source: trunk/src/os2ahci/ata.c@ 87

Last change on this file since 87 was 87, checked in by markus, 14 years ago

changed copyright headers according to contract; removed evaluation message

File size: 32.1 KB
Line 
1/******************************************************************************
2 * ata.c - ATA command processing
3 *
4 * Copyright (c) 2011 thi.guten Software Development
5 * Copyright (c) 2011 Mensys B.V.
6 *
7 * Authors: Christian Mueller, Markus Thielen
8 *
9 * Parts copied from/inspired by the Linux AHCI driver;
10 * those parts are (c) Linux AHCI/ATA maintainers
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 */
26
27#include "os2ahci.h"
28#include "ata.h"
29
30/* -------------------------- macros and constants ------------------------- */
31
32/* ------------------------ typedefs and structures ------------------------ */
33
34/* -------------------------- function prototypes -------------------------- */
35
36/* ------------------------ global/static variables ------------------------ */
37
38/* ----------------------------- start of code ----------------------------- */
39
40/******************************************************************************
41 * Initialize AHCI command slot, FIS and S/G list for the specified ATA
42 * command. The command parameters are passed as a variable argument list
43 * of type and value(s). The list is terminated by AP_END.
44 *
45 * Notes:
46 *
47 * - The specified command slot is expected to be idle; no checks are
48 * performed to prevent messing with a busy port.
49 *
50 * - Port multipliers are not supported, yet, thus 'd' should always
51 * be 0 for the time being.
52 *
53 * - 'cmd' is passed as 16-bit integer because the compiler would push
54 * a 'u8' as 16-bit value (it's a fixed argument) and the stdarg
55 * macros would screw up the address of the first variable argument
56 * if the size of the last fixed argument wouldn't match what the
57 * compiler pushed on the stack.
58 *
59 * Return values:
60 * 0 : success
61 * > 0 : could not map all S/G entries; the return value is the number of
62 * S/G entries that could be mapped.
63 * < 0 : other error
64 */
65int ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, ...)
66{
67 va_list va;
68 va_start(va, cmd);
69 return(v_ata_cmd(ai, p, d, slot, cmd, va));
70}
71
72int v_ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, va_list va)
73{
74 AHCI_PORT_DMA _far *dma_base_virt;
75 AHCI_CMD_HDR _far *cmd_hdr;
76 AHCI_CMD_TBL _far *cmd_tbl;
77 SCATGATENTRY _far *sg_list = NULL;
78 SCATGATENTRY sg_single;
79 ATA_PARM ap;
80 ATA_CMD ata_cmd;
81 void _far *atapi_cmd = NULL;
82 u32 dma_base_phys;
83 u16 atapi_cmd_len = 0;
84 u16 ahci_flags = 0;
85 u16 sg_cnt = 0;
86 int i;
87 int n;
88
89 /* --------------------------------------------------------------------------
90 * Initialize ATA command. The ATA command is set up with the main command
91 * value and a variable list of additional parameters such as the sector
92 * address, transfer count, ...
93 */
94 memset(&ata_cmd, 0x00, sizeof(ata_cmd));
95 ata_cmd.cmd = (u8) cmd;
96
97 /* parse variable arguments */
98 do {
99 switch ((ap = va_arg(va, ATA_PARM))) {
100
101 case AP_AHCI_FLAGS:
102 ahci_flags |= va_arg(va, u16);
103 break;
104
105 case AP_WRITE:
106 if (va_arg(va, u16) != 0) {
107 ahci_flags |= AHCI_CMD_WRITE;
108 }
109 break;
110
111 case AP_FEATURES:
112 /* ATA features word */
113 ata_cmd.features |= va_arg(va, u16);
114 break;
115
116 case AP_COUNT:
117 /* transfer count */
118 ata_cmd.count = va_arg(va, u16);
119 break;
120
121 case AP_SECTOR_28:
122 /* 28-bit sector address */
123 ata_cmd.lba_l = va_arg(va, u32);
124 if (ata_cmd.lba_l & 0xf0000000UL) {
125 dprintf("error: LBA-28 address %ld has more than 28 bits\n", ata_cmd.lba_l);
