNext

 	FramePrev

 	BufferViewNext

 	BufferViewPrev

 	ShowHelpWord "FileList?" OS-specific?

 	Show context help on keyword.

 	ShowHelp [file? [what?]]

 	Show help manual.

 	ConfigRecompile

 	Recompile editor configuration.

 	SetCIndentStyle

 	Set C indentation style parameters. Has the following parameters:
 C_Indent = 4; C_BraceOfs = 0; C_ParenDelta = -1; C_CaseOfs = 0; C_CaseDelta
 = 4; C_ClassOfs = 0; C_ClassDelta = 4; C_ColonOfs = -4; C_CommentOfs = 0;
 C_CommentDelta = 1; C_FirstLevelWidth = -1; C_FirstLevelIndent = 4;
 C_Continuation = 4;

 	SetIndentWithTabs

 	Set value of indent-with-tabs to argument.

 	ListMark

 	Mark single line in list.

 	ListUnmark

 	Unmark single line in list.

 	ListToggleMark

 	Toggle marking of single line in list.

 	ListMarkAll

 	Mark all lines in list.

 	ListUnmarkAll

 	Unmark all lines in list Toggle marking of all lines in list.

 See also: all commands.

 Menus

 Syntax:

 menu <name> {
 [item ["<title>" { macro }]]

 [; [more items]

 [submenu "<title>", <submenu>]

 [; more items]]

 }

 Menu item definitions are separated by semicolons. This is optional for the
 last menu item. Items without parameters are inactive and split their menu
 into groups.

 	<name>

 	An internal name to refer to the menu from event maps or other
 menus.

 	<submenu>

 	The name of another menu to be opened from this menu
 item.

 Modes

 The syntax of mode definitions is:

 mode NEW[:PARENT] { mode settings }

 Mode named NEW inherits its settings from mode PARENT if
 specified at mode declaration.

 Mode Settings

 The following settings can be specified for each mode:

 	ExpandTabs {0,1}

 	Should be set to 1 if tabs are to be expanded when displayed. Use
 ToggleExpandTabs command to toggle
 during editing.

 	TabSize {1-32}

 	Tab size when tabs are shown expanded on display.

 	AutoIndent {0,1}

 	Should be set to 1 if autoindent is to be used. Use ToggleAutoIndent command to toggle it on/off
 during editing.

 	Insert {0,1}

 	
 If set to 1, Insert mode is active by default. If set to
 0, overwrite mode is active by default.

 Use ToggleInsert command to toggle it
 on/off during editing.

 	StripChar {ASCII code/-1}

 	
 This character will be stripped if found at the end of any lines when
 the file is being loaded. If it is set to -1, no characters will
 be stripped.

 Normally used to strip 13 (CR) characters from DOS text files.

 	LineChar {ASCII code/-1}

 	
 This character is used as a line separator when loading a file. If set
 to -1, there is no line separator. (WARNING: File will be
 loaded as one line if LineChar is set to -1).

 Usually set to 10 (LF) as standard text file line separator.

 	AddCR {0,1}

 	If set to 1, CR (13, \r) character will be added to end of line
 when saving.

 	AddLF {0,1}

 	If set to 1, LF (10, \n) characted will be added to end if line
 when saving.

 	ForceNewLine {0,1}

 	Normally, the last line is saved without any CR/LF characters when
 saving. This setting will override that behaviour.

 	Hilit {0,1}

 	If set to 1, syntax highliting will be active.

 	ShowTabs {0,1}

 	If set to 1, tabs will be visible as circles (EPM-like).

 	IndentMode {PLAIN,C,REXX}

 	Activates the specified smart indent mode. (PLAIN mode specifies no
 smart audoindenting, just normal autoindent).

 	Colorizer <name>

 	Specifies a previously declared colorize
 to use for syntax highlighting in current mode.

 	EventMap <name>

 	Specifies the existing name eventmap to use in current
 mode.

 	UndoLimit {Number}

 	Limit undo to this many recent commands (-1 = unlimited)

 	UndoMoves {0,1}

 	If set to 1, all cursor movements will be recorded on undo stack.

 	MakeBackups {0,1}

 	If set to 1, backup files will be created. KeepBackups
 determines if they are kept after save is successful.

 	KeepBackups {0,1}

 	If set to 0, backup files will be deleted after a successful
 save operation.

 	MatchCase {0,1}

 	If set to 0, searches will be case insensitive. This can be
 toggled via ToggleMatchCase command when
 editor is running.

 	BackSpKillTab {0,1}

 	If set to 1, BackSpace will kill entire
 tabs instead of converting them to spaces.

 	DeleteKillTab {0,1}

 	If set to 1, Delete will kill entire tabs
 instead of converting them to spaces.

 	BackSpUnindents {0,1}

 	If set to 1, BackSpace will unindent to
 previous indentation level if issued on beginning of line.

 	SpaceTabs {0,1}

 	If set to 1, InsertTab command will insert
 spaces instead of tabs.

 	IndentWithTabs {0,1}

 	If set to 1, indentation will be done using tabs instead of
 spaces.

 	WordWrap {0,1,2}

 	If set to 1, editor wrap current line when right margin is reached. If
 set to 2, editor will wrap current paragraph continously. Paragraphs as
 recognised by WrapPara command must be separated
 by blank lines.

 	LeftMargin {1-xx}

 	Left margin for word wrap (WrapPara
 command).

 	RightMargin {1-xx}

 	Right margin for word wrap (WrapPara
 command).

 	Trim {0,1}

 	If set to 1, spaces on the end of line will be trimmed when
 editing.