126 return(-1);
127 }
128 /* add upper 4 bits to device field */
129 ata_cmd.device |= (ata_cmd.lba_l >> 24) & 0x0fU;
130 /* only lower 24 bits come into lba_l */
131 ata_cmd.lba_l &= 0x00ffffffUL;
132 break;
133
134 case AP_SECTOR_48:
135 /* 48-bit sector address */
136 ata_cmd.lba_l = va_arg(va, u32);
137 ata_cmd.lba_h = va_arg(va, u16);
138 break;
139
140 case AP_DEVICE:
141 /* ATA device byte; note that this byte contains the highest
142 * 4 bits of LBA-28 address; we have to leave them alone here. */
143 ata_cmd.device |= va_arg(va, u16) & 0xf0U;
144 break;
145
146 case AP_SGLIST:
147 /* scatter/gather list in SCATGATENTRY/count format */
148 sg_list = va_arg(va, void _far *);
149 sg_cnt = va_arg(va, u16);
150 break;
151
152 case AP_VADDR:
153 /* virtual buffer address in addr/len format (up to 4K) */
154 DevHelp_VirtToPhys(va_arg(va, void _far *), &sg_single.ppXferBuf);
155 sg_single.XferBufLen = va_arg(va, u16);
156 sg_list = &sg_single;
157 sg_cnt = 1;
158 break;
159
160 case AP_ATAPI_CMD:
161 /* ATAPI command */
162 atapi_cmd = va_arg(va, void _far *);
163 atapi_cmd_len = va_arg(va, u16);
164 ahci_flags |= AHCI_CMD_ATAPI;
165 break;
166
167 case AP_ATA_CMD:
168 /* ATA command "pass-through" */
169 memcpy(&ata_cmd, va_arg(va, void _far *), sizeof(ATA_CMD));
170 break;
171
172 case AP_END:
173 break;
174
175 default:
176 dprintf("error: v_ata_cmd() called with invalid parameter type (%d)\n", (int) ap);
177 return(-1);
178 }
179
180 } while (ap != AP_END);
181
182 /* --------------------------------------------------------------------------
183 * Fill in AHCI ATA command information. This includes the port command slot,
184 * the corresponding command FIS and the S/G list. The layout of the AHCI
185 * port DMA region is based on the Linux AHCI driver and looks like this:
186 *
187 * - 32 AHCI command headers (AHCI_CMD_HDR) with 32 bytes, each
188 * - 1 FIS receive area with 256 bytes (AHCI_RX_FIS_SZ)
189 * - 32 AHCI command tables, each consisting of
190 * - 64 bytes for command FIS
191 * - 16 bytes for ATAPI comands
192 * - 48 bytes reserved
193 * - 48 S/G entries (AHCI_SG) with 32 bytes, each
194 *
195 * Since the whole DMA buffer for all ports is larger than 64KB and we need
196 * multiple segments to address all of them, there are no virtual pointers
197 * to the individual elements in AD_INFO. Instead, we're relying on macros
198 * for getting the base address of a particular port's DMA region, then
199 * map a structure on top of that for convenience (AHCI_PORT_DMA).
200 */
201 dma_base_virt = port_dma_base(ai, p);
202 dma_base_phys = port_dma_base_phys(ai, p);
203
204 /* AHCI command header */
205 cmd_hdr = dma_base_virt->cmd_hdr + slot;
206 memset(cmd_hdr, 0x00, sizeof(*cmd_hdr));
207 cmd_hdr->options = ((d & 0x0f) << 12);
208 cmd_hdr->options |= ahci_flags; /* AHCI command flags */
209 cmd_hdr->options |= 5; /* length of command FIS in 32-bit words */
210 cmd_hdr->tbl_addr = dma_base_phys + offsetof(AHCI_PORT_DMA, cmd_tbl[slot]);
211
212 /* AHCI command table */
213 cmd_tbl = dma_base_virt->cmd_tbl + slot;
214 memset(cmd_tbl, 0x00, sizeof(*cmd_tbl));
215 ata_cmd_to_fis(cmd_tbl->cmd_fis, &ata_cmd, d);
216
217 if (atapi_cmd != NULL) {
218 /* copy ATAPI command */
219 memcpy(cmd_tbl->atapi_cmd, atapi_cmd, atapi_cmd_len);
220 }
221
222 /* PRDT (S/G list)
223 *
224 * - The S/G list for AHCI adapters is limited to 22 bits for the transfer
225 * size of each element, thus we need to split S/G elements larger than
226 * 22 bits into 2 AHCI_SG elements.
227 *
228 * - The S/G element size for AHCI is what the spec calls "'0' based"
229 * (i.e. 0 means 1 bytes). On top of that, the spec requires S/G transfer
230 * sizes to be even in the context of 16-bit transfers, thus bit '1'
231 * always needs to be set.