 	ShowMarkers {0,1}

 	If set to 1, end of line and end of file markers will be shown.

 	CursorTroughTabs {0,1}

 	If set to 1, editor will allow cursor to be positioned inside
 tabs.

 	DefFindOpt 'options'

 	Default search flags for Find
 command.

 	DefFindReplaceOpt 'options'

 	Default search/replace flags for FindReplace command.

 	SaveFolds {0,1,2}

 	If 0, folds are not saved. If 1, folds are saved at beginning of line,
 if 2 folds are saved at end of line.

 	Folds are saved as comments in source files, depending on active
 editing mode.

 	See mode settings CommentStart and
 CommentEnd for configuration of fold
 comments.

 	CommentStart "comment-start-string"

 	String that starts comments (for saving folds)

 	CommentEnd "comment-end-string"

 	String that ends comments

 	AutoHilitParen {0,1}

 	If set to 1, editor will automatically highlight the matching
 bracket if it is visible on screen. This is equivalent to executing the
 command HilitMatchBracket.

 	Abbreviations {0,1}

 	If set to 1, abbreviation expansion will be
 active in this mode.

 	BackSpKillBlock {0,1}

 	If set to 1, BackSpace command will delete
 block if it is marked, otherwise it will delete the previous
 character.

 	DeleteKillBlock {0,1}

 	If set to 1, Delete command will delete block
 if marked, instead of deleting the character below cursor.

 	PersistentBlocks {0,1}

 	If set to 1, blocks will stay marked even if cursor is moved in the
 file, if set to 0, block is unmarked as soon as the cursor is moved.

 	InsertKillBlock {0,1}

 	If set to 1, the marked block is deleted when a new character is
 typed.

 	FileNameRx "regexp"

 	Must be set to <regexp> matching names of files that should be
 edited in this mode. Has priority over FirstLineRx

 	FirstLineRx "regexp"

 	Must be set to <regexp> matching the first line of files that
 should be edited in this mode. This is checked only if no FileNameRx in any mode matches the filename.

 	RoutineRegexp "regexp"

 	
 Regular expression that matches function
 headers or otherwise relevant logical blocks of the file being edited.

 Used by editor commands: ListRoutines,
 MoveFunctionPrev, MoveFunctionNext, BlockMarkFunction, IndentFunction.

 Examples of appropriate settings for loading
 a number of file formats are given in the customization section of the
 manual.

 Eventmap

 eventmap sections are declared with the syntax:

 eventmap mode[:parent] {
 [MainMenu = 'name';]
 [LocalMenu = 'name';]
 [keybindings]
 …
 [abbreviations]
 …
}

 Menu settings

 	MainMenu 'name'

 	Sets menu defined with name in the configuration as the main
 application pull-down menu displayed when working in this mode.

 	LocalMenu 'name'

 	Sets menu defined with name in the configuration as the local,
 pop-up menu used when working in this mode.

 Keybindings

 Keys are bound using the key command with the following
 syntax:

 key [keyspec] { macro
 }

 keyspec (non-optional, but delimited by "[" and "]") is a key
 name, or sequence of them: multiple-key combinations can be specified by
 separating them with "_" (underline).

 Key names are denoted by the characters they return, or the following
 special key names (case sensitive): F1-F12, Home, End, PgUp, PgDn, Insert,
 Delete, Up, Down, Left, Right, Enter, Esc, BackSp, Space, Tab, Center
 (meaning 5 in the numeric pad).

 ASCII characters ≥ 32 are bound to TypeChar by default.

 Key names can be preceded by modifiers A, C, G, S plus "+" or "-"
 flag. - (minus) indicates to ignore modifier key, + (plus)
 indicates to match keyname only if previous modifier key is pressed.

 A number of keybinding examples is
 given in the Customizing section of the manual.

 Abbreviations

 Syntax:

 abbrev 'old-word' 'new-string';

 abbrev 'old-word' { macro }

 N.B.: For abbreviations to work, the setting Abbreviations must be 1 for active mode.

This program, authors, timeline

 WWW: http://svn.netlabs.org/efte

 This is the first version of eFTE2. It is based on eFTE (see README.efte
 and http://sourceforge.net/projects/efte/)
 which in turn is based on FTE (Folding Text Editor, see http://fte.sourceforge.net/). The
 configuration now compiles on the fly.

 License of use

 eFTE2, Version 1.0

 Copyright 2009–2016 by Gregg Young

 Copyright 2008–2009 by eFTE SF Group.

 Copyright 1994–1998 by Marko Macek.

 All rights reserved.

 This program is free software; you can redistribute it and/or modify it
 under the terms of either:

 	the GNU General Public License as published by the Free Software
 Foundation; either version 2, or (at your
 option) any later version, or

 	the "Artistic License" which comes
 with this Kit.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See either
 the GNU General Public License or the Artistic License for more
 details.

 You should have received a copy of the Artistic License with this Kit,
 in the file named "Artistic". If not, I'll be glad to provide one.

 You should also have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software Foundation, Inc.,
 675 Mass Ave, Cambridge, MA 02139, USA.

 GNU GENERAL PUBLIC LICENSE Version 2, June 1991

 Copyright © 1989, 1991 Free Software Foundation, Inc.
 675 Mass Ave, Cambridge, MA 02139, USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The “Program”, below,
refers to any such program or work, and a “work based on the Program”
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 Appendix: How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

 <one line to give the program’s name and a brief idea of what it does.>
 Copyright © 19yy <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright © 19yy name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w’.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w’ and `show c’; they could even be
mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision’ (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

 The "Artistic License"

 Preamble

 The intent of this document is to state the conditions under which a
 Package may be copied, such that the Copyright Holder maintains some
 semblance of artistic control over the development of the package,
 while giving the users of the package the right to use and distribute
 the Package in a more-or-less customary fashion, plus the right to make
 reasonable modifications.