232 *
233 * - AHCI_MAX_SG_ELEMENT_LEN defines the maximum size of an AHCI S/G
234 * element in bytes, ignoring the '0'-based methodology (i.e. 1 << 22).
235 *
236 * - There's a limit on the maximum number of S/G elements in the port DMA
237 * buffer (AHCI_MAX_SG) which is lower than the HW maximum. It's beyond
238 * the control of this function to split commands which require more
239 * than AHCI_MAX_SG entries. In order to help the caller, the return value
240 * of this function will indicate how many OS/2 S/G entries were
241 * successfully mapped.
242 *
243 */
244 for (i = n = 0; i < sg_cnt; i++) {
245 u32 sg_addr = sg_list[i].ppXferBuf;
246 u32 sg_size = sg_list[i].XferBufLen;
247
248 do {
249 u32 chunk = (sg_size > AHCI_MAX_SG_ELEMENT_LEN) ? AHCI_MAX_SG_ELEMENT_LEN
250 : sg_size;
251 if (n >= AHCI_MAX_SG) {
252 /* couldn't store all S/G elements in our DMA buffer */
253 ddprintf("ata_cmd(): too many S/G elements\n");
254 return(i - 1);
255 }
256 cmd_tbl->sg_list[n].addr = sg_addr;
257 cmd_tbl->sg_list[n].size = chunk - 1;
258 sg_addr += chunk;
259 sg_size -= chunk;
260 n++;
261 } while (sg_size > 0);
262 }
263
264 /* set final S/G count in AHCI command header */
265 cmd_hdr->options |= (u32) n << 16;
266
267 if (debug >= 2) {
268 printf("ATA command for %d.%d.%d:\n", ad_no(ai), p, d);
269 phex(cmd_hdr, offsetof(AHCI_CMD_HDR, reserved), "cmd_hdr: ");
270 phex(&ata_cmd, sizeof(ata_cmd), "ata_cmd: ");
271 if (atapi_cmd != NULL) {
272 phex(atapi_cmd, atapi_cmd_len, "atapi_cmd: ");
273 }
274 if (n > 0) {
275 phex(cmd_tbl->sg_list, sizeof(*cmd_tbl->sg_list) * n, "sg_list: ");
276 }
277 }
278
279 return(0);
280}
281
282/******************************************************************************
283 * Fill SATA command FIS with values extracted from an ATA command structure.
284 * The command FIS buffer (fis) is expected to be initialized to 0s. The
285 * structure of the FIS maps to the ATA shadow register block, including
286 * registers which can be written twice to store 16 bits (called 'exp').
287 *
288 * The FIS structure looks like this (using LSB notation):
289 *
290 * +----------------+----------------+----------------+----------------+
291 * 00 | FIS type (27h) | C|R|R|R|PMP | Command | Features |
292 * +----------------+----------------+----------------+----------------+
293 * 04 | LBA 7:0 | LBA 15:8 | LBA 23:16 | R|R|R|D|Head |
294 * +----------------+----------------+----------------+----------------+
295 * 08 | LBA 31:24 | LBA 40:32 | LBA 47:40 | Features exp |
296 * +----------------+----------------+----------------+----------------+
297 * 12 | Count 7:0 | Count 15:8 | Reserved | Control |
298 * +----------------+----------------+----------------+----------------+
299 * 16 | Reserved | Reserved | Reserved | Reserved |
300 * +----------------+----------------+----------------+----------------+
301 */
302void ata_cmd_to_fis(u8 _far *fis, ATA_CMD _far *ata_cmd, int d)
303{
304 fis[0] = 0x27; /* register - host to device FIS */
305 fis[1] = (u8) (d & 0xf); /* port multiplier number */
306 fis[1] |= 0x80; /* bit 7 indicates Command FIS */
307 fis[2] = (u8) ata_cmd->cmd;
308 fis[3] = (u8) ata_cmd->features;
309
310 fis[4] = (u8) ata_cmd->lba_l;
311 fis[5] = (u8) (ata_cmd->lba_l >> 8);
312 fis[6] = (u8) (ata_cmd->lba_l >> 16);
313 fis[7] = (u8) ata_cmd->device;
314
315 fis[8] = (u8) (ata_cmd->lba_l >> 24);
316 fis[9] = (u8) ata_cmd->lba_h;
317 fis[10] = (u8) (ata_cmd->lba_h >> 8);
318 fis[11] = (u8) (ata_cmd->features >> 8);
319
320 fis[12] = (u8) ata_cmd->count;
321 fis[13] = (u8) (ata_cmd->count >> 8);
322}
323
324/******************************************************************************
325 * Get index in S/G list for the number of transferred sectors in the IORB.
326 *
327 * Returning io->cSGList indicates an error.
328 *
329 * NOTE: OS/2 makes sure S/G lists are set up such that entries at the HW
330 * limit will never cross sector boundaries. This means that splitting
331 * S/G lists into multiple commands can be done without editing the S/G
332 * lists.
333 */
334u16 ata_get_sg_indx(IORB_EXECUTEIO _far *io)
335{
336 ULONG offset = io->BlocksXferred * io->BlockSize;
337 USHORT i;
338
339 for (i = 0; i < io->cSGList && offset > 0; i++) {
340 offset -= io->pSGList[i].XferBufLen;
341 }
342
343 return(i);
344}
345
346/******************************************************************************
347 * Get max S/G count which will fit into our HW S/G buffers. This function is
348 * called when the S/G list is too long and we need to split the IORB into
349 * multiple commands. It returns both the number of sectors and S/G list
350 * elements that we can handle in a single command.
351 *
352 * The parameter 'sg_indx' indicates the current start index in the S/G list
353 * (0 if this is the first command iteration).
354 *
355 * The parameter 'sg_max' is the return value of v_ata_cmd() and indicates
356 * how many S/G elements were successfully mapped. Whatever we return needs to
357 * be less or equal to this value.
358 *
359 * Returning 0 in *sg_cnt indicates an error.
360 *
361 * NOTE: OS/2 makes sure S/G lists are set up such that entries at HW limits
362 * will never cross sector boundaries. This means that splitting S/G
363 * lists into multiple commands can be done without editing S/G list
364 * elements. Since AHCI only allows 22 bits for each S/G element, the
365 * hardware limits are reported as AHCI_MAX_SG / 2 but will vary based
366 * on the actual length of S/G elements. This function looks for the
367 * maximum number of S/G elements that can be mapped on sector
368 * boundaries which will still fit into our HW S/G list.
369 */
370void ata_max_sg_cnt(IORB_EXECUTEIO _far *io, USHORT sg_indx, USHORT sg_max,
371 USHORT _far *sg_cnt, USHORT _far *sector_cnt)
372{
373 ULONG max_sector_cnt = 0;
374 USHORT max_sg_cnt = 0;
375 ULONG offset = 0;
376 USHORT i;
377
378 for (i = sg_indx; i < io->cSGList; i++) {
379 if (i - sg_indx >= sg_max) {
380 /* we're beyond the number of S/G elements we can map */
381 break;
382 }
383
384 offset += io->pSGList[i].XferBufLen;
385 if (offset % io->BlockSize == 0) {
386 /* this S/G element ends on a sector boundary */
387 max_sector_cnt = offset / io->BlockSize;
388 max_sg_cnt = i + 1;
389 }
390 }
391
392 /* return the best match we found (0 indicating failure) */
393 *sector_cnt = max_sector_cnt;
394 *sg_cnt = max_sg_cnt;
395}
396
397
398/******************************************************************************
399 * Get device or media geometry. Device and media geometry are expected to be
400 * the same for non-removable devices, which will always be the case for the
401 * ATA devices we're dealing with (hard disks). ATAPI is a different story
402 * and handled by atapi_get_geometry().
403 */
404int ata_get_geometry(IORBH _far *iorb, int slot)
405{
406 ADD_WORKSPACE _far *aws = add_workspace(iorb);
407 int rc;
408
409 /* allocate buffer for ATA identify information */
410 if ((aws->buf = malloc(ATA_ID_WORDS * sizeof(u16))) == NULL) {
411 iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
412 return(-1);
413 }
414
415 /* request ATA identify information */
416 aws->ppfunc = ata_get_geometry_pp;
417 rc = ata_cmd(ad_infos + iorb_unit_adapter(iorb),
418 iorb_unit_port(iorb),
419 iorb_unit_device(iorb),
420 slot,
421 ATA_CMD_ID_ATA,
422 AP_VADDR, (void _far *) aws->buf, ATA_ID_WORDS * sizeof(u16),
423 AP_END);
424
425 if (rc != 0) {
426 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
427 }
428
429 return(rc);
430}
431
432/******************************************************************************
433 * Post processing function for ata_get_geometry(): convert the ATA identify
434 * information to OS/2 IOCC_GEOMETRY information.