 Definitions

 	"Package"

 	refers to the collection of files distributed by the
	Copyright Holder, and derivatives of that collection of files
	created through textual modification.

 	"Standard Version"

 	refers to such a Package if it has not been
	modified, or has been modified in accordance with the wishes
	of the Copyright Holder as specified below.

 	"Copyright Holder"

 	is whoever is named in the copyright or
	copyrights for the package.

 	"You"

 	is you, if you're thinking about copying or distributing
	this Package.

 	"Reasonable copying fee"

 	is whatever you can justify on the
	basis of media cost, duplication charges, time of people involved,
	and so on. (You will not be required to justify it to the
	Copyright Holder, but only to the computing community at large
	as a market that must bear the fee.)

 	"Freely Available"

 	means that no fee is charged for the item
	itself, though there may be fees involved in handling the item.
	It also means that recipients of the item may redistribute it
	under the same conditions they received it.

 	You may make and give away verbatim copies of the source form of the
 Standard Version of this Package without restriction, provided that you
 duplicate all of the original copyright notices and associated disclaimers.

 	You may apply bug fixes, portability fixes and other modifications
 derived from the Public Domain or from the Copyright Holder. A Package
 modified in such a way shall still be considered the Standard Version.

 	
 You may otherwise modify your copy of this Package in any way, provided
 that you insert a prominent notice in each changed file stating how and
 when you changed that file, and provided that you do at least ONE of the
 following:

 	place your modifications in the Public Domain or otherwise make them
 Freely Available, such as by posting said modifications to Usenet or
 an equivalent medium, or placing the modifications on a major archive
 site such as uunet.uu.net, or by allowing the Copyright Holder to include
 your modifications in the Standard Version of the Package.

 	use the modified Package only within your corporation or organization.

 	rename any non-standard executables so the names do not conflict
 with standard executables, which must also be provided, and provide
 a separate manual page for each non-standard executable that clearly
 documents how it differs from the Standard Version.

 	make other distribution arrangements with the Copyright Holder.

 	
 You may distribute the programs of this Package in object code or
 executable form, provided that you do at least ONE of the
 following:

 	distribute a Standard Version of the executables and library files,
 together with instructions (in the manual page or equivalent) on where
 to get the Standard Version.

 	accompany the distribution with the machine-readable source of
 the Package with your modifications.

 	give non-standard executables non-standard names, and clearly
 document the differences in manual pages (or equivalent), together
 with instructions on where to get the Standard Version.

 	make other distribution arrangements with the Copyright
 Holder.

 	You may charge a reasonable copying fee for any distribution of this
 Package. You may charge any fee you choose for support of this
 Package. You may not charge a fee for this Package itself. However,
 you may distribute this Package in aggregate with other (possibly
 commercial) programs as part of a larger (possibly commercial) software
 distribution provided that you do not advertise this Package as a
 product of your own. You may embed this Package's interpreter within
 an executable of yours (by linking); this shall be construed as a mere
 form of aggregation, provided that the complete Standard Version of the
 interpreter is so embedded.

 	The scripts and library files supplied as input to or produced as
 output from the programs of this Package do not automatically fall
 under the copyright of this Package, but belong to whomever generated
 them, and may be sold commercially, and may be aggregated with this
 Package. If such scripts or library files are aggregated with this
 Package via the so-called "undump" or "unexec" methods of producing a
 binary executable image, then distribution of such an image shall
 neither be construed as a distribution of this Package nor shall it
 fall under the restrictions of Paragraphs 3 and 4, provided that you do
 not represent such an executable image as a Standard Version of this
 Package.

 	C subroutines (or comparably compiled subroutines in other
 languages) supplied by you and linked into this Package in order to
 emulate subroutines and variables of the language defined by this
 Package shall not be considered part of this Package, but are the
 equivalent of input as in Paragraph 6, provided these subroutines do
 not change the language in any way that would cause it to fail the
 regression tests for the language.

 	Aggregation of this Package with a commercial distribution is always
 permitted provided that the use of this Package is embedded; that is,
 when no overt attempt is made to make this Package's interfaces visible
 to the end user of the commercial distribution. Such use shall not be
 construed as a distribution of this Package.

 	The name of the Copyright Holder may not be used to endorse or promote
 products derived from this software without specific prior written
 permission.

 	THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
 IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
 WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

 The End

 Authors

 	Current Author

 	

 		Gregg Young

 	Current Contact Method:

 	

 	http://svn.netlabs.org/efte

 		ygk@qwest.net

 	Earlier Authors

 	

 	Marko Macek

 	Jeremy Cowgar

 	Lauri Nurmi

 	Timo Sirainen

 	Contributors

 	

 	F.Jalvingh

 	Markus F.X.J. Oberhumer

 	Martin Frydl

 	S. Pinigin

 	Zednek Kabelac

 	Don Mahurin

 	Lothar Schmidt

 	Alfredo Fernández Díaz

 	Michael DeBusk

 	Timo Maier

 	John Small

 If you feel your name should be listed but it isn't, please contact us.

 Future, present and past: revision history

 Plans (by Gregg Young)

 In the future you should be able to use eFTE2 with the configuration files
 of an existing FTE install again simply by creating a mymain.fte file
 in the same directory as your old main.fte.

 I have structured the configuration files to make it easier to translate
 the menus. I lack the language skills to do the translations. If you have an
 opportunity to do one or more of the translations please send them to me at
 ygk@qwest.net. The menu files are located
 in the menu_xx (where xx is the language code) subdirectories of the
 config directory. You may add any language with a 2 letter code. Simple create
 a menu_xx subdirectory using the code and place the menus in it. To
 test them copy the direcctory menu_xx to the config directory of an
 eFTE2 install and start eFTE2 with -Lxx (xx = language code) on the command
 line. The edefault.fte also could be translated. If you are
 interested in translating the documentation (help file, etc.) please contact
 me.

 Known issues

 	Occasionally, eFTE2 will trap when starting an external program. The
 problem appears to be an estyler issue. If this is a significant problem for
 you try adding eFTEPM.exe to estyler's exclusion list.

 	Opening some help files with certain keywords will trap newview. This is
 an issue either with newview or with the help file as it occurs when newview
 searches the same term. (e.g. open the Open Watcom 2.0 C Library Reference and
 search for return).

 	Anything placed on the command-line after --debug<clean> is
 ignored. If you wish to use other parameters and or load files with
 --debug<clean> place them before it.

 Revision legend

 	-

	general alteration/note

 	+

	added new feature

 	!

	fixed a bug

 	C

	Configuration file Changes

 As eFTE2

 eFTE/2 1.0 — May 30, 2016

 	- First release of eFTE2 (C)

 	- Branded eFTE to eFTE/2

 	- Migrated to netlabs SVN

 	- Renamed some configuration files and reorganized configuration directories. (C)

 	- Program will still work with old configurations (C)

 	- Build with OpenWatcom

 	+ Changes to ease translation of the menus (C)

 	+ Added Enhanced HTML, CSS, and IPF modes by Alfredo Fernández Díaz (C)

 	+ Added Spanish translation by Alfredo Fernández Díaz (C)

 	+ Added Enhanced REXX editing mode by Michael DeBusk (C)

 	+ Added PHP & MySQL modes by Timo Maier (C)

 	+ Added BAT, BTM, and CONFIG.SYS modes by Michael DeBusk (C)

 	+ Added %undefine configuration compiler directive (C)

 	+ Reactivate the status bar message for toggles (e.g. tells you word wrap has changed to "Auto", "Yes" or "No")

 	+ Updated main.fte to include all available modes (C)

 	+ Moved UI %defines to mymain.fte with possibility to override them in systemmain.fte (C)

 	+ Moved color %defines to mymain.fte (C)

 	! Fixed error messages to always use a dialog box for gui versions

 	! Tolerate white space after "%" directives in configuration files (C)

 	+ Added ability to set the "C" indent style from command-line or by an environment variable

 	+ Restored a default configuration (edefault.fte) (C)

 	+ Move default font size settings to global.fte added myfontsize.fte to allow for over riding the default (C)

 	! Fixed the find dialog layout

 	+ Added latest perl highlighting code from FTE

 	+ Updated help file to reflect changes converted HTML to IPF

 	+ Help contents menu item using F1 accel key to open updated help file

 	+ Added wis file highlighting (C)

 	+ Warpin installer

 	! Improve ability of eFTE to find its config files

 	* Added environment variable to set config directory

 	+ Added REXX_End_Offset Effects placement of end, catch and finally relative to do, loop and select; 0 = aligned (C)

 	1 Fixed reverse search, search for all (trapped PM version) and search and replace where the search string was contained in the replace string

 	+ Pass search string to help files (either the word at the cursor or from a dialog if no word is picked)

 	! Clean up appearance of help viewer opening in PM

 	+ Make indent level for REXX keywords end, catch and finally user settable (C)

 	+ Added -I to default grep command (C)

 	+ Added rescan, compile, grep and run program button to the toolbar.

 	+ Added bubble help to toolbar buttons

 	* Added exceptq to the executables

 	+ Added exceptq TRP file support (C)

 	+ New Icons for program objects

 	! Update usage instruction provide a dialog to show them for PM version

 	+ Lxlite executables

 	+ Got the about dialog working in PM version updated its appearance

 	+ Add build level strings to exes

 	+ "Wrap" large menus in PM version removing "mode more" menus in the process

 	+ Added previous and next menu items

 	! Multiple changes to avoid/fix buffer overruns, hangs and traps

 	! Got -H and -D command-line switches to accept filenames

 	! Fixed scrollbar failure on files with more than 64k lines

 	- Added eFTE to PATH and eFTE help to HELP in config.sys

 	* Added OS/2 resource file highlighting (C)

 	* Added Help menu items for multiple file types including REXX, C, EMX, WIS, WMAKE and more (C)

 	! Fixed wrong month in log timestamps

 	* Added support for eCS/OS2 HOME (Steven Levine)

 As eFTE

 1.1—October 11, 2009

 	! Fixed a frequent buffer overflow in e_redraw.cpp

 	! Fixed a couple of memory/resource leaks found by static analysis

 1.0—June 16, 2009

 	- First release of eFTE

 	- Branded FTE to be eFTE

 	- Removed DJGPP support

 	- Migrated to SVN for revision control

 	+ Added CursorWithinEOL

 	+ Added searching in the Routine List

 	+ Added new mode for CMake files

 	+ Windows XP and Vista now expand ~ to be the users home directory

 	+ Windows now normalizes path separators, / becomes \\

 	! BlockRead command was not expanding any file

 	! WM_COMMAND now set in X11 binary

 	- Removed partially implemented block cursor sizing

 	+ Added DesktopLoad command

 	+ Added oinclude command which optionally includes a configuration file

 	+ Modes are now user configurable w/o need to edit actual mode file

 	- Cleaned up code a bit with manual and automatic formatting (astyle)

 	- Converted from Makefiles to CMake on Win32, Unixes and OS/X

 	! assert bug fixed when compiling with newer Microsoft compilers

 	+ Configuration compiler loading is now much smarter

 	- Moved all documentation to the wiki where it is now user editable as well
 as developer editable.