435 */
436void ata_get_geometry_pp(IORBH _far *iorb)
437{
438 GEOMETRY _far *geometry = ((IORB_GEOMETRY _far *) iorb)->pGeometry;
439 USHORT geometry_len = ((IORB_GEOMETRY _far *) iorb)->GeometryLen;
440 u16 *id_buf = add_workspace(iorb)->buf;
441 int a = iorb_unit_adapter(iorb);
442 int p = iorb_unit_port(iorb);
443
444 /* Fill-in geometry information; the ATA-8 spec declares the geometry
445 * fields in the ATA ID buffer as obsolete but it's still the best
446 * guess in most cases. If the information stored in the geometry
447 * fields is apparently incorrect, we'll use the algorithm typically
448 * used by SCSI adapters and modern PC BIOS versions:
449 *
450 * - 512 bytes per sector
451 * - 255 heads
452 * - 63 sectors per track (or 56 with the parameter "/4")
453 * - x cylinders (calculated)
454 *
455 * Please note that os2ahci currently does not natively support ATA sectors
456 * larger than 512 bytes, therefore relies on the translation logic built
457 * into the corresponding ATA disks. In order to prevent file systems that
458 * use block sizes larger than 512 bytes (FAT, JFS, ...) from ending up on
459 * incorrectly aligned physical sector accesses, hence using more physical
460 * I/Os than necessary, the command line parameter "/4" can be used to force
461 * a track size of 56 sectors. This way, partitions will start on 4K
462 * boundaries.
463 *
464 * Another limitation is that OS/2 has a 32-bit variable for the total number
465 * of sectors, limiting the maximum capacity to roughly 2TB. This is another
466 * issue that needs to be addressed sooner or later; large sectors could
467 * raise this limit to something like 8TB but this is not really much of a
468 * difference. Maybe there's something in later DDKs that allows more than
469 * 32 bits?
470 */
471 memset(geometry, 0x00, geometry_len);
472 geometry->BytesPerSector = ATA_SECTOR_SIZE;
473
474 /* extract total number of sectors */
475 if (id_buf[ATA_ID_CFS_ENABLE_2] & 0x400) {
476 /* 48-bit LBA supported */
477 if (ATA_CAPACITY48_H(id_buf) != 0) {
478 /* more than 32 bits for number of sectors */
479 dprintf("warning: limiting disk %d.%d.%d to 2TB\n",
480 iorb_unit_adapter(iorb), iorb_unit_port(iorb),
481 iorb_unit_device(iorb));
482 geometry->TotalSectors = 0xffffffffUL;
483 } else {
484 geometry->TotalSectors = ATA_CAPACITY48_L(id_buf);
485 }
486 } else {
487 /* 28-bit LBA */
488 geometry->TotalSectors = ATA_CAPACITY(id_buf) & 0x0fffffffUL;
489 }
490
491 /* fabricate the remaining geometry fields */
492 if (track_size[a][p] != 0) {
493 /* A specific track size has been requested for this port; this is
494 * typically done for disks with 4K sectors to make sure partitions
495 * start on 8-sector boundaries (parameter "/4").
496 */
497 geometry->NumHeads = 255;
498 geometry->SectorsPerTrack = track_size[a][p];
499 geometry->TotalCylinders = geometry->TotalSectors /
500 ((u32) geometry->NumHeads *
501 (u32) geometry->SectorsPerTrack);
502
503 } else if (CUR_HEADS(id_buf) > 0 && CUR_CYLS(id_buf) > 0 &&
504 CUR_SECTORS(id_buf) > 0 &&
505 CUR_CAPACITY(id_buf) == CUR_HEADS(id_buf) *
506 CUR_CYLS(id_buf) *
507 CUR_SECTORS(id_buf)) {
508 /* BIOS-supplied (aka "current") geometry values look valid */
509 geometry->NumHeads = CUR_HEADS(id_buf);
510 geometry->SectorsPerTrack = CUR_SECTORS(id_buf);
511 geometry->TotalCylinders = CUR_CYLS(id_buf);
512
513 } else if (ATA_HEADS(id_buf) > 0 && ATA_CYLS(id_buf) > 0 &&
514 ATA_SECTORS(id_buf) > 0) {
515 /* ATA-supplied values for geometry look valid */
516 geometry->NumHeads = ATA_HEADS(id_buf);
517 geometry->SectorsPerTrack = ATA_SECTORS(id_buf);
518 geometry->TotalCylinders = ATA_CYLS(id_buf);
519
520 } else {
521 /* use typical SCSI geometry */
522 geometry->NumHeads = 255;
523 geometry->SectorsPerTrack = 63;
524 geometry->TotalCylinders = geometry->TotalSectors /
525 ((u32) geometry->NumHeads *
526 (u32) geometry->SectorsPerTrack);
527 }
528
529 if (debug) {
530 printf("geometry information:\n");
531 printf(" heads: %d\n", (u16) geometry->NumHeads);
532 printf(" sectors: %d\n", (u16) geometry->SectorsPerTrack);
533 printf(" cylinders: %d\n", (u16) geometry->TotalCylinders);
534 printf(" capacity: %ldMB\n", (u32) (geometry->TotalSectors / 2048));
535 }
536
537 /* tell interrupt handler that this IORB is complete */
538 add_workspace(iorb)->complete = 1;
539}
540
541/******************************************************************************
542 * Test whether unit is ready.