 	! Many minor bug fixes

 	- Began native Mac OS X GUI interface

 	+ Added configuration variable BackupDirectory to allow storing backups in
 a common directory

 	+ Added based modes SOURCE and MARKUP and changed all existing modes to
 inherit from SOURCE, MARKUP or PLAIN

 	+ ebuild added, contributed by Daniel Hiepler

 	+ efte.spec added for rpm distributions

 	+ Macro system is now case insensitive

 	+ Added split method to FindReplace

 	+ Removed binary configuration dependency. eFTE now reads the plain text
 configuration files

 	+ Added a nicer help screen

 	! WM_HINTS are set properly in X11

 	+ GetString and $Str0-$Str9

 	+ User defined mode based generic indentation system

 	+ RegExp macro to perform regular expression replacements on user variables

 	+ ExpandTemplate macro for advanced user templates

 	+ Added user defined regular expression based indentation engine for any mode

 	+ Added new modes for Euphoria, Lua, VHDL

 	! Many bugs fixed in the bash syntax parser

 0.50.1—January 17, 2008

 	- Forked from FTE (http://fte.sourceforge.net)

 As FTE

 0.50.1—September 2006

 	- Cleanup and Debian package update

 0.50.0—<fill month here> 2003

 	- Many internal and some external changes

 	- Some bugs fixed in this release

 	+ cfte: added -p[reprocess] command line paramter, it can be used to debug configuration files.

 	! X11: XShellCommand is used to specify used shell under X11. $TERM is no longer used as shell.

 0.46

 	! bug fixes

 	! coredump when $DISPLAY not set fixed

 	! occasional coredump at exit from PM version fixed.

 	! X11: check for invalid -geometry (larger than 255x255).

 	+ colors are specified using a palette in the configuration file

 	+ ShowHelp command (view .INF file under OS/2, .HLP under Win*,
 manpage under UNIX). Context Sensitive.

 	+ configuration file preprocessor %if(), %endif, %define

 	+ Global (persistent) Bookmarks commands + Push/Pop bookmark

 	+ Under UNIX it should now print using lpr

 	+ SIOD mode contributed.

 	+ command FileTrim,BlockTrim - trim whitespace at end of lines

 	+ mode option to strip whitespace at EOF on FileSave. (TrimOnSave)

 	+ C/C++ indentation style is now selectable from menu

 	+ compile command configurable per mode (CompileCommand option)

 	* PM toolbar compile tool configurable (CompileCommand2 option)

 	+ command to compile without asking anything (RunCompiler)

 	+ only load desktop when no arguments on command line (option)
 (this is achieved by setting LoadDesktopOnEntry=2 in global.fte)

 	+ create folds with RoutineRx (command FoldCreateAtRoutines)

 	+ command to center current line (LineCenter)

 	+ OS/2: does not need 'clipserv' anymore (experimental, please report bugs).

 	+ Readonly files are not editable when loaded.

 	+ …

 0.45—February 1997

 	! bug fixes.

 	! some command line option changes (-h = help now, -H = history).

 	+ support for multiple frames in the PM version.

 	+ first win32 console version.

 0.44—November 28

 0.44b6—November 1996

 	! Bug fixes in Linux pipe handling.

 	! Bug fixes in OS/2 PM version.

 	! Fixed repainting bugs in Messages view.

 0.44b5—November 1996

 	! Minor bug fixes.

 	! Changes in syntax highlighting configuration.

 0.44b4—October 1996

 	! Minor bug fixes and numerous performance improvements.

 	+ New commands: BlockEnTab, BlockUnTab.

 	+ Configurable syntax highlighting. Modes HTML/IPF/Ada/Pascal/…
 are now configured externally.

 	+ CTags support. New commands: TagFind, TagFindWord, TagNext, TagPrev,
 TagPop, TagLoad, TagClear. Needs external ctags utility to create
 tags file. Tagfile and tag to find can be given on command line.

 	+ New option: KeepMessages. New command: ClearMessages.

 	+ X11: added support for selection copy/paste.

 	+ PM: Accept file dropped on editor window.

 	+ PM: Optional toolbar (not configurable yet). New option: ShowToolBar.

 	+ PM: GUI dialogs (find/replace, file, …). New option: GUIDialogs.

 	+ PM: Conditional cascade menus can now be used.

 	+ PM: Alt+Fx accelerators can now be disabled with PMDisableAccel option.

 	- Removed WSStyleSearch flag.

 	! PM: Rollup of editor window should now work (tested with title.dll)

 	! Menus can now be overriden by predefining them.

 	! Unix: completion of .* (dot) files now works.

 	! Various fixes to C-mode smart indentation.

 	! BlockReadXXX caused crashes when used with bad filename.

 	+ Incremental search can now be continued by using up/down arrow.

 	! ExitEditor doesn't close files immediatelly after discard. Desktop
 is now properly saved after cancelling ExitEditor command.

 	+ PM: Bigger file selection dialog box with history and save position.

 	+ New commands: IndentFunction, BlockMarkFunction, MoveFunctionPrev,
 MoveFunctionNext. Contributed by: jalving@ibm.net

 	+ …

 0.43—15 July 1996

 	! Minor bug fixes.

 	! Upper/Lower block in column mode could cause a crash.

 	! CompleteWord command occasionally inserted garbage when previous
 match was found in the same line.

 0.42—July 1996

 	! Several minor bug fixes.

 	! PM version doesn't crash when non-existant file is loaded on startup.

 	! HilitWord command now works again.

 	+ Setting for HilitWord color.

 	+ ViewModeMap command is back.

 0.41—June 1996

 	! Compile command crashed depending on command input.

 	! Substrings were matched for keywords in smart indentation (C,REXX)

 	! InsertSpacesToTab command always returned fail status.

 	! CFTE now compiles to temporary file first and replaces original on
 success only.

 	! CFTE returns correct errorlevel on failure (0 = ok, 1 = fail).

 	! SavePos/PrevPos is now stored using real line number, not virtual
 (folded).

 	+ BlockSort command.

 	+ UndoMoves setting can be set for mode to enable undo/redo of all
 cursor movements.

 	+ BlockCutAppend, BlockCopyAppend commands to append cut/copied
 block to clipboard.

 	+ Error message locations now track the position better when a file
 is edited (lines are added/removed).

 0.40—June 1996

 	! Keyword inheritance was not properly handled in colorize modes.

 	! Colors were not inherited in colorize modes.

 	! OS2: Keys Alt+<menu-letter>, F10, Alt+Enter, Alt+Space are available
 for remapping.

 	! Some startup window sizing problems fixed.

 	! Fixed several bugs in configuration files (no bindings for MSG mode,
 some Alt+<letter> menu shortcuts).

 	! Abbreviation expansion could abort with 'asssertion failed'.

 	+ Performance improvements (MatchBracket and related stuff).

 	+ OS2: Window position is now saved.

 	+ FTE now remembers the directory the compilation was started from and
 will resolve all relative pathnames found in error messages using
 this directory. The current directory is determined by currently
 active file or directory. If Messages are already open, FTE will
 use directory from there instead of the current one. The current
 directory of message list is always the directory the compilation was
 started from.

 0.39—May 96

 	! Fixed crash in Compile commands when repeating it.

 	! Multi-key bindings inserted an ascii char if the 2+ key was not valid.

 	! when inserting) in Cmode, it failed to advance the cursor when there
 was no match and AutoHilitParen was set to 1.

 	+ EventMap variable to define keymap to use for mode.

 	! MoveToLine shows correct default line value when folds are used.

 	- Did some reorganization of config files to make adding new
 binding sets easier.

 0.38—May 96

 	! Many bug fixes (mostly minor).

 	+ BlockWrite command can now append to a file.

 	+ Directory browser.

 	! PERL: properly highlight s[][], tr[][].

 	+ Configuration files must now be compiled.

 	+ Syntax highlighting definitions now independant of editing mode.

 	+ Event mappings now independant of editing mode.

 	+ Abbreviatons. Can expand the text or run a macro.

 	+ Searching can now check for words without using regular expressions.

 	+ Loading files is now almost twice as fast.

 	+ File positions and prompt history is now saved in file FTE.HIS.

 	+ The list of loaded files is saved on exit to FTE.DSK. Files
 are automatically loaded on startup. Several settings and command line
 options are available to configure this.

 	+ On startup, only the first file is actually loaded. Other
 files are loaded only as they are needed.

 	+ BlockTrans, CharTrans and LineTrans commands. Can translate
 characters according to arguments (BlockTrans 'a-z' 'A-Z', etc).

 	+ When cursor is over the bracket, the matching bracket can be
 higlighted automatically of visible on screen.

 	! InsPrevLineChar, InsPrevLineToEol failed when tabs were on previous line.

 	+ Nonpersistent blocks (with various options and commands).

 	+ …

 0.37—Dec 95

 	- Status line can now be hidden. Also changed it's look.

 	- Changed the syntax of keyboard bindings. Now it is possible to better
 emulate the wordstar two-key behavior. See documentation for details.
 It is also possible to define different commands for gray/white keys.

 	! MENU shortcuts now work.

 	+ New command: FileWriteTo

 	! Fixed crash when trying to center nonexistant line in file.

 	- Changing folds now modifies the file.

 	- When CursorTroughTabs was set to 0, certain movement commands would
 behave incorrectly.

 	+ S-Ins will perform Paste operation in prompts.

 	+ New Command: WinResize <delta> and WinClose. Windows can be also
 resized by a mouse.

 0.36—Oct 95

 	! Fixed when editor would crash when saving a folded file, but no folds
 are configured for active mode.

 	! Fixed minor bug in C mode indentation.

 	+ New command: InsertSpacesToTab (takes optional tabsize argument).

 0.35—Oct 95

 	KillWordPrev now works correctly.

 	FindReplace command works correctly if WSStyleSearch == 1.

 0.34—1995/10/15

 	Minor fixes & docs updates…

 0.33—1995/10/01

 	! SIGBREAK handler now works again.

 	! Fixes in C/C++ smart indentation (if in switch, …)

 	+ Pascal highlighting mode.

 	+ Printing.

 	+ Rewritten folding. Now supports nested folds, opening,
 closing folds, and persistent folds.

 	+ New folding commands: FoldCreate, FoldDestroy, FoldOpen,
 FoldClose, FoldPromote, FoldDemote, FoldCreateByRegexp,
 FoldOpenAll, FoldOpenNested, FoldCloseAll, FoldDestroyAll,
 FoldToggleOpenClose, MoveFoldPrev, MoveFoldNext.

 	+ New settings: SaveFolds, CommentStart, CommentEnd.

 	+ Word characters can be configured using WordChars setting.