543 */
544int ata_unit_ready(IORBH _far *iorb, int slot)
545{
546 /* This is a NOP for ATA devices (at least right now); returning an error
547 * without setting an error code means ahci_exec_iorb() will not queue any
548 * HW command and the IORB will complete successfully.
549 */
550 ((IORB_UNIT_STATUS _far *) iorb)->UnitStatus = US_READY | US_POWER;
551 return(-1);
552}
553
554/******************************************************************************
555 * Read sectors from AHCI device.
556 */
557int ata_read(IORBH _far *iorb, int slot)
558{
559 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
560 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
561 ULONG sector = io->RBA + io->BlocksXferred;
562 USHORT count = io->BlockCount - io->BlocksXferred;
563 USHORT sg_indx;
564 USHORT sg_cnt;
565 int p = iorb_unit_port(iorb);
566 int d = iorb_unit_device(iorb);
567 int rc;
568
569 /* Kludge: some I/O commands during boot use excessive S/G buffer lengths
570 * which cause NCQ commands to lock up. If there's only one S/G element
571 * and this element is already larger than what we can derive from the sector
572 * count, we'll adjust that element.
573 */
574 if (io->BlocksXferred == 0 && io->cSGList == 1 &&
575 io->pSGList[0].XferBufLen > io->BlockCount * io->BlockSize) {
576 io->pSGList[0].XferBufLen = io->BlockCount * io->BlockSize;
577 }
578
579 /* prepare read command while keeping an eye on S/G count limitations */
580 do {
581 sg_indx = ata_get_sg_indx(io);
582 sg_cnt = io->cSGList - sg_indx;
583
584 if (sector >= (1UL << 28) || count > 256 || add_workspace(iorb)->is_ncq) {
585 /* need LBA48 for this command */
586 if (!ai->ports[p].devs[d].lba48) {
587 iorb_seterr(iorb, IOERR_RBA_LIMIT);
588 return(-1);
589 }
590 if (add_workspace(iorb)->is_ncq) {
591 /* use NCQ read; count goes into feature register, tag into count! */
592 rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_READ,
593 AP_SECTOR_48, (u32) sector, (u16) 0,
594 AP_FEATURES, (u16) count,
595 AP_COUNT, (u16) (slot << 3), /* tag = slot */
596 AP_SGLIST, io->pSGList + sg_indx, (u16) sg_cnt,
597 AP_DEVICE, 0x40,
598 AP_END);
599 } else {
600 rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ_EXT,
601 AP_SECTOR_48, (u32) sector, (u16) 0,
602 AP_COUNT, (u16) count,
603 AP_SGLIST, io->pSGList + sg_indx, (u16) sg_cnt,
604 AP_DEVICE, 0x40,
605 AP_END);
606 }
607
608 } else {
609 rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ,
610 AP_SECTOR_28, (u32) sector,
611 AP_COUNT, (u16) count & 0xffU,
612 AP_SGLIST, io->pSGList + sg_indx, (u16) sg_cnt,
613 AP_DEVICE, 0x40,
614 AP_END);
615 }
616
617 if (rc > 0) {
618 /* couldn't map all S/G elements */
619 ata_max_sg_cnt(io, sg_indx, (USHORT) rc, &sg_cnt, &count);
620 }
621 } while (rc > 0 && sg_cnt > 0);
622
623 if (rc == 0) {
624 add_workspace(iorb)->blocks = count;
625 add_workspace(iorb)->ppfunc = ata_read_pp;
626
627 } else if (rc > 0) {
628 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
629
630 } else {
631 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
632 }
633
634 return(rc);
635}
636
637/******************************************************************************
638 * Post processing function for ata_read(); this function updates the
639 * BlocksXferred counter in the IORB and, if not all blocks have been
640 * transferred, requeues the IORB to process the remaining sectors.
641 */
642void ata_read_pp(IORBH _far *iorb)
643{
644 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
645
646 io->BlocksXferred += add_workspace(iorb)->blocks;
647 dprintf("ata_read_pp(): blocks transferred = %d\n", (int) io->BlocksXferred);
648
649 if (io->BlocksXferred >= io->BlockCount) {
650 /* we're done; tell IRQ handler the IORB is complete */
651 add_workspace(iorb)->complete = 1;
652 } else {
653 /* requeue this IORB for next iteration */
654 iorb_requeue(iorb);
655 }
656}
657
658/******************************************************************************
659 * Verify readability of sectors on ATA device.
660 */
661int ata_verify(IORBH _far *iorb, int slot)
662{
663 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
664 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
665 int p = iorb_unit_port(iorb);
666 int d = iorb_unit_device(iorb);
667 int rc;
668
669 /* prepare verify command */
670 if (io->RBA >= (1UL << 28) || io->BlockCount > 256) {
671 /* need LBA48 for this command */
672 if (!ai->ports[p].devs[d].lba48) {
673 iorb_seterr(iorb, IOERR_RBA_LIMIT);
674 return(-1);
675 }
676 rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY_EXT,
677 AP_SECTOR_48, (u32) io->RBA, (u16) 0,
678 AP_COUNT, (u16) io->BlockCount,
679 AP_DEVICE, 0x40,
680 AP_END);
681 } else {
682 rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY,
683 AP_SECTOR_28, (u32) io->RBA,
684 AP_COUNT, (u16) io->BlockCount & 0xffU,
685 AP_END);
686 }
687
688 return(rc);
689}
690
691/******************************************************************************
692 * Write sectors to AHCI device.
693 */
694int ata_write(IORBH _far *iorb, int slot)
695{
696 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
697 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
698 ULONG sector = io->RBA + io->BlocksXferred;
699 USHORT count = io->BlockCount - io->BlocksXferred;
700 USHORT sg_indx;
701 USHORT sg_cnt;
702 int p = iorb_unit_port(iorb);
703 int d = iorb_unit_device(iorb);
704 int rc;
705
706 /* prepare write command while keeping an eye on S/G count limitations */
707 do {
708 sg_indx = ata_get_sg_indx(io);
709 sg_cnt = io->cSGList - sg_indx;
710
711 if (sector >= (1UL << 28) || count > 256 || add_workspace(iorb)->is_ncq) {
712 /* need LBA48 for this command */
713 if (!ai->ports[p].devs[d].lba48) {
714 iorb_seterr(iorb, IOERR_RBA_LIMIT);
715 return(-1);
716 }
717 if (add_workspace(iorb)->is_ncq) {
718 /* use NCQ write; count goes into feature register, tag into count! */
719 rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_WRITE,
720 AP_SECTOR_48, (u32) sector, (u16) 0,
721 AP_FEATURES, (u16) count,
722 AP_COUNT, (u16) (slot << 3), /* tag = slot */
723 AP_SGLIST, io->pSGList + sg_indx, (u16) sg_cnt,
724 AP_DEVICE, 0x40,
725 AP_DEVICE, (io->Flags & XIO_DISABLE_HW_WRITE_CACHE) ?
726 0x80 : 0, /* force unit access */
727 AP_WRITE, 1,
728 AP_END);
729 } else {
730 rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE_EXT,
731 AP_SECTOR_48, (u32) sector, (u16) 0,
732 AP_COUNT, (u16) count,
733 AP_SGLIST, io->pSGList + sg_indx, (u16) sg_cnt,
734 AP_DEVICE, 0x40,
735 AP_WRITE, 1,
736 AP_END);
737 }
738
739 } else {
740 rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE,
741 AP_SECTOR_28, (u32) sector,
742 AP_COUNT, (u16) count & 0xffU,
743 AP_SGLIST, io->pSGList + sg_indx, (u16) sg_cnt,
744 AP_DEVICE, 0x40,
745 AP_WRITE, 1,
746 AP_END);
747 }
748
749 if (rc > 0) {
750 /* couldn't map all S/G elements */
751 ata_max_sg_cnt(io, sg_indx, (USHORT) rc, &sg_cnt, &count);
752 }
753 } while (rc > 0 && sg_cnt > 0);
754
755 if (rc == 0) {
756 add_workspace(iorb)->blocks = count;
757 add_workspace(iorb)->ppfunc = ata_write_pp;
758
759 } else if (rc > 0) {
760 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
761
762 } else {
763 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
764 }
765
766 return(rc);
767}
768
769/******************************************************************************
770 * Post processing function for ata_write(); this function updates the
771 * BlocksXferred counter in the IORB and, if not all blocks have been
772 * transferred, requeues the IORB to process the remaining sectors.