 0.32—1995/08/15

 	+ New search routines. (Find, FindReplace, FindRepeat,
 FindRepeatReverse, FindRepeatOnce, …)

 	+ Block-local searches.

 	+ In buffer-list, most recently used files will now be listed first.

 	+ Main menu bar can now be hidden.

 	+ Performance improvements.

 	+ Bookmarks! New commands: PlaceBookmark, GotoBookmark, RemoveBookmark

 	+ Files can now be saved and closed from window list.

 	+ Optimized CMode indentation. Also more configurable.

 0.31—1995/07/31

 	! Bug fixed in undo/redo when UndoLimit reached.

 0.30—1995/07/30

 	+ Folding support.

 	+ New commands: FoldLine, UnfoldLine, UnfoldNextLine, UnfoldAll, ClearFolds,
 FoldIndent, FoldRegexp, FoldBlock, UnfoldBlock, FoldBlockRegexp.

 	! BackSpace at eof when TrimLine is enabled will not abort.

 	+ Incremental search (IncrementalSearch).

 	+ PgUp/PgDn on a file prompt will show a list of files.

 	+ New command: CompleteWord

 0.29—1995/07/20

 	Regexps can now be case insensitive (\C,\c).

 	BlockRead/BlockReadColumn/BlockWrite commands.

 	Block marking can now be undone.

 	Commands that prompt for string/int values can now take string/int arguments.

 	Multiple compile-regex statements can be specified simultaneously

 	Minor bug-fixes in regexps ([\x00-\xFF] now works).

 	Filter for filename completion.

 	New commands: SwitchTo ChangeKeys ChangeFlags ShowMenu

 	New options: CompletionFilter DefaultModeName

 0.28—1995/07/08

 	- Needs to have documentation updated.

 	Mostly rewritten PERL highlighting. Works much better now.

 	Completely new config file syntax.

 	New commands: ASCIITable, LoadFileInMode

 	CMode indentation should now work for Perl (close enough).

 	Highlighting for ADA and Email messages.

 0.27—1995/06/19

 	Minor bug fixes.

 0.26—1995/06/18

 	New commands: {Char,Line,Block}Case{Up,Down,Toggle}

 	New setting: LoadAfterQuit—if set to 1, editor will prompt to load
 another file before exiting.

 	New setting: ShowScrollBar {0,1}.

 0.25—1995/06/12

 	Minor bug fix in REXX highlighting ("\"", …)

 	Bug fixes in word wrap.

 	BlockCut now doesn't move the cursor to the block beginning.

 	New commands: MoveLineTop, MoveLineCenter, MoveLineBottom.

 	Editor will now check if the file has changed before the first modification.

 	Found text is now highlighted.

 	New CMode setting: C.BraceOfs and command: ChangeCBraceOfs

 	New commands: MovePrevPos, SavePos, MoveSavedPos, MoveSavedPosCol, MoveSavedPosRow

 0.24—1995/06/06

 	When checking for file modification time of last change is now used instead
 of the time of last access.

 	Wildcard support for file loading.

 0.23—1995/06/04

 	Ctrl+C and Ctrl+Break are now disabled.

 	Ctrl+S and Ctrl+C keys are now again recognised in Windowed mode.

 	Fixed problem when spawning a subprocess in Windowed mode.

 	New command: ShowEntryScreen

 	ListRoutines in CMode only shows functions not their prototypes.

 	New setting: SysClipboard - if set to 1, editor will automatically use
 system clipboard.

 	New command: ToggleSysClipboard.

 	Minor bug fix in PM clipboard support.

 	New commands: BlockPasteStream, BlockPasteColumn and BlockPasteLine.
 BlockPaste command will now always paste in current block mode, not in
 the last Copy/Cut mode.

 	More than 4 commands can be bound to a key (actually this worked since 0.18,
 but was not documented).

 	New command: FileReload.

 	Editor will now check if file has changed on disk before saving it.

 0.22—1995/05/28

 	But fix in regular expressions (nested +#*@).

 	Changes in regular expression syntax.

 	New function: ListRoutines. Shows functions in current buffer.

 	New setting: RoutineRx

 0.21—1995/05/21

 	REXX mode smart indentation.

 	KillWord & KillWordPrev commands now actually work.

 	Pressing Ctrl+Enter to begin Search will toggle case sensitivity of search.

 	New option 'Trim' and commands 'ToggleTrim', 'LineTrim'. Removes whitespace
 from end of lines.

 	New option 'ShowMarkers' and command 'ToggleShowMarkers'. Shows end of line
 and end of file markers.

 	Bug fix in PERL highlighting (caused lockups)

 	Bug fixes and improvements in regular expressions.

 0.20—1995/05/18

 	Major bug fixes in word wrap.

 	New commands: MovePrevTab, MoveNextTab.

 	Bug fixes in BlockIndent and BlockUnindent (stream/line mode)

 0.19—1995/05/16

 	Function names in REXX are now highlighted.

 	WordWrap can be set to 0 - disabled, 1 - wrap line at right margin and 2 -
 wrap paragraph continously. Function ToggleAutoWrap renamed to
 ToggleWordWrap.

 	New way to set left/right margin (SetLeftMargin, SetLeftMargin)

 	Minor fix in PERL highlighting.

 0.18—1995/05/13

 	PERL Syntax Higlighting.

 	Memory allocation problem in tab expansion.

 	Wordwrap now strips all spaces on beginning of line (except on the first
 line of the paragraph).

 	Tabs can be set to any number between 1 and 32.