773 */
774void ata_write_pp(IORBH _far *iorb)
775{
776 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
777
778 io->BlocksXferred += add_workspace(iorb)->blocks;
779 dprintf("ata_write_pp(): blocks transferred = %d\n", (int) io->BlocksXferred);
780
781 if (io->BlocksXferred >= io->BlockCount) {
782 /* we're done; tell IRQ handler the IORB is complete */
783 add_workspace(iorb)->complete = 1;
784 } else {
785 /* requeue this IORB for next iteration */
786 iorb_requeue(iorb);
787 }
788}
789
790/******************************************************************************
791 * Execute ATA command.
792 */
793int ata_execute_ata(IORBH _far *iorb, int slot)
794{
795 IORB_ADAPTER_PASSTHRU _far *apt = (IORB_ADAPTER_PASSTHRU _far *) iorb;
796 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
797 int p = iorb_unit_port(iorb);
798 int d = iorb_unit_device(iorb);
799 int rc;
800
801 if (apt->ControllerCmdLen != sizeof(ATA_CMD)) {
802 iorb_seterr(iorb, IOERR_CMD_SYNTAX);
803 return(-1);
804 }
805
806 rc = ata_cmd(ai, p, d, slot, 0,
807 AP_SGLIST, apt->pSGList, apt->cSGList,
808 AP_ATA_CMD, apt->pControllerCmd,
809 AP_WRITE, !(apt->Flags & PT_DIRECTION_IN),
810 AP_END);
811
812 return(rc);
813}
814
815/******************************************************************************
816 * Request sense information for a failed command. Since there is no "request
817 * sense" command for ATA devices, we need to read the current error code from
818 * the AHCI task file register and fabricate the sense information.
819 *
820 * NOTES:
821 *
822 * - This function must be called right after an ATA command has failed and
823 * before any other commands are queued on the corresponding port. This
824 * function is typically called in the port restart context hook which is
825 * triggered by an AHCI error interrupt.
826 *
827 * - The ATA error bits are a complete mess. We'll try and catch the most
828 * interesting error codes (such as medium errors) and report everything
829 * else with a generic error code.
830 */
831int ata_req_sense(IORBH _far *iorb, int slot)
832{
833 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
834 u8 _far *port_mmio = port_base(ai, iorb_unit_port(iorb));
835 u32 tf_data = readl(port_mmio + PORT_TFDATA);
836 u8 err = (u8) (tf_data >> 8);
837 u8 sts = (u8) (tf_data);
838
839 if (sts & ATA_ERR) {
840 if (sts & ATA_DF) {
841 /* there is a device-specific error condition */
842 if (err & ATA_ICRC) {
843 iorb_seterr(iorb, IOERR_ADAPTER_DEVICEBUSCHECK);
844 } else if (err & ATA_UNC) {
845 iorb_seterr(iorb, IOERR_MEDIA);
846 } else if (err & ATA_IDNF) {
847 iorb_seterr(iorb, IOERR_RBA_ADDRESSING_ERROR);
848 } else {
849 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
850 }
851
852 } else {
853 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
854 }
855 } else {
856 /* this function only gets called when we received an error interrupt */
857 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
858 }
859
860 /* Return an error to indicate there's no HW command to be submitted and
861 * that the IORB can be completed "as is" (the upstream code expects the
862 * IORB error code, if any, to be set when this happens and this is exactly
863 * what this function is all about).
864 */
865 return(-1);
866}
867
868/******************************************************************************
869 * Extract vendor and device name from an ATA INDENTIFY buffer. Since strings
870 * in the indentify buffer are byte-swapped, we need to swap them back.
871 */
872char *ata_dev_name(u16 *id_buf)
873{
874 static char dev_name[ATA_ID_PROD_LEN + 1];
875 char *t = dev_name;
876 char *s = (char *) (id_buf + ATA_ID_PROD);
877 int i;
878
879 dev_name[sizeof(dev_name)-1] = '\0';
880
881 for (i = 0; i < ATA_ID_PROD_LEN / 2; i++) {
882 *(t++) = s[1];
883 *(t++) = s[0];
884 s += 2;
885 }
886
887 return(dev_name);
888}
889
Note: See TracBrowser for help on using the repository browser.