 	Changed names of buffer flags (WrapOn -> AutoWrap, UndoRedo -> Undo,
 ShowTab -> ShowTabs)

 	New commands: ToggleAutoIndent, ToggleExpandTabs, ToggleShowTabs,
 ToggleUndo, ToggleReadOnly, ToggleKeepBackups, ToggleMatchCase,
 ToggleBackSpKillTab, ToggleDeleteKillTab, ToggleSpaceTabs,
 ToggleIndentWithTabs, ToggleBackSpUnindents, ToggleAutoWrap.

 	New commands: WinRefresh, ChangeTabSize, ChangeCIndent, ChangeLeftMargin,
 ChangeRightMargin.

 0.17—1995/05/10

 	Minor fix in word-wrap.

 	Screen repaint problems when shelling out fixed.

 	Blinking disabled for full-screen, high-intensity background colors can now be used.

 0.16—1995/05/06

 	Minor speedups in screen handling and highlighting.

 	Regular expressions can now match start and end of words using .

 	Regexp replace can paste entire matched string using &.

 	Regexp search/replace could match part of just replaced string.

 	New commands: MoveLastNonWhite, MovePrevEqualIndent and MoveNextEqualIndent,
 LineDuplicate, InsPrevLineChar, InsPrevLineToEol.

 	New color config. 'C.Function' for functions in C highlighting mode.

 	Improved CMode hilit, preprocessor hiliting improved (strings, comments, numbers)

 0.15

 1995/04/29

 	Speed improvement in CMode auto indent.

 	Delete command can now delete full tabs instead of converting them to spaces.

 	When closing a modified file, editor prompts you to save it.

 	Automatic indentation can now use tabs.

 	Manual and automatic wordwrap.

 1995/04/24

 	Backspace can now delete full tabs instead of converting them to spaces

 	 (See BackSpace and KillBackTab).

 	Backspace can unindent to previous indentation level.

 1995/04/20

 	Basic mouse support.

 1995/04/12

 	Configurable colors/keywords in C/REXX mode.

 0.14—1995/04/07

 	Characters could not be entered using AltGr on international keyboards.

 	Immediatelly doing an undo on a newly loaded file deleted the first line.

 	Ascii characters >= 128 can be now entered without quote command (C-Q).

 	IPF Syntax highlighting.

 0.13—1995/04/03

 	Bug fix in regular expressions.

 	Bug fixes in compiler support

 	Editor clipboard can now be copied to/from PM clipboard.

 0.12

 1995/03/30

 	Compiler support + error message parsing

 1995/03/25

 	Paren matching (Command: MatchBracket).

 	Bug fixes in CMode smart indentation.

 0.11

 1995/03/11

 	Unlimited undo now works again.

 1995/03/18

 	Entire blocks of C code can now be reindented (BlockReIndent)

 	Search can now be case insensitive (SearchMatchCase - toggle). Option:
 MatchCase, Command: SearchMatchCase

 	Regular expression find/replace works (case sensitive only)

 1995/03/19

 	Fixed a bug in redo (last command could not be undone)

 	New option: KeepBackups—if set to 0, backup files will be deleted after a succesful save.

 0.10

 1995/03/06

 	Fixed CMode indent when tabs are present in the file.

 	Prompts now retain previous text only if you try to edit it.

 1995/03/04

 	4DOS/4OS2 style filename completion (FileOpen, …).

 1995/02/25

 	New load routine, much faster in some cases.

 	Undo/Redo can now be limited (if you hate to waste memory).

 1995/02/19

 	C Mode indentation level can now be specified (C.Indent)

 	Bug fixes in screen redraw.

 	Editor will now scroll text instead of always redisplaying the screen.

 	Regular expressions (Search only).

 0.09—1995/02/08

 	First public release (Version 0.09b)

OEBPS/Images/01mancvr.png
FTE2.hir Util\eFTE2\eFTE2.hfm

File Edit Block Search Fold Tools 4L window Options Help

<meta charset="IBHESA" >
<title>eFTE2 user and reference manualli/title> [1]
<meta nane="language” content="en">-
<meta nane="author” content="Alfredo Fernindez Diaz">-
<meta nane=" 017-09-19">:
<meta nane="revi Lfredo Fernandez Diaz, 2017-11-81">
<meta nane="description” FTE2 documentation, help, user and reference manual”
<meta nane="keyuords” content=
<1-- Visual presentation -->- [1]
<meta nane="vieuport” content="width=device-uidth, initial-scale=1.0">-
<Link rel="Tcon" href="eFTE2ico.pny” type="inage/png">-
Common £S5 —->- (2:41)

<hL>eFTE2 user and reference manual</ni>- (0:18)

<h2 features”>hat is eFTE27</h2>- (0:38)

<h2 id="install">Installation</h2>- (0:397)

<h2 id="use">Using eFTE2: out of the box</h2>- (0:1764)
<h2 id="custon">Custonizing and extending eFTE2</h2>- [0]

<h3 id="custon-intro">Introduction</h3>- (1:24)

<h3 id="cfgfiles">Configuration files</n3>- (1:44)

<h3 id="colors">Interface colors</h3>- (1:41)

<h3 id="colorizer">Syntax highlighting: colorizers</n3>- [1]

<h3 id="macros”>Extending editing functionality: macros</h3>- (1:52)
<h3 id="menus">Easy access to macros: menus</h3>- (1:110)
<h3 id="modes">Editing "modes”</h3>- (1:93)
<h3 id="eventmaps"”>Event maps</h3>- (1:89)
<h2 id="ref">Configuration reference</h2> (0:1658)
id="metainfo">This progran, authors, timeline</h2>- (8:1257)
- [8]

0005:41 IA S HTML D:\Util\eFTE2\eFTE2.htn